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Abstract. This paper presents a formal convergence proof for E-
IPFP, an algorithm that integrates low dimensional probabilistic 
constraints into a Bayesian network (BN) based on the mathemati-
cal procedure IPFP. It also extends E-IPFP to deal with constraints 
that are inconsistent with each other or with the BN structure. 12 

1     CONVERGENCE OF E-IPFP  

Let ( , )s PG G G denote the given BN of n variables 
( , )i nx x x  , where {( , )}S i iG x  gives the network structure 

and { ( | )}P i iG P x  is the set of conditional probability tables 
(CPTs). Denote JPD of x defined by G as P(x). Let 1

1{ ( ),R R y   2
2 ( ), , ( )}m

mR y R y  be a set of probabilistic constraints, where 
( )j

jR y x . Our objective is to construct a new BN 'G   
( ' , ' )s PG G  with its JPD '( )P x  meeting the following conditions: 

C1: Constraint satisfaction: '( ) ( )  j j
jP y R y  ( )j

jR y R ; 
C2: Structural invariance: '

S SG G ; 
C3: Minimality: '( )P x is as close to ( )P x as possible. 
E-IPFP [1] is based on the mathematical procedure IPFP (itera-

tive proportional fitting procedure) [2] which iteratively modifies 
the JPD by the constraints until convergence. It has been shown 
that the converging JPD satisfies all constraints in R (C1) and is 
closest to the original JPD measured by the I-divergence (C3). To 
satisfy the structural invariance (C2), E-IPFP extends IPFP by 
making the BN structure (

SG ) an additional constraint 

                          1 1 1( ) ( | )n
m i k i iR x Q x     .                              (1) 

 

E-IPFP( ( , )s PG G G , },,{ 21 mRRRR  ) { 
1. 0 1( ) ( | )n

i i iQ x P x    where ( | )i i PP x G  ; 
2. Starting with k = 1, repeat the following procedure until con-

vergence  
{ 2.1. j = ((k-1) mod (m+1)) + 1; 
   2.2. if  j < m+1 
             

1 1( ) ( ) ( ) / ( )j j
k k j kQ x Q x R y Q y   

    2.3. else   
            {extract ( | )k i iQ x  from ( )kQ x according to SG ; 
              

1( ) ( | )n
k i k i iQ x Q x   ;} 

   2.4. k = k+1;} 
    3. return '' ( , )S PG G G  with ' { ( | )}P k i iG Q x  ;} 

E-IPFP is exactly the same as standard IPFP except in Step 2.3 
where the structural constraint applies. However, convergence 
proofs for IPFP’s [2,3] do not apply to E-IPFP because 1) 1mR  
changes its value in every iteration and 2) the set of all JPD satis-
fying 

SG  is not convex. We have shown in [4] IPFP with 
1

1{ ( ), ( )}m
mR R y R y  is equivalent to IPFP with a single compos-

ite constraint 1 2'( )mR y y y y   , which is computed by ap-
plying IPFP to 0 ( )Q y with 1

1{ ( ), ( )}m
mR R y R y  . So it suffices to 

prove the convergence of E-IPFP with a single constraint R(y). 
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Denote the set of JPD of x that satisfy R(y) as ( )R yP and the set 
of JPD that satisfy structural constraint as 

SGP . Let 0 ( )Q x   
( | )

ix x i iP x  be the JPD of the given BN; 1( )Q x   

0 0( ) ( ) / ( )Q x R y Q y  the I-Projection of 0 ( )Q x
 to ( )R yP ; 2 ( )Q x   

1( | )
ix x i iQ x  the structural constraint; and 3( )Q x   

2 2( ) ( ) / ( )Q x R y Q y  be the I-Projection of 2 ( )Q x back to ( )R yP . 
Points of Q0 through Q3 are depicted in Figure 1 below. Note 

that Q1 is obtained from Q0 by Step 2.2, Q2 from Q1 by Step 2.3, 
and Q3 from Q2 by Step 2.2 in the next iteration of E-IPFP. 
 

 

Figure 1.  Successive JPDs from E-IPFP 
 
The convergence of E-IPFP can be established by showing 

1 0 3 2( || ) ( || )I Q Q I Q Q , i.e., the I-divergence between the two end-
points of I-projection to ( )R yP is monotonically decreasing in suc-
cessive iterations. Since  1 3 ( ), R yQ Q P , and 3Q  is an I-Projection 
of 2Q , we have 1 2 3 2( || ) ( || )I Q Q I Q Q . So E-IPFP converges if  

                          
1 0 1 2( ) ( || ) ( || )x I Q Q I Q Q                         (2) 

Is non-negative 

Theorem 1. For any given BN ( , )s PG G G  and R(y), ( ) 0x  .  

Proof. By induction on |x|, the number of variables in G.  
Base case: |x| = 1, 1( )x x , the constraint is 1( )R x . It is trivial 

that 2 1 1 1 1( ) ( ) ( )Q x Q x R x  . Then by (8) 

1
1 1 0 1

0 1

( )
( ) ( ) log ( ( ) || ( )) 0,

( )

R x
x R x I R x Q x

Q x
     

Inductive assumption: 1 2( , ,..., ) 0nx x x   for any 1n  . 
Inductive proof: show that 0 1 2( , , ,..., ) 0nx x x x  . Without loss 

of generality, let 0x  be a root node of the BN. For clarity, 
let 1 2( , ,..., )nx x x x . By (2), 
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Now consider 2 . 
Case 1. 0x y .Let  0' \y y x , then 0( ) ( , ')R y R x y . Since  



1 0 1 0 1 0( , ) ( ) ( | )Q x x Q x Q x x   and   

0 0
1 0 0 0 0 0

0 0 0 0

( ) ( ' | )
( , ) ( ) ( | )

( ) ( ' | )

R x R y x
Q x x Q x Q x x

Q x Q y x
  

and 1 0 0( ) ( )Q x R x , then 1 0 0 0 0 0 0( | ) ( | ) ( ' | ) / ( ' | ).Q x x Q x x R y x Q y x  

Note that, for any particular state *
0x  of variable 0x , 

* *
0 0 0( | ) ( | )

ix x i iQ x x Q x    is a BN of x, where 

    
*

* 0 0 0 0
0

0

( | , ) if is a child of ;
( | )      (4)

( | ) otherwise.
i i i

i i

i i

Q x x x x x
Q x

Q x





  


 

Therefore, *
1 0( | )Q x x  is an I-Projection of *

0 0( | )Q x x  to 
0( '| )R y xP  

from which CPTs of *
2 0( | )Q x x  are extracted, so  

*
* *2 0

1 0 0*
0 0

( | )
( | ) log ( | ) 0;

( | )x

Q x x
Q x x x x

Q x x
    

by inductive assumption, and 

         

0

2 0
2 0 1 0 1 0

0 0

( | )
( , ) ( ) ( | ) log 0         (5)

( | )x x

Q x x
x x Q x Q x x

Q x x
     

Case 2. 0x y . By definition of 1Q , we have 

1 0
1 0 0 0

0 0 0

( ) / ( )
( | ) ( | )

( ) / ( )

R y Q x
Q x x Q x x

Q y Q x
 . 

Since 0 0 0 0 0 0 0( ) / ( ) ( | ) / ( | )Q y Q x Q y x Q x y , then  

                  
*

1 0 0 0
0 0

( )
( | ) ( | )                   (6)

( | )

R y
Q x x Q x x

Q y x
  

where *
0 0 1 0( ) ( ) ( | ) / ( )R y R y Q x y Q x . 

It can be shown easily that *( )R y  is a PD of y. Therefore, for 
any given *

0x , by (6), *
1 0( | )Q x x  is an I-Projection of *

0 0( | )Q x x  
to * ( )R y

P . Then by inductive assumption and analogous to (5), 

                 

0

2 0
2 0 1 0

, 0 0

( | )
( , ) ( , ) log 0. 

( | )x x

Q x x
x x Q x x

Q x x
               

2    INCONSISTENT CONSTRAINTS 

When constraints 1
1{ ( ), ( )}m

mR R y R y   are inconsistent either 
with each other or with the BN structure, E-IPFP (and IPFP) will 
not converge to a single point but rather oscillates between some 
JPDs. We have developed an algorithm SMOOTH to deal with 
inconsistent constraints for IPFP with general JPD [9]. Now we 
adopt it to E-IPFP. The basic idea of SMOOTH is to make the 
modification bi-directional: at each iteration, not only the JPD is 
pulled closer to the constraint but also the constraint is pulled 
towards the current JPD. By doing so, the inconsistency among 
the constraints is gradually reduced or smoothened.  
 

E-IPFP-SMOOTH( ( , )s PG G G , },,{ 21 mRRRR  ) { 
1. 0 1( ) ( | )n

i i iQ x P x    where ( | )i i PP x G  ; 
2. Starting with k = 1, repeat the following procedure until con-

vergence  
    { 2.1. j = ((k-1) mod (m+1)) + 1; 

2.2. if  j < m+1 
    

1{ ( ) ( ) (1 ) ( );j j j
j j kR y R y Q y      

               
1

1

( )
( ) ( ) ;}

( )

j
j

k k j
k

R y
Q x Q x

Q y


   

    2.3. else   

            {extract ( | )k i iQ x  from ( )kQ x according to SG ; 
              1( ) ( | )n

k i k i iQ x Q x   ;} 
   2.4. k = k+1;}  

      3.  return '' ( , )S PG G G  with ' { ( | )}P k i iG Q x  ;} 
 
Note that this algorithm differs from E-IPFP only in Step 2.2 

where it modifies the constraint before the I-projection is per-
formed. The convergence of E-IPFP-SMOOTH is given in the 
theorem below. Here we only deal with the situation that the con-
straints are inconsistent with the BN structure (the convergence 
for situations in which constraints are inconsistent with each other 
has been established in our earlier work [4]). Similar to Theorem 1, 
we only show the convergence with a single (possibly composite) 
constraint. 

 
Theorem 2. For any given BN ( , )s PG G G and constraint R(y) 
inconsistent with GS, E-IPFP-SMOOTH converges to Q* consis-
tent with GS. 
 

Recall that from Theorem 1 we have 1 0 3 2( || ) ( || )I Q Q I Q Q , 
where, as shown in Figure 1, Q3 is an I-projection of Q2 to ( )R yP

 if 
E-IPFP is used. Now with E-IPFP-SMOOTH, R(y) is modified in 
Step 2.2 to  

                 
2'( ) ( ) (1 ) ( )                             (7)R y R y Q y     

Let 3
'Q  be the I-projection of Q2 to '( )  R yP using ' ( )R y . To show the 

convergence of E-IPFP-SMOOTH, we only need to show that 
'

1 0 3 2( || ) ( || )I Q Q I Q Q . This can be done by showing that 
 

                               
'

3 2 3 2( || ) ( || )                                  (8)I Q Q I Q Q  
 
We proof (8) by showing that when  moves from 0 toward 1, 

'
3 2( || )I Q Q  strictly increases from 0 toward 3 2( || )I Q Q . Due to the 

page limit, the actual proof of Theorem 2 is omitted.  
 
Experiments with BN of different size and with different sets of 

constraints (both marginal and conditional) have shown that E-
IPFP and its E-IPFP-SMOOTH work as expected with time com-
plexity exponential to the BN size. The computation can be sig-
nificantly speed-up if the constraint set R can be decomposed and 
the update is allowed to be localized (see D-IPFP in [1]). Further 
speed-up can be achieved for the SMOOTH versions by allowing 
the smooth factor  to gradually decreasing toward 0 (see [4]). 

SMOOTH modifies the constraints to fit the BN structure when 
they are not consistent. It is more challenging to change the struc-
ture to fit the constraints. We are actively working on this problem 
and have some leads that are interesting and promising. 
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