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This paper investigates the problem of belief update in Bayesian networks (BN) with uncertain 

evidence. Two types of uncertain evidences are identified: virtual evidence (reflecting the 

uncertainty one has about a reported observation) and soft evidence (reflecting the uncertainty of an 

event one observes). Each of the two types of evidence has its own characteristics and obeys a belief 

update rule that is different from hard evidence, and different from each other. The particular 

emphasis is on belief update with multiple uncertain evidences. Efficient algorithms for BN 

reasoning with consistent and inconsistent uncertain evidences are developed, and their 

convergences analyzed. These algorithms can be seen as combining the techniques of traditional BN 

reasoning, Pearl’s virtual evidence method, Jeffrey’s rule, and the iterative proportional fitting 

procedure.  

Keywords: Bayesian networks; belief update; probabilistic reasoning; uncertain evidence.   

1. Introduction 

This paper considers the problem of probabilistic reasoning with uncertain evidences. A 

regular evidence, called hard evidence in the literature, is an observation of a random 

variable, say Xi, having a particular value (or in a particular state), say a, represented as 

an instantiation Xi = a. However, it is not always possible to observe the value a variable 

is having in a particular case, or to have a complete trust on a claimed observation, thus 

bringing uncertainty to the evidences.  This paper focuses on two types of uncertain 

evidences. The first type, called soft evidence as suggested by others,
19

 can be interpreted 

as evidence of uncertainty, and is represented as a probability distribution of one or more 

variables. The second type, called virtual evidence, can be interpreted as evidence with 

uncertainty, and is represented as a likelihood ratio.
16

 These two types of evidences 

reflect different kinds of uncertainty and each obeys a belief update rule that is different 

from hard evidence, and different from each other. 

http://dx.doi.org/10.1142/S0218488510006696
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Based on an in-depth examination of these two types of uncertain evidences, we have 

developed efficient algorithms for belief update in Bayesian networks (BN) with such 

evidences. We focus on BN because of its popularity in intelligent systems and its time 

and space efficiency in representing and reasoning with probabilistic information.
15

 

However, many theoretical results we obtained hold for belief update of joint 

distributions that are not represented by BNs. 

Related existing work can be found in Refs. 16, 19, 3, 20 and 21. Pearl was among 

the first to raise the issue of uncertain evidence and proposed the virtual evidence 

method.
16

 However, as can be seen in Sec. 3, this method is not directly applicable to the 

situation in which multiple soft evidences are presented. Chan and Darwiche provided a 

thorough analysis that connects Pearl’s virtual evidence method and Jeffrey’s rule for 

both general joint distributions as well as BNs.
3
 They also showed that a soft evidence 

can be converted into a virtual evidence, and as the result, belief update with a single soft 

evidence can be carried out by Pearl’s virtual evidence method for both BN and joint 

distributions. They argued that multiple uncertain evidences should not be allowed for 

belief update at the same time. Vomlel, on the other hand, argued that multiple uncertain 

evidences, even if they are inconsistent with each other, should be allowed, and 

developed an algorithm, named GEMA, for such purpose.
21

 However, GEMA was 

devised for general joint distributions, not for BNs. Valtorta et al. proposed to extend the 

iterative proportional fitting procedure (IPFP) for BN belief update with multiple 

consistent soft evidences.
19 

 

Our research extends these works in a number of significant ways. The results 

presented in this paper can be summarized as follows. (1) We formally established the 

equivalence of Jeffrey’s rule, I-projection (a central operation of IPFP), and virtual 

evidence method, when dealing with a single uncertain evidence. We also established that 

Pearl’s virtual evidence method works for multiple virtual evidences but not for multiple 

soft evidences. (2) We, for the first time, proved that I-projection and IPFP, which is 

known to minimize the I-divergence (or Kullback-Leibler distance), also minimizes the 

total variation between the source and the projected distributions. (3) We developed BN-

IPFP, an efficient algorithm that combines Pearl’s virtual evidence method and IPFP for 

BN belief update with multiple consistent soft evidences, and proved its convergence.  

(4) We developed SMOOTH, an algorithm for belief update with inconsistent soft 

evidences and proved its convergence for the case of two evidences. SMOOTH can be 

easily incorporated into BN-IPFP for BN update with inconsistent evidences.  

The rest of the paper is organized as follows. Section 2 provides technical 

preliminaries with brief introductions to Jeffrey’s rule, I-projection, and IPFP. Section 3 

analyzes the two types of uncertain evidences. Section 4 develops two versions of 

algorithm BN-IPFP. Section 5 discusses issues related to inconsistent evidences and 

develops algorithm SMOOTH. Section 6 concludes with a discussion on evidential 

reasoning in which different types (hard, virtual, and soft) evidences are given either 

sequentially or at the same time, followed by the directions of future research. 
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For presentational clarity, proofs of theorems of our own (Theorems 2, 4, 6, 7) are 

given in the Appendix. We re-stated some theorems of others that are of immediate 

relevancy to this work, their proofs are referred to their original publications.  

A number of computer experiments with artificial data were conducted to validate our 

results and to compare the performances with different methods. All experiments were 

run on an Intel® Core™2 CPU of 2.40G Hz and 2.0G maximum memory for the JVM 

(Java Virtual Machine). Netica
a
 Java API and its junction tree based inference engine 

were used for standard BN inference. 

2. Preliminaries  

Throughout this paper, we use upper-case X = (X1, X2,…, Xn) for the set of all random 

variables of interest and Xi for individual random variables; lower-case x and xi denote 

particular and arbitrary instantiation(s) of the respective variable(s); and bold upper-case 

X, Xi denote the set of all possible instantiations. 
1 2, , ,Y Y Y X⊆⋯ are for subsets of X, 

and jy and jY for their instantiations similarly. Upper-case P, Q, R, S, T are reserved for 

probability distribution; P(X) indicates a joint distribution; and ( )j
Q Y denotes the 

marginal distribution of ( )Q X over a subset of variables .jY Bold upper case P, Q, R, S, 

T are reserved for sets of distributions. In particular, 
( )

{ ( ) | ( ) ( )}
R Y

P X P Y R Y= =P
 

denotes the set of all distributions over X whose marginals over Y X⊆  equal R(Y).  

2.1. Jeffrey’s rule and I-projection 

How to update a distribution P(X) by another lower dimensional distribution R(Y), Y ⊆ X, 

has been debated for a long time in the mathematics and philosophy communities.
12,16,3

 

One of the difficulties stems from the fact that the Bayes’ rule cannot directly apply here 

because R(y), although acting as a condition for the update, itself is not an event. One 

approach proposed by R. Jeffrey
12

 is based on two principles: the new, posterior 

distribution Q(X) should 1) satisfy R(Y) (i.e., Q(Y) = R(Y)) and 2) keep the conditional 

distribution of X, givenY X⊆ , unchanged (e.g., Q(X\Y | Y) = P(X\Y | Y)). The second 

principle, known as probability kinematics, has the effect of keeping the change in the 

update minimum. Then for a given R(Y) and \Z X Y⊆ , we can compute the 

probabilities 

     ( , )
( ) ( | ) ( ) ( )

( )y y

P z y
Q z P z y R y R y

P y∈ ∈
= =Σ Σ

Y Y

  (1)  

where y ∈Y indicates the summation is over all instantiations of Y. Equation (1) is 

known as Jeffrey's rule
12

 or J-conditioning. From (1), let \Z X Y⊆ , then, for any y we 

have the updated distribution 

 
aNetica: Bayesian network tool from Norsys Software Corp. http://www.norsys.com/  
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( )

( )     ( ) 0( , )
( ) ( )    ( )

( )
0                   

R y
P x if P yP x y

Q x R y P y
P y

otherwise


≠

= = 


  (2) 

Two functions have been used widely to measure the distance or difference between 

two distributions over X. Their definitions are given below. 

 

Definition 1.
20

 The I-divergence (also known as Kullback-Leibler distance and relative 

entropy) between P(X) and Q(X) is given by  

                        
( ) 0

( )
( ) log  

( || ) ( )P x

P x
P x if P Q

I P Q Q x

otherwise

>


∑ <<

= 
+∞

 (3) 

where P Q<< , denoting P is dominated by Q, if { | ( ) 0} { | ( ) 0}x P x x Q x> ⊆ > . 

 

Note that ( || ) 0I P Q ≥  for all P and Q, the equality holds only if P = Q. Also note 

that in general ( || ) ( || )I P Q I Q P≠ , so I-divergence is not a true “distance” metric. 

 

Definition 2. The total variation between P(X) and Q(X) is defined as 

        ( , ) | ( ) ( ) |
x

P Q P x Q xδ
∈

= ∑ −
X

   (4) 

Now we define I-projection, one of the central concepts for our work. 

 

Definition 3. Q(x) is said to be an I-projection
b
 of P(x) on a convex set of distributions S 

if 

      ( || ) min ( || )
Q

I Q P I Q P
∈

=
Sɶ
ɶ  (5) 

It has been shown that because of the convexity of Q I-projection is unique.
6
 We are 

particularly interested in I-projections on 
( )R YP , the set of distributions whose marginals 

over Y equal R(Y). 
( )R YP is known to be convex and the I-projection of P(x) on 

( )R YP can 

be calculated by
20 

          
( )

( )      ( ) 0
( ) ( )

0                 

R y
P x if P y

Q x P y

otherwise


⋅ ≠

= 


    (6) 

Note that (6) is exactly the same as (2). This proves the following theorem. 

 

Theorem 1. Let Q(X) be the distribution resulted from updating P(X) by ( )R Y , Y X⊆  

using Jeffrey’s rule of (2). Then Q(X) is the I-projection of P(X) on 
( )R YP . 

 
b
I-projection defined here is also called I1-projection in the literature. Since I-divergence is not symmetric, 

another projection, namely, I2-projection Q’ on Q is defined that minimizes the I-divergence ( || ')I P Q . Unlike 

I1-projection, I2-projection in general is not unique. In this paper, all I-projections refer to I1-projections. 
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Next we show that I-projection by (6) not only minimizes the I-divergence, but also 

the total variation.  

Theorem 2. Let Q(X) be the I-projection of P(x) on 
( )R YP . Then ( , )P Qδ =

 

( )

min ( , )
R yQ

P Qδ
∈Pɶ

ɶ
. 

2.2. IPFP 

For a single constraint R(Y), the I-projection of P(X) on 
( )R YP finds a distribution that 

satisfies this constraint and is closest to P(X) (in terms of I-divergence), provided 

( ) ( )R Y P Y<< . Iterative proportional fitting procedure (IPFP) extends this idea to modify 

P(X) with multiple constraints by continuously projecting the distribution resulted from 

the previous iteration to 
( )jR Y

P  of the next constraint ( )jR Y . This procedure is formally 

defined as follows. 

 

Definition 4.
20

 Let 
1

( ( ), ( ))
m

R Y R Y=R ⋯ be a set of constraints and 0( )Q X the initial 

distribution. Then for 1,2,k = ⋯ , 1 ( 1) modj k m= + − , and 
1

( ) ( )j j

k
R Y Q Y−<< for all k, 

j, IPFP is defined by 

                             1 1

1

( )
( ) ( ) 0

( ) ( )

0

j
j

k k
j

k k

R y
Q x if Q y

Q x Q y

otherwise

− −

−


⋅ >

= 


 (7) 

In (7), m is the number of constraints, k is the iteration index, and j determines the 

constraint used at step k. For clarity, in the rest of this paper, we write (7) as 

                    
1

1

( )
( ) ( )

( )

j

k k
j

k

R y
Q x Q x

Q y
−

−

= ⋅  (7-1) 

with the understanding that ( ) 0kQ x = when 1( ) 0j
kQ y− = . 

IPFP first appeared in the literature in Ref. 13, and shortly after was used as a 

procedure to estimate cell frequencies in contingency tables under some marginal 

constraints.
8
 IPFP was extended in Refs. 1 and 5 to also allow conditional distributions as 

constraints (conditional or C-IPFP). The convergence of IPFP was studied in Refs. 7, 10, 

and 17 with proofs under different conditions, the convergence of C-IPFP can be found in 

Ref. 5. For our purpose, we cite a result from Ref. 20 in the theorem below, which is 

based on the I-divergence geometry developed in Ref. 7. 

Theorem 3.  Let 
1

( ( ), ( ))
m

R Y R Y=R ⋯ be a set of constraints. If 1 ( )j

m

j R Y== ≠ ∅S P∩ , then 

IPFP of (7) converges and the converging distribution *( )Q X is the I-projection of 

0( )Q X
 on S. 

 

If ∅≠S , these constraints are said to be consistent with each other, and each 

distribution in S satisfies all constraints in R. Therefore, at convergence, *( )Q X , as the   
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I-projection on S, has the minimum I-divergence among those that satisfy all constraints 

in R. Next we show that IPFP also minimizes the total variation in the next two theorems. 

Theorem 4. Consider an initial distribution 0( )Q X  and a set of consistent constraints 
1

( ( ), ( ))
m

R Y R Y=R ⋯ . Let *( )Q X  be the converging distribution when applying IPFP on 

0( )Q X  using constraints in R, let 1 2
Y Y Y= ∪ ∪  m

Y∪⋯ and *( )Q Y be the converging 

distribution when applying IPFP on 0( )Q Y  using constraints in R.  Then 

 
*

*
0

0

( )
( ) ( ) .

( )

Q y
Q x Q x

Q y
=  (8) 

Comparing Theorem 4 and (7-1), IPFP on 0
( )Q X

 with m constraints is equivalent to 

modifying 0
( )Q X  by a single constraint *( )Q Y . That is, *( )Q X  is the I-projection of 

0
( )Q X  on * ( )Q Y

P . This, together with Theorem 2, leads to the following theorem. 

 

Theorem 5.  Let *( )Q X  be the converging distribution using IPFP with an initial 

distribution 0
( )Q X  and a set of constraints 

1
( ( ), ( ))

m
R Y R Y=R ⋯  with 

1 ( )j

m

j R Y== ≠ ∅S P∩ . Then *
( , ) min ( , )

Q
P Q P Qδ δ

∈
=

Sɶ
ɶ . 

 

To the best of our knowledge, Theorems 2, 4, and 5 are original results which have 

not been reported in the literature before. 

IPFP bears a great resemblance with another family of procedures known as 

alternating projection, which finds a point in the intersection of several convex sets by a 

sequence of projections onto these sets. Alternating projection has been widely used as an 

optimization method in areas of sampling theory, signal processing, and neural networks. 

A comprehensive review of this method can be found in Ref. 4. The difference from IPFP 

is that alternating projection is primarily for Euclidean spaces and it tends to minimize 

the square distances while IPFP is for probability spaces and it minimizes I-divergence 

(and the total variation by our result in Theorem 5) but not the square distances.
10

 Several 

IPFP-based algorithms we will discuss, especially those for inconsistent evidences, can 

find their counterparts in alternating projection procedures. 

3. Uncertain Evidences  

Evidences presented for belief update may be uncertain for various reasons. A reported 

observation may not be totally trusted due to errors or noise in the observation or 

reporting process; it may be biased due to the observer’s preference; it may not hold 

when the time or location is different. Among all types of uncertain evidences, this paper 

concentrates on two of them, named virtual evidence and soft evidence. 

3.1. Virtual evidences 

Pearl
16 

proposed the virtual evidence method to deal with BN belief update when one is 

uncertain about a claim of a hard evidence (i.e., an event), say, Xi = a. Suppose we 

believe with probability p that this claim is actually due to the occurrence of Xi = a, then 

the probability it is not occurring is 1 – p. The virtual evidence method requires this 

uncertainty information be given as a likelihood ratio ( ) : (1 )iL X p p= − , not necessarily 
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the specific probabilities. To reason with virtual evidence in a BN, Pearl’s method 

extends the given BN by creating a binary virtual node, U with state u standing             

for the event that Xi = a is claimed to have occurred. The virtual node U has 
iX              

as its only parent and its conditional probability table (CPT) satisfies  

( | ) : ( | ) ( ).
i i i

P u X a P u X a L X= ≠ =  Then the belief update (with the claimed observation 

and the uncertainty about this claim in the form of the likelihood ratio L) can be done by 

instantiating U to u (i.e., treating u as a hard evidence). Many BN engines accept a 

likelihood ratio as input for the update without explicitly introducing the virtual node.  

This method is generalized in Ref. 3 to any arbitrary set of mutually exclusive and 

exhaustive events and the associated likelihood ratio, and from BN to any joint 

distributions. Under this generalization, virtual evidence on Y X⊆ is represented as a 

likelihood ratio 

(1) (1) (2) (2) ( ) ( )( ) ( ( ) | ) : ( ( ) | ) : : ( ( ) | )
s s

L Y P ob y y P ob y y P ob y y= ⋯ , 

where (1) (2) ( ), ,...,
s

y y y ∈Y are all instantiations of Y, ( )
( )

i
ob y  denotes the event that we 

observed ( )i
Y y=  is True, and 

( ) ( )
( ( ) | )

i i
P ob y y  is interpreted as the probability we 

observe ( )i
Y y= if Y is indeed in state ( )i

y .  

3.2. Soft evidences 

Soft evidence, named by Valtorta,
19

 is given as a distribution ( ),  R Y Y X⊆ . This kind of 

evidence can be seen in many places. For example, one may not be able to observe the 

precise state of a variable for a given case but may know its distribution. Also sometimes 

it is more important to know the distribution of a variable than its precise state at a given 

moment. When two BNs (or some other data and knowledge sources of probabilistic or 

statistical nature) interact with each other, the information exchanged between them is 

often in the form of probability distributions of shared variables. 

For a given soft evidence, say ( )
i

R X , even though we are uncertain about the 

specific state iX  is in, we are certain about its distribution. In other words, ( )
i

R X is a 

true (and certain) observation, and this distribution should be preserved in the updated 

joint distribution Q* (i.e., *( ) ( )
i i

Q X R X= ). In this sense, soft evidences should be 

treated the same as hard evidence. In fact, a hard evidence, say 
i

X a= , is a special case 

of soft evidence ( ( ) 1, ( ) 0i iR X a R X b= = = =  for all states b a≠ ). 

As suggested in Ref. 3, Jeffrey’s rule of (2) is a natural choice for updating a joint 

distribution P(X) by a soft evidence R(Y ⊆ X) because the updated distribution preserves 

R(Y) while making minimum changes to the original distribution. However, Jeffrey’s rule 

cannot directly apply when the joint distribution is represented as a BN. This can be 

overcome by converting a soft evidence to a virtual evidence, as suggested by Ref. 3. 

Consider a distribution P(X) and a soft evidence ( ), .R Y Y X⊆  All possible 

instantiations of Y, (1) ,y  (2) ( )
, ,

l
y y ∈ Y⋯ , form a mutually exclusive and exhaustive set of 

events. R(Y) then can be converted to a virtual evidence with the likelihood ratio 

 (1) (2) ( )

(1) (2) ( )

( ) ( ) ( )
( ) : : :

( ) ( ) ( )

l

l

R y R y R y
L y

P y P y P y
= ⋯   (9) 
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As shown in Theorem 5 of Ref. 3, when this virtual evidence is applied to P(X), the 

new distribution is exactly the same as the one obtained by applying R(Y) using the 

Jeffrey’s rule of (2). 

3.3. Multiple uncertain evidences 

Like hard evidences, multiple uncertain evidences can arrive at the same time or in a 

sequence. There is no problem for belief update by multiple virtual evidences, because 

what is required is that the updated distribution preserves the given likelihoods. Update 

can be done by simply treating each virtual evidence as a hard evidence on the virtual 

node and instantiating that node to true. Note that, since a virtual node U is independent 

of all other virtual nodes, given the parent of U (i.e., they are d-separate), the likelihood 

ratio reflected on U will not be affected by the belief update operations with other virtual 

(and hard) evidences. 

However, this is not the case when updating by two soft evidences se1 = 
1( )R Y  and 

se2 = 
2( )R Y . To satisfy both se1 and se2, the updated distribution Q is required to have 

its marginals 1 1( ) ( )Q Y R Y= and 2 2( ) ( )Q Y R Y= . Update cannot be done by first 

converting se1 and se2 to two virtual evidences and then applying the virtual evidence 

method with these two virtual evidences. This is because, after applying the first 

evidence, there is no way to hold 1 1( ) ( )Q Y R Y= when the second evidence is applied. 

Furthermore, as can be seen in the example below, when the soft evidences are presented 

in different orders or altogether, different update results will be generated. This problem, 

known as the commutativity of iterated revisions, has been viewed as a problem for 

Jeffrey’s rule.
3,22

  

 

Example 1. As depicted in Fig. 1, we are given a BN of four binary variables A, B, C, 

and D and two soft evidences se1: R(B) = (0.7, 0.3) and se2: R(C) = (0.3, 0.7). To 

convert them to virtual evidences, we first compute from the BN the marginals P(B) = 

(0.44, 0.56) and P(C) = (0.45, 0.55), then compute the likelihood ratios by (9) as L(B) = 

0.7/0.44:0.3/0.56 = 1.5909:0.5357 and similarly L(C) = 0.6667:1.2727.  

 

 
A 

1 0 

0.4 0.6  

B 
A 

1 0 

1 0.20 0.80 

0 0.60 0.40  

C 
A 

1 0 

1 0.60 0.40 

0 0.35 0.65  

 

 

D 
B C 

1 0 

1 1 0.10 0.90 

1 0 0.85 0.15 

0 1 0.45 0.55 

0 0 0.70 0.30  

Fig. 1. An example BN of 4 variables. 
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As can be seen in rows 2 and 3 of Table 1 below, when the two virtual evidences are 

applied separately, the updated beliefs satisfy the corresponding se1 and se2 (belief on    

B = 1 and C = 1 are updated to 0.7 and 0.3, respectively). Rows 4 and 5 show the update 

results when these two virtual evidences applied together and in a sequence, respectively. 

It is not surprise that the results are the same, since, as mentioned earlier, belief update 

with multiple virtual evidences are equivalent to belief update with multiple hard 

evidences of the virtual evidence nodes. Let U1 and U2 be the two virtual evidence 

nodes. It can be verified that P(u1|B = 1, u2):P(u1|B = 0, u2) = L(B)  and P(u2|C = 1, u1): 

P(u2|C=0, u1) = L(C), i.e., the likelihood ratios are preserved when the other evidence is 

presented. However, as can be seen in Rows 4 and 5, none of these two soft evidences is 

satisfied by the resulting distributions. To deal with this problem, one may suggest that, 

before applying se2, we first recalculate a new likelihood ratio L’(C) for se2 using the 

distribution updated by se1 (Row 2). By (9), we have L’(C) = 0.3/0.425:0.7/0.575 = 

0.7.59:1.2174. Row 6 shows the update result where se2 is satisfied but belief on B = 1 is 

moved away from what is required by se1 (from 0.700 to 0.710).  

Table 1. Belief update on BN of Example 1. 

Evidences Belief  on B = 1 Belief on C = 1 

1. original 0.440 0.450 

2. using L(B) 0.700 0.425 

3. using L(C) 0.455 0.300 

4. L(B) and L(C) 0.712 0.279 

5. L(B) then L(C) 0.712 0.279 

6. L(B) then L’(C) 0.710 0.300 

 

Some argued based on the “All things considered” interpretation of soft evidence, that 

belief update with such evidences should not be commutative.
3
 In contrast, we argue that 

soft evidences are true observations of distributions of some events, and as such, they all 

should be preserved in the updated “posterior” distribution; also that, if one or more such 

distributions exist, the one with the minimum I-divergence to the original distribution can 

be found by IPFP, using these evidences as constraints. However, IPFP works on full 

joint distributions, and thus is not directly applicable to belief update in BNs. In the next 

section, we develop algorithm BN-IPFP for BN belief update with multiple soft 

evidences. This algorithm first converts all soft evidences to virtual evidence form and 

then iterates in IPFP style to update the BN until it settles down to a distribution that 

satisfies all given soft evidences. 

Another issue that arises with multiple soft evidences is that these evidences may not 

be consistent with each other, i.e., there is no distribution that satisfies all given 

evidences. This problem is dealt with in Sec. 5. 

4. BN-IPFP  

The problem is stated as follows. We are given a BN on variables X = (X1, X2,,…, Xn) 

with the joint probability ( ) ( | )
iX X i iP X P X π∈= Π , where ( | )

i i
P X π is the CPT for 
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variable
iX , and a set of soft evidences 

1
( ( ), ( ))

m
R Y R Y=R ⋯  where 

1 2, , , mY Y Y X⊆⋯ . 

Suppose the constraints in R 1) are consistent, and 2) satisfy the dominance condition: for 

all ( )jR Y ∈ R , ( ) ( )j j
P Y R Y<< . Then the belief update of the given BN by R is to find 

Q*(X) which 1) satisfies all evidence in R; and 2) has minimum I-divergence to P(X). 

For small BNs, one can explicitly generate the full joint distribution P(X) from the 

given BN and then apply IPFP using the soft evidences in R as constraints to update the 

distribution. This, however, is infeasible for large BN, because the distribution would be 

prohibitively large and IPFP would be computationally extremely expenses as it needs to 

literally modify each entry of the joint distribution table in each iteration. To address this 

problem, Valtorta, Kim and Vomlel have devised a variation of Junction-Tree (JT) 

algorithm based on IPFP
19

 that utilizes the interdependencies captured in the BN 

structure. One version of this algorithm works in situation where all variables in each 
j

Y are contained in one clique jC in the JT. Then the belief update goes iteratively over 

the evidences in cycle: in each iteration, ( )
j

Q C  is updated by the corresponding 

( )
j

R Y and then the change of ( )
j

Q C  is propagated to the rest of the JT by the regular JT 

method. The general situation where a soft evidence may involve variables in more than 

one cliques is dealt with by another version called big clique algorithm. In this algorithm, 

when constructing the JT, all soft evidence nodes (i.e., those variables that are involved 

in any of the soft evidences) are fully connected with each other by additional undirected 

edges. After triangulation, all soft evidence nodes appear in a single clique (the Big 

Clique). The belief update is done by first updating the big clique using all evidences in 

R by running IPFP to convergence and then propagating the resulting distribution of this 

clique to the rest of the JT. The Big Clique algorithm becomes time and space inefficient 

when the size of the big clique itself becomes large. Both versions are shown to converge 

and the converging joint distribution satisfies all evidences in R, provided these 

constraints are consistent to each other. 

One limitation with these JT based belief update algorithms is that they cannot be 

easily adopted by those using inference mechanisms other than JT. Also, they require 

incorporating IPFP operations into the JT procedure, causing re-coding of the existing JT 

inference engine. The authors of Ref. 19 mentioned the possibility of implementing the 

first version of their algorithm as a wrapper around Hugin shell or other JT engines, but 

no suggestion of how this can be done was given.  

To address these issues, we propose two new algorithms for BN inference with 

multiple soft evidences. Both algorithms utilize IPFP, although in quite different ways. 

The first algorithm combines the idea of IPFP and the encoding of soft evidence by 

virtual evidence of (9). The second algorithm is based on Theorem 4, it is similar to the 

Big Clique algorithm but it decouples the IPFP from JT (or any specific BN inference 

engine). These two algorithms are presented in the next two subsections. 

4.1. BN-IPFP-1 

As shown earlier, although a single soft evidence can be applied to BN belief update by 

first converting it to a virtual evidence, this approach does not work with multiple 
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evidences. As can be seen in Example 1 at the end of last section, after updating by se2, 

the distribution no long satisfies se1. What is needed is a method that can convert soft 

evidences in R to one or more likelihood ratios which, when applied as virtual evidences 

to the BN, preserve marginal distributions specified in every soft evidence. 

Algorithm BN-IPFP-1 presented below accomplishes this by combining the idea of 

IPFP and the virtual evidence method. Roughly speaking, this algorithm goes as follows. 

Like the IPFP, it is an iterative process, starting with Q0(X) = P(X), and one soft evidence 

( )jR Y  is considered at each iteration. If the marginal 
1( )j

kQ Y−
 of the current distribution 

equals ( )jR Y , then it does nothing; otherwise, a new virtual evidence (in the form of a 

likelihood ratio) is created based on the current 1( )j

kQ Y−  and ( )jR Y  according to (9) and 

applied to modify 1( )j

kQ Y− . The algorithm is given below. 

 

Algorithm BN-IPFP-1. Consider a BN with prior distribution P(x), and a set of m 

consistent soft evidences 
1

( ( ), ( ))
m

R Y R Y=R ⋯ . We use the following iterative 

procedure for belief update: 

 

 

The core of this algorithm is Step 2.2, which adds a new virtual evidence with 

likelihood ratio  
,
( )j

j l
L y where the second subscript, l, is the number of virtual evidences 

created for ( )jR y , incremented for every m iterations. Note that the sequence of 

likelihood ratios for each ( )jR Y can be cumulated as a single one 
,( ) ( )j j

j l j lL Y L Y= Π . 

4.2. BN-IPFP-2 

BN-IPFP-1 may become expensive when the given BN is large because it computes the 

marginal 1( )j

k
Q Y−  (Step 2.2) and updates the beliefs of the entire BN (Step 2.3) in each 

iteration. Algorithm BN-IPFP-2 avoids repeated BN computation by first constructing a 

single virtual evidence node from the marginal of P(Y), where Y contains all variables in 

all of the given soft evidences, and then updating the BN by this virtual evidence. 

1. Q0(X) = P(X); k = 1; 

2. Repeat the following until convergence; 

2.1 1 ( 1) modj k m= + − ; 1 ( 1) /l k m= + −   ; 

2.2 construct virtual evidence with likelihood ratio 

     ( )(1) (2)

,

1 (1) 1 (2) 1 ( )

( )( ) ( )
( ) : : ... :

( ) ( ) ( )
s

s

jj j

jj

j l j j j

k k k j

R yR y R y
L Y

Q y Q y Q y− − −

=  

       where 
(1) (2) ( ), ,...,

s

jj j j
jy y y ∈Y  are state configurations of 

jY ; 

2.3 Obtain Qk(X) by updating Qk-1(X)  with
, ( )j

j l
L Y  using Pearl’s virtual 

evidence method; 

2.4 k = k + 1;  
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Algorithm BN-IPFP-2. Consider a BN with prior distribution P(X), and a set of m 

consistent soft evidences
1

( ( ), ( ))
m

R Y R Y=R ⋯ . Let 1 2 m
Y Y Y Y= ∪ ∪ ∪⋯ . We use the 

following procedure for belief update: 

 

The convergence and correctness of both BN-IPFP algorithms are established in 

Theorem 6 below. 

Theorem 6. If soft evidences in 
1

( ( ), ( ))
m

R Y R Y=R ⋯ are consistent with each other and 

( ) ( )j j
P Y R Y<<  for all ( )j

R Y ∈ R , then both algorithms BN-IPFP-1 and BN-IPFP-2 

converge to the same distribution, which is the I-projection of P(X) on 
1 ( )

j

m

j R Y==S P∩ .  

 

 
                             (a)  BN-IPFP-1           (b) BN-IPFP-2 

Fig. 2. Running results of Example 1 with BN-IPFP-1 and 2. 

Figure 2 shows the running results of BN-IPFP-1 and 2 for the example BN given in 

Fig. 1. The two virtual evidence nodes VE0 and VE1 in Fig. 2 (a) are generated by BN-

IPFP-1 for the two soft evidences R(B) and R(C); the virtual evidence VE1 In Fig. 2 (b) is 

created from R(B) and R(C) according to BN-IPFP-2. Both algorithms converge in 4 

iterations to the same distribution that satisfies both constraints R(B) and R(C).The final 

combined likelihood ratios at convergence are L*(B) = (1.0:0.354) and L*(C) = 

(0.578:1.0) for BN-IPFP-1 and L*(B, C) = (0.578:1.0: 0.205:0.354) for BN-IPFP-2.  

4.3. Time and space performance  

The iterations of BN-IPFP-1, BN-IPFP-2 and Big Clique algorithm all converge to the 

same distribution. At each iteration, Big Clique algorithm updates beliefs of the joint 

1. Use any BN inference method to obtain P(Y) from P(X).  

2. Update P(Y) by IPFP using 
1

( ( ), ( ))
m

R Y R Y=R ⋯ as constraints until 

converging to Q*(Y).  

3. Construct a virtual evidence with likelihood ratio L(Y) computed from Q*(Y) 

and P(y) by (9). 

4. Apply L(Y) as a single virtual evidence to update P(X).  
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probabilities of the big clique C, BN-IPFP-2 updates the joint distribution of Y, and BN-

IPFP-1 updates the belief of the whole BN, i.e., all variables in X. Clearly, Y ⊆ C ⊆ X. 

However, the time complexity for one iteration of Big Clique is | |(2 )CO , and | |(2 )YO  for 

IPFP because both require modifying a joint distribution table. On the other hand, the 

time complexity of BN-IPFP-1 is equal to the complexity of the BN inference algorithm 

it uses for belief update, which is often more efficient than modifying the joint 

distribution. For example, if we use JT, the time complexity for one iteration of BN-

IPFP-1 is exponential to the size of the largest clique in JT of the original BN, which may 

be smaller than C and Y, especially for sparse BNs. 

Both Big Clique and BN-IPFP-2 are space inefficient, they need exponential space 

for the joint potential of C, and the joint distribution of Y, respectively. In contrast, BN-

IPFP-1 only needs additional space for virtual evidence, which is | |
1( 2 )

jm Y
jO =Σ . BN-IPFP-

2 is thus more suitable for problems with a large BN but a small number of soft evidence 

variables and BN-IPFP-1 is more efficient when the number of soft evidence variables is 

large. Also, both BN-IPFP-1 and 2 have the advantage that users do not have to stick to 

junction tree and modify the JT related procedures in the inference engine. They can be 

easily implemented as wrappers on any BN inference engines. 

To empirically evaluate our algorithms and to get a sense of how expensive these two 

algorithms may be, we have conducted some experiments with artificially constructed 

BNs of different sizes and with different constraint sets. The reported memory 

consumption does not include those that was used by the JT-based inference engine of 

Netica, but the reported running time is the total running time.  

 

Experiment 4-1 compares the algorithms’ performance with varying number of soft 

evidences. It used a BN of 15 variables and three sets of 2, 4, 8 soft evidences each. One 

half of these evidences involved 2 variables, and the other half involved 1 variable. The 

experiment results are given in Table 2. It can be seen that, when the number of 

evidences increases, both the time and memory consumptions for BN-IPFP-1 increase at 

much slower rates than BN-IPFP-2.  

Table 2. Experiment 4-1: performance with different numbers of soft evidences. 

# Iterations Exec. Time  Memory 
# of 

evidences BN-IPFP-1 BN-IPFP-2 BN-IPFP-1 BN-IPFP-2 BN-IPFP-1 BN-IPFP-2 

2 24 14 0.57s  0.62s 590,736    468,532 

4 79 23 0.63s  0.83s 726,896    696,960 

8 95 17 0.71s     15.34s  926,896 2,544,536 

Experiment 4-2 compares the algorithms’ performances with different size of BN. Four 

BNs of 30, 60, 120, and 240 binary variables were used, each of which was updated by 

the same set of 4 soft evidences involving a total of 6 variables. For each algorithm, 

experimental runs for the four BNs were all converged after the same number of 

iterations (43 for BN-IPFP-1 and 14 for BN-IPFP-2). 
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Table 3. Experiment 4-2: performance of BN with different size. 

# of Iterations Exec. Time  Memory Size of 

BN BN-IPFP-1 BN-IPFP-2 BN-IPFP-1 BN-IPFP-2 BN-IPFP-1 BN-IPFP-2 

  30   0.58s 0.67s (0.64s) 721,848 691,042 

  60   0.71s 0.69s (0.66s) 723,944 691,424 

120   1.71s 0.72s (0.66s) 726,904 691,416 

240 

43 14 

103.1s 3.13s (0.72s) 726,800 696,842 

 

From Table 3 we can see that when the number of soft evidences is fixed, the running 

time of BN-IPFP-2 increases slowly with the increase of the network size. Especially, the 

time for IPFP on P(Y) (the time in parentheses) increases only slightly. This is because 

computing the single constraint Q*(Y) (Step 2) is the most expensive step in BN-IPFP-2 

and Y is fixed. On the other hand, the execution time for BN-IPFP-1 increases at a much 

faster pace (roughly exponentially). This is because each iteration requires updating the 

entire BN. These experiments results confirm our theoretical analysis for the proposed 

algorithms.  

5. Inconsistent Soft Evidences 

A set of m soft evidences or constraints 1
( ( ), ( ))

m
R Y R Y=R ⋯ is said to be inconsistent if 

1 ( )j

m

j R Y== ≠ ∅S P∩ . Since there does not exist a distribution that satisfies all constraints in 

R, IPFP or methods based on IPFP such as those we developed in the previous section 

will not converge. Instead, the update will go into cycles around several distributions,
21

  

and the specific distributions it cycles around may be different, depending on the order 

the constraints are presented.
4
 Several approaches to this problem based on IPFP have 

been suggested in the literature. A simple approach is to first run IPFP until it goes into a 

cycle of * * *

1 2( ), ( ), , ( )mQ X Q X Q X⋯ , each of which satisfies one of the given m constraints, 

and then take the average of these distributions 
* *

1( ) ( ) /m

j jQ X Q X m== Σ  as the solution. 

Several disadvantages can be seen for this simple approach. The result may be different 

when these constraints are presented in different orders; there is not much we can say 

about *( )Q x except that it is somewhere in the middle of * * *

1 2
( ), ( ), , ( )

m
Q X Q X Q X⋯ . 

Moreover, this approach is hard to apply to BN because it operates on full joint 

distributions. 

Another approach modifies the IPFP of (7-1) as follows
20

: 

 
1 1

1

( )
( ) (1 ) ( ) ( )

( )

j

k k k k k
j

k

R y
Q x Q x Q x

Q y
α α− −

−

= − + ⋅  (10) 

where 0 1
k

α< < . This approach will be referred to as SR-IPFP, as it can be seen to be  

analogous to the serial relaxation method of alternating projection that can be used to 

find an approximate solution when the solution set S is empty (see Eq. (38) of Ref. 4). 

This method converges with constant kα α=
 when R is consistent; it converges when R 

is inconsistent if kα  gradually decreases toward 0. To allow each constraint to take its 

effect, kα
 needs to start with a value very close to 1 and to decrease very slowly. 
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However, if the decreasing rate is too small, the convergence will take too many 

iterations; on the other hand, if the rate is too big, the process will be biased in favor of 

earlier constraints. 

A more principled method was proposed in Ref. 21, named GEMA (Generalized EM 

Algorithm). GEMA assigns a weight jw  to each constraint ( )
j

R Y ∈ R , 
1 1m

j jw=Σ = , which 

can be understood as the credibility one has for the evidence. The update is again an 

iterative process, and it takes two steps in each iteration. Take as an example, consider 

the k
th 

iteration that starts with 1( )
k

Q X− . In Step 1, it first uses (7-1) to compute m I-

projections of  1( )
k

Q X−  to 
( )j

R Y
P  for each ( )

j
R Y , denoted 1, ( )

k j
Q X−
ɶ , and then takes a 

weighted sum of these k I-projections to obtain a distribution 1 1 1,( ) ( )m

k j j k j
Q X w Q X− = −= Σɶ ɶ . 

In Step 2, GEMA first computes m marginals ( )jR Y =ɶ
1( )

j

kQ Y−
ɶ , then performs m steps of 

the standard IPFP on 1( )kQ X−  using these m ( )jR Yɶ as constraints to obtain ( )kQ X . Note 

that these new constraints are consistent with each other since they are marginals from 

the same distribution 1( )kQ X−
ɶ . It has been shown that GEMA converges to a distribution 

which has a minimum I-aggregate Ψ , the weighted sum of I-divergences to all of the 

original constraints in R:  

    1

1
( ( ) | ( ), , ( ) ( ( ) || ( ))

mm j K

jj
Q X R Y R Y w I R Y Q y

=
Ψ = ∑⋯ . (11) 

GEMA can be seen as analogous to a parallel method of alternating projection that 

can be used to find an approximate solution when the solution set is empty (see Eq. (35) 

of Ref. 4). Our experiments (see Subsection 5.3) show that the time performance of 

GEMA is very sensitive to the data. For some combinations of 0
( ) ( )Q X P X= and R, it 

converges within a few hundreds of iterations, but for other combinations of similar size, 

millions of iterations are needed.  

5.1. Algorithm SMOOTH 

One thing in common for both GEMA and SR-IPFP of (10) is that both of them only 

modify the joint distribution 1( )
k

Q X− while keeping the constraints unchanged through 

the iterations. Alternatively, one can make the modification bi-directional: at each 

iteration, not only the joint distributions are pulled closer to the constraints but also the 

constraints are pulled towards the joint distributions. By doing so, the inconsistency 

among the constraints is gradually reduced or smoothened, which may lead to a faster 

convergence. Based on this idea we developed our new method SMOOTH. 

The procedure of SMOOTH consists of two phases. Phase 1 performs the standard 

IPFP using all of the original constraints in R. It stops when the process converges (for 

consistent constraints) or starts to cycle (for inconsistent constraints). Phase 2, executed 

only when cycle is detected at the end of Phase 1, differs from Phase 1 in that at each 

iteration, not only the current distribution 1( )kQ X−  is modified by the chosen constraint 

( )
j

R Y , ( )
j

R Y  itself is also modified by 1( )kQ X− .  

Specifically, we denote the modified constraints as ( )j

l
R Y , with 

0( ) ( )j j
R Y R Y=  and 

1 ( 1) /l k m= + −   . At iteration k, first the constraint is modified by  

     
1 1( ) ( ) (1 ) ( )

j j j

l l k
R Y R Y Q Yα α− −= + −  (12) 
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where (0,1)α ∈ is the smooth factor and it controls the speed of smoothing. From (12) we 

can see that the modified constraint ( )j

l
R Y  is a mixture of the previous constraint 

1( )j

l
R Y− and the marginal of the current distribution 1( )

k
Q X− . Since 1( )

k
Q X−  has been 

modified by all other constraints, (12) has the effect of pulling 
( )j

lR Y
P  closer to 

( )
,i

lR Y
i j≠P , thus reducing or smoothing the inconsistency among the constraints. To 

ensure that the smoothing is unbiased α should be chosen as very close to 1. Then 1k
Q − is 

modified by the new constraint by 

      
1

1

( )
( ) ( )

( )

j
l

k k j
k

R y
Q x Q x

Q y
−

−

=  (13) 

By (12), (13) can be rewritten as 

                                  
1

1

1 1
1

1

( )
( ) ( )

( )

( ) (1 ) ( )
         ( )

( )

j
l

k k j
k

j j
l k

k j
k

R y
Q x Q x

Q y

R y Q y
Q x

Q y

α α

−

−

− −
−

−

=

+ −
=

 

   1
1 1

1

( )
         ( ) (1 ) ( )

( )

j
l

k kj
k

R y
Q x Q x

Q y
α α−

− −

−

= + −      (13-1) 

Equation (13-1) is very similar to (10) for SR-IPFP. The different is that (10) always 

uses the original constraints while in (13-1) a changed constraint is used at each iteration.  

It is this difference that makes SMOOTH converges with constantα when the constraints 

are inconsistent. The algorithm SMOOTH is given below. 

 

Algorithm SMOOTH. Consider an initial distribution P(x) and a set of m soft evidences 
1( ( ), ( ))m

R Y R Y=R ⋯ . SMOOTH consists of the following two phases: 

 

 

Phase 1: do the standard IPFP using all constraints in R until it   

converges or goes into cycles; 

if convergence is reached then exit; 

Phase 2:  

   1. for j = 1 to m, 0( ) ( )j jR y R y= ; 

   2. k = 1; 

   3. repeat the following until converging  

       3.1  1 ( 1) modj k m= + − ; 1 ( 1) /l k m= + −   ; 

       3.2  1 1( ) ( ) (1 ) ( )j j j
l l k

R y R y Q yα α− −= + − ; 

       3.3  1

1

( )
( ) ( )

( )

j
l

k k j
k

R y
Q x Q x

Q y
−

−

= ; 

       3.4  k = k + 1; 
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Note that SMOOTH is exactly the same as the standard IPFP except that in Phase 2 it 

uses modified constraints, not the original one to update the current k
Q . This makes 

SMOOTH directly applicable to BN belief update in BN-IPFP style. The only thing that 

needs to be changed when applying SMOOTH to BN is to replace the operation of I-

projection (Step 3.3 in Phase 2) by virtual evidence method of BN-IPFP-1 (Steps 2.2 and 

2.3) of Sec. 4.  

Next we investigate the convergence of SMOOTH. 

5.2. Convergence and performance of SMOOTH 

According to the algorithm, when the set of constraints is consistent, SMOOTH is 

reduced to the standard IPFP, and it converges in Phase 1. Next we discuss what happens 

when constraints are not consistent. 

Figure 3 shows an example involving four constraints (m = 4) where 

( )
( ) ( )jj R Y
X X=S P is the set of all distributions whose marginal on j

Y  equals ( )
j

R Y . At 

the end of Phase 1, a cycle (solid lines) is formed through 0,1 0,2 0,3 0,4, , ,Q Q Q Q . In the first 

iteration of Phase 2, constraint 
1 1

0( ) ( )R Y R Y=  is modified to 1

1( )R Y  by (12). This 

changes 0,1( )XS  to 1,1( )XS , which is closer to 0,4Q  than 0,1( )XS . As the process 

continues, , ( )j l XS  are moving closer to each other, and the cycles (dotted lines) formed 

by the resulting distributions become smaller and smaller until they merge into a single 

distribution. 

 

  

Fig. 3. Example showing the convergence of SMOOTH. 

We formally establish the convergence of SMOOTH for m = 2 in the next theorem. 

 

Theorem 7. For an initial distribution P(X), two inconsistent soft evidences 
1 2( ), ( )R Y R Y , and (0,1)α ∈ , Phase 2 of SMOOTH converges. 

 

Experiments show that Phase 2 of SMOOTH converges for m > 2, and when 

1α → the converging distribution *Q minimizes the sum of distances, in both I-

divergence and total variation, to all constraints in R. We leave this general claim as a 

conjecture. 

0,1Q

0,2Q

0,3Q

0,4Q

0,2S0,3
S

0,4S
1,1S

1,1Q

1,2
S

1,2Q  

0,1S
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The time performance of SMOOTH, like all IPFP based methods, depends on the 

number of iterations it takes to reach convergence. Experiments show that SMOOTH 

moves towards the convergence point fairly fast at the beginning, even with α  very close 

to 1. However, it slows down drastically at the end, forming a long and flat tail (see    

Fig. 4 where 90% of the time is spent to bring the flat tail to the convergence point). As 

discussed before, keeping α large at the beginning ensures information in the original 

constraints is not lost too soon by smoothing before it gets a chance to be absorbed. 

When the process gets closer to the convergence point, we can afford to use smaller 
α since most information of the original constraints that can be absorbed has largely been 

absorbed. By (12), a smaller α  pulls the constraints toward the current k
Q  faster, leading 

to a faster convergence at the end. We have experimented with a number of schedules for 

reducing α . The one performed best is the sigmoid function:  

            exp( / ) /(1 exp( / ))k A k B A k Bα = − + −  (14) 

where k is the iteration steps of Phase 2. It can be seen by (14) that with a large positive 

A, α  is close to 1 at the beginning (k is small), and close to 0 when k becomes very large, 

and that α decreases very slowly at the two ends, but fast in the middle. Parameter A 

controls how long 
kα  is to remain large (longer for larger A) and B controls how fast 

α increases in the middle (faster for smaller B). If the desired initial value 0α
 
is given, 

then A can be determined by 
0 1/(1 exp( ))Aα = + . For example, to have 

0 0.99α ≈ , we set 

A = 4.595.  

We call SMOOTH using (14) to reduce 
kα  Accelerated SMOOTH (A-SMOOTH for 

short). Replacing α by 
kα in (13-1), when k → ∞ , since  0kα → , so 1( ) ( )k kQ x Q x−→ , 

therefore, a-SMOOTH converges. 

5.3. Experiments 

To empirically validate algorithm SMOOTH and to get a sense of how well it performs in 

comparison to the existing methods, we have conducted computer experiments with 

different initial distributions and different constraints. 

The algorithms compared in the experiments include: (1) GEMA, (2) SR-IPFP,       

(3) SMOOTH, (4) A-SMOOTH. For SR-IPFP, we use 1/(1 )k kα = +  in (10), which is the 

fastest schedule for reducing kα  suggested by the authors.
20

 For SMOOTH we set 

0.99α ≈  in Phase 2, and for A-SMOOTH, we set A = 4.595 and B = 150.  

We use the number of I-projections instead of the number of iterations to measure the 

time performance of an algorithm because an iteration may involve different number of I-

projections for different algorithms. For example, number of I-projections in one iteration 

is 1 for our SMOOTH and 2m for GEMA (m for each of the two steps).  

In all our experiments, convergence is reached if at iteration k l m= ⋅ the sum of total 

variations 1 1| ( ) ( ) |
m j j

j k j k jQ y Q y= + + −Σ −   is within the given error bound of 
12

10
−

. 

Experiment 5-1 uses the data taken from Ref. 21 involving three variables 1 2 3
, ,X X X . 

The initial joint distribution JPD1 is a uniform distribution of the three variables. Three 

constraints, each a distribution of two variables, are generated according to the scheme in 

Table 4. These constraints are consistent with each other when 4 / 20ε = (called 

CONS0), inconsistent when / 203ε =  (called CONS1). 
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Table 4. Constraint generator. 

, 1, 2
j

P j =  
1 1

0 1
j j

X X
+ +

= =  

0

1
j

j

X

X

=

=
 1 / 2

1 / 2

ε ε

ε ε

−

−
 

3
P  

3 3
0 1X X= =  

1

1

0

1

X

X

=

=
 

1 / 2

1 / 2

ε ε

ε ε

−

−
 

 

The experiment results for consistent constraints CONS0 are given in Table 5.        

All three algorithms converged to the same the I-projection on 

1 2 3( ) ( ) ( )
( ) ( ) ( )

R y R y R y
x x x∩ ∩S = P P P . SMOOTH is significantly faster than the other two. 

This is because for the consistent constraints SMOOTH is reduced to the standard IPFP 

(only Phase 1 is executed). 

Table 5. Experiment 5-1 results for CONS0 ( 4 / 20ε = ). 

Algorithm GEMA SR-IPFP SMOOTH 

# projections 1164 3507 84 

I-divergence 0.10453816 0. 10453816 0. 10453816 

 

Experiment 5-2 compares performance with inconsistent constraints CONS1 in which 

every two constraints are consistent with each other, but they together are inconsistent 

with the third one. Besides JPD1, another initial joint distributions JPD2 is also used. The 

experiment results are given in Table 6 where for the two versions of SMOOTH numbers 

of I-projections for both phases are given. It can be seen from the I-divergences of the 

converging distributions to the initial distributions and the I-aggregates that GEMA, 

SMOOTH, and A-SMOOTH converge to distributions that are very close to each other, 

with A-SMOOTH significantly faster than the others (SR-IPFP was stopped when the 

time limit of 10 million I-projections is reached before the convergence).  

Table 6. Experiment 5-2 results for Inconsistent CONS1 ( 3 / 20ε = ). 

 # projections I-divergence I-aggregate 

GEMA    

JPD-1 7,744,446 0.41502431 0.00367169 

JPD-2 9,064,080 0.71979040 0.05727919 

SR- IPFP    

JPD-1 >10,000,000 0.37048603 0.00461839 

JPD-2 >10,000,000 0.70127029 0.05742945 

SMOOTH    

JPD-1 177+3825 0.41503774 0.00367172 

JPD-2 129+4899 0.71306584 0.05729201 

A-SMOOTH    

JPD-1 177+375 0.41503891 0.00367227 

JPD-2 129+402 0.71439294 0.05729532 
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We plot I-aggregates of all the four algorithms for JPD1 in Fig. 4. The plot starts at 

the 178
th

 I-projection, which is the beginning of Phase 2 of SMOOTH and A-SMOOTH, 

and ends at the 4200
th

 I-projection. It is clear that I-aggregate decreases fastest for         

A-SMOOTH, followed by SMOOTH, with CC-IPFP the slowest. 

 

 

Fig. 4. Plot of I-aggregates of the four algorithms. 

Experiment 5-3. To see that GEMA is data sensitive, we generated another set of 3 

constraints (CONS2), each of which also involves two of the three variables 1 2 3, ,X X X . 

Unlike CONS1 shown in Table 4, CONS2 is pair-wise inconsistent. The results using 

CONS2 against JPD1 and JPD2 are given in Table 7. It can be seen from Tables 6 and 7 

that GEMA is very slow for three of the four combinations of JPDs and constraints but 

very fast (780 I-projections) for one combination (JPD1+CONS2). Similar phenomena 

have also been observed in some of our other experiments. On the other hand, both 

versions of SMOOTH have uniform performance for all combinations. 

Table 7. Experiment 5-3 result for CONS2. 

Algorithm GEMA SR-IPFP SMOOTH 

JPD1 780 >10,000,000   54+3405 

JPD2 12,400,542 >10,000,000 216+3933 

 

Experiment 5-4 tests the scalability of these algorithms with larger JPDs of 8 and 15 

variables. The results shown in Tables 8 and 9 are consistent with those reported earlier 

for smaller JPD. For these experiments we did not run SR-IPFP because it took too much 

time to reach a point that was close to a convergence.  
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Table 8. Result for JPD of 8 variables and 4 inconsistent constraints. 

 # projections I-divergence I-aggregate 

GEMA 912 0. 93720845 0.02345286 

SMOOTH 48+5000 0.94365473 0.02347122 

A-MOOTH 48+568 0.94366720 0.02347214 

 

Table 9. Result for JPD of 15 variables and 4 inconsistent constraints. 

 # projections I-divergence I-aggregate 

GEMA 617 0.45972134 0.03407491 

SMOOTH 1736+5460 0.45978419 0.03408528 

A-MOOTH 1736+584 0.45989650 0.03408416 

 

Finally, we conducted an experiment to compare the performance of belief updates on 

full joint distributions and on BNs. The experiment reported in Table 10 used a BN of 14 

binary variables and 4 inconsistent constraints involving a total of 7 district variables. 

Both GEMA and SMOOTH were run on the full joint distribution (of 10
14

 entries) 

generated from this BN. The SMOOTH version of BN-IPFP-1 was run directly on the 

BN. As can be seen in Table 10, belief updates on the full JPD are several orders of 

magnitudes slower than that on the BN. When these constraints were modified to be 

consistent, the convergence time for the standard IPFP on the full JPD was 27 second 

while the time for BN-IIPFP-1 was only 0.323 second. 

Table 10. Result for inconsistent constraints: Full JPD vs BN. 

Algorithms # projections      Time 

Full JPD using GEMA        784        459s 

Full JPD using SMOOTH      2769      1887s 

SMOOTH on BN-IPFP-1        380     0.656s 

 

Recall (Table 6) that GEMA took more than 7 million I-projections to converge in 

Experiment 5-2 to modify the belief in a tiny JPD of only three variables. We applied the 

SMOOTH version of BN-IPFP-1 to the same task after first converting the original JPD 

to a BN of three nodes; and, much to our surprise, it took only 102 I-projections to 

converge! Although anecdotal, these results clearly demonstrated significant 

computational advantages of using BN to represent joint distributions and the practical 

value of belief update methods based on BN such as the algorithms we developed in this 

work. 

6. Conclusions 

In this paper we presented our results on Bayesian network belief update with uncertain 

evidences. We defined two types of uncertain evidences. The virtual evidence, given as a 

likelihood ratio, represents uncertainty one has for an observation and it requires the 
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likelihood ratio be preserved in updated BN. The soft evidence, given as a distribution 

over one or more variables, represents the uncertainty of an event one is observing, and it 

requires this distribution be preserved in the updated BN. After establishing the close 

relations between the Pearl’s virtual evidence method, the Jeffrey’s rule, and the I-

projection, we developed the efficient algorithms for BN belief updates with multiple soft 

evidences. One advantage of BN-IPFP-1, in contrast to some existing methods, is that it 

can easily work with any BN inference engines. BN-IPFP-2 can provide efficient 

computation when the number of variables involved in the soft evidences is small. 

Algorithm SMOOTH was developed by modifying the standard IPFP to support belief 

update with inconsistent evidences. The convergence of these algorithms was analyzed 

and experiments of limited scales were conducted to validate these algorithms and to 

demonstrate their effectiveness. In addition, we for the first time formally established that 

Equation (6), which is used to compute I-projection in IPFP, not only minimizes the I-

divergence but also the total variation between the source and the projected distributions. 

BN belief update may be subject to multiple evidences of different types (hard, 

virtual, and soft), and these evidences may arrive at the same time or at different time. 

Our BN-IPFP-1 is flexible to support such inference. When all evidences arrive at the 

same time or hard and virtual evidences arrive before soft evidences, one can first update 

the beliefs with the given hard and virtual evidences using the conventional BN inference 

methods and then apply BN-IPFP-1 on the updated BN. A hard or virtual evidence 

arriving after soft evidences having been absorbed will change the beliefs in the BN, if 

this change causes ( ) ( )j jQ Y R Y≠ for any soft evidence ( )jR Y (i.e., 
, ( ) 1:1: 1j

j lL Y ≠ ⋯  

in Step 2.2 of BN-IPFP-1), then BN-IPFP-1 is activated and the iterations renewed until 

convergence. 

As mentioned earlier, one can use virtual evidence to represent the doubt he has on a 

hard evidence, this can also be applied when one is in doubt of a soft evidence. Recall 

that in our approach, a soft evidence ( )R Y is first converted into a virtual evidence with a 

virtual node U. If our doubt of ( )R Y can be represented as a likelihood L(U), then we can 

create another virtual node V with U as its only parent and its CPT determined by L(U). 

Then instantiation of V to true will apply ( )R Y with uncertainty of L(U) to the BN. 

We are continuing our research effort in this fruitful area along several directions. 

Our proof of convergence of SMOOTH is only done for the case of two inconsistent 

constraints, we are actively working on generalizing it to any arbitrary number of 

constraints. Our experiments show that SMOOTH has a uniform time performance while 

GEMA is data sensitive and it sometime converges much faster than SMOOTH. We are 

examining the factors that may be the causes for the performance differences and hoping 

to find a way to utilize some of the findings to improve the efficiency. We realized that 

GEMA, although originally devised for general joint distributions, may be adapted to 

BNs. We are working on developing a BN version of GEMA algorithm. 

In this work, we considered constraints ( )jR y  as soft evidences to modify the current 

beliefs. These low dimensional distributions can also be pieces of new knowledge which 

are more up-to-date, more accurate, or more location specific, and absorbing these into a 

larger distribution is a process of knowledge integration or knowledge-base update. In the 
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past we have developed IPFP-based algorithms that absorb the low dimensional 

distributions by a BN by only modifying its CPTs. The ideas of SMOOTH can be easily 

incorporated into these algorithms to deal with inconsistent data. However, when the 

degree of inconsistency is large, it is more sensible to also change the network structure 

(DAG) of the given BN. We are working on devising such algorithms based on the 

description length minimization approach.  
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Appendix 

Proof of Theorem 2. 

Let R(Y) be a constraint and Q(X) be the I-projection of P(X) on 
( )R YP . Let ( )Q X ∈ɶ

( )R YP  

and Z = X\Y. Note that ( ) ( ) ( ) / ( )Q x P x R y P y=  by (6), then 

               ( , ) ( ) ( )
x

P Q P x Q xδ
∈

= −∑
X

( )
( ) ( )

( )x

R y
P x P x

P y∈

= −∑
X

( )
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R y
P x
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= −∑
X
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( )y z

R y
P y z

P y∈ ∈

= −∑∑
Y Z

( )
( ) 1

( )y

R y
P y

P y∈

= − =∑
Y

  ( ) ( ) .
y

P y R y
∈

−∑
Y

           (A-1)
 

Note that ( ) ( )Q Y R Y=ɶ since ( )Q X ∈ɶ
( )R YP , then 

       ( , ) ( ) ( )
x

P Q P x Q xδ
∈

= −∑
X

ɶ ɶ ( , ) ( , )
y z

P y z Q y z
∈ ∈

= −∑∑
Y Z

ɶ  

                     ( , ) ( , )
y z z

P y z Q y z
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≥ −∑ ∑ ∑
Y Z Z

ɶ ( ) ( ) ( ) ( )
y y

P y Q y P y R y
∈ ∈

= − = −∑ ∑
Y Y

ɶ    (A-2) 

Comparing (A-1) and (A-2), we have ( , ) ( , )P Q P Qδ δ≤ ɶ for any ( )Q X ∈ɶ
( )R YP , thus I-

projection minimizes the total variation.                                                                     □ 
 

Proof of Theorem 4. 

Note that, since for any constraint ( )jR Y ∈ R , j
Y Y X⊆ ⊆ . Then, for any distribution 

( )
( ) ( )j

R Y
Q X X∈ P , its marginal 

( )
( ) ( )j

R Y
Q Y Y∈ P . This implies that if R is consistent 

with respect to X, it is consistent with respect to Y X⊆ . 

Now consider the I-projection at any iteration of IPFP. By (7-1) we have  

1 1 1 1

1 1

( ) ( )
( ) ( ) ( | ) ( ) ( | ) ( ).

( ) ( )

j j

k k k k k k
j j

k k

R y R y
Q x Q x Q x y Q y Q x y Q y

Q y Q y
− − − −

− −

= ⋅ = ⋅ = ⋅      (A-3) 

Note that 1( | )kQ x y− is kept constant, therefore, for all k, 0( | ) ( | )kQ x y Q x y= . Also, by 

(6), ( )
k

Q Y  is the I-projection of 1( )
k

Q Y−  on ( )
( )jR Y
YP . In other words, the iterative I-

projections of ( )
k

Q x  are realized by the I-projections of ( )
k

Q y . Since R is consistent, 

then when ( )
k

Q y converges to *( )Q y  we have 
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*

* *
0 0

0

( )
( ) ( | ) ( ) ( )

( )

Q y
Q x Q x y Q y Q x

Q y
= ⋅ = .  □ 

 

Proof of Theorem 6. 

(1) Prove the convergence of BN-IPFP-1. Consider the k
th

 iteration of BN-IPFP-1 in 

which constraint ( )j
R Y ∈ R is selected to update 1( )

k
Q X− , the joint distribution of the 

BN at beginning of the iteration. In Step 2.2, ( )j
R Y is converted to a virtual evidence 

based on ( )j
R Y and 1( )

k
Q X−  

(1) (2) ( )

1 (1) 1 (2) 1 ( )

( ) ( ) ( )
( ) : : :

( ) ( ) ( )

j j j

sj

k k k s

R y R y R y
L Y

Q y Q y Q y− − −

= ⋯ . 

According to Theorem 5 of Ref. 3, the new distribution ( )kQ X obtained by applying 

this virtual evidence to the current BN is identical to the one obtained by applying 

( )j
R Y to 1( )

k
Q X−  by Jeffrey’s rule of (2). As shown in (6) in Subsection 2.1, ( )kQ X is 

the same as the I-projection of 1( )
k

Q X−  on 
( )jR Y

P . That is 

1

1

( )
( ) ( )

( )

j

k k
j

k

R y
Q x Q x

Q y
−

−

= ⋅ , 

which by Definition 4, is one step of the IPFP. Therefore, the sequence 

1 1( ( ))k kQ x ∞
− = generated from BN-IPFP-1 is the same as that generated by IPFP using R, 

starting at 0( ) ( )Q x P x= . Since IPFP converges with consistent constraints, so does BN-

IPFP-1. 

(2) Prove the convergence of BN-IPFP-2. It is a direct consequence of Theorem 4.   □ 
 

Proof of Theorem 7. 

Without loss of generality, let Phase 2 start with 0( )Q X which satisfies
2( )R Y . By Step 1 

of Phase 2, the two constraints start with 1 1

0( ) ( )R Y R Y= and
2 2

0( ) ( )R Y R Y= . Let 1( )Q x  

be the I-projection of 0( )Q X on 2
1 ( )R Y

S2 = P ,  2
' ( )Q X the I-projection of 1( )Q X  on 

2
0 ( )R Y

S1 = P , and 2( )Q X  the I-projection of 1( )Q X  on 2
1 ( )R Y

P , respectively where by 

Step 3.2 2
1( )R y =  2 2

0 1( ) (1 ) ( )R y Q yα α+ −  (see Fig. A-1). 

 

 

Figure A-1. SMOOTH convergence for m = 2. 
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Since 2
' ( )Q x  is the I-projection of 1( )Q x  on 2

0 ( )R y
P , we have by Theorem 2 

                                              
1 2 0 1

'( , ) ( , )Q Q Q Qδ δ≤ .                                              (A-4) 
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2
0

2 1
2

0

'
( )

( ) ( )
( )

R y
Q x Q x

Q y
= , 

and by (13-1) 
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we have 
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1 2

'              ( , ).Q Qα δ= ⋅          (A-5) 

Combining (A-4) and (A-5) and the fact that (0,1)α ∈ , we have  

                                             
1 2 0 1( , ) ( , )Q Q Q Qδ δ< .   (A-6) 

Since (A-4), (A-5) and (A-6) hold for any two consecutive I-projections (two 

iterations of Step 3 in Phase 2), 1( , )k kQ Qδ −  is strictly decreasing, and thus Phase 2 of 

SMOOTH converges.                 □ 
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