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Abstract 
This paper presents our ongoing effort on developing a prin-
cipled methodology for automatic ontology mapping based 
on BayesOWL, a probabilistic framework we developed for 
modelling uncertainty in semantic web. The proposed 
method includes four components: 1) learning probabilities 
(priors about concepts, conditionals between subconcepts 
and superconcepts, and raw semantic similarities between 
concepts in two different ontologies) using Naïve Bayes text 
classification technique, by explicitly associating a concept 
with a group of sample documents retrieved and selected 
automatically from World Wide Web (WWW); 2) represent-
ing in OWL the learned probability information concerning 
the entities and relations in given ontologies; 3) using the 
BayesOWL framework to automatically translate given on-
tologies into the Bayesian network (BN) structures and to 
construct the conditional probability tables (CPTs) of a BN 
from those learned priors or conditionals, with reasoning 
services within a single ontology supported by Bayesian in-
ference; and 4) taking a set of learned initial raw similarities 
as input and finding new mappings between concepts from 
two different ontologies as an application of our formalized 
BN mapping theory that is based on evidential reasoning 
across two BNs.  

Overview   
Semantic heterogeneity between two different applications 
or agents comes from their use of conflicted or mismatched 
terms about concepts. Same term or concept name might 
have different meanings in different agents, different terms 
from different agents might have the same meaning, one 
term from an agent might matches to several or might not 
matches to any terms of the other agent exactly, or two 
terms with the same or similar meaning are structured differ-
ently in different agents (e.g., different paths from their re-
spective root concepts). With the development of the se-
mantic web1, ontologies have become widely used to repre-
sent the conceptualization of a domain, i.e., concepts, prop-
erties about concepts, relations between concepts , and 
instances about concepts. In ontology-based semantic 
integration, two agents in communication need to find a 
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way to share the semantics of the terms in their ontologies 
in order to fully understand each other. This can be done in 
several possible directions depends on the needs of par-
ticular applications: 1) one may force both agents to use a 
single centralized global ontology; 2) one may merge the 
source ontologies into one unified ontology before agent 
interactions; 3) one may search for a set of mappings (or 
matches) between two ontologies; 4) for a multi-agent sys-
tem one may resolve semantic differences in runtime when 
they arise during agent interaction; and 5) one may trans-
late one of the ontologies into a target ontology with the 
help of an intermediate shared ontology. In this context, we 
are particularly interested in ontology mapping. (Noy 2004) 
provides a brief survey about existing ontology-based ap-
proaches, which are either based on syntactic and semantic 
heuristics, machine learning text classification techniques 
by attaching a set of documents to each concept to repre-
sent its meaning, or linguistics (spelling, lexicon relations, 
lexical ontologies, etc.) and natural language processing 
techniques. 
 Ontology languages in the semantic web, such as OWL2 
and RDF(S)3, are based on crisp logic and thus can not 
handle incomplete or partial knowledge about an applica-
tion domain. However, uncertainty exists in almost every 
aspects of ontology engineering. For example, in domain 
modelling, besides knowing that “A is a subclass of B”, one 
may also know and wishes to express that “A is a small 
subclass of B”; or, in the case that A and B are not logically 
related, one may still wishes to express that “A and B are 
largely overlapped with each other”. In ontology reasoning, 
one may want to know not only if A is a subsumer of B, but 
also how close of A is to B; or, one may want to know the 
degree of similarity even if A and B are not subsumed by 
each other. Moreover, a description (of a class or object) 
one wishes to input to an ontology reasoner may be noisy 
and uncertain. Uncertainty becomes more prevalent in con-
cept mapping between two ontologies where it is often the 
case that a concept defined in one ontology can only find 
partial matches to one or more concepts in another ontol-
ogy. 
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 Narrowly speaking, a mapping can be defined as a corre-
spondence between concept A in Ontology 1 and concept 
B in Ontology 2 which has similar or same semantics as A. 
Most existing ontology-based semantic integration ap-
proaches provide exact mappings in a semi-automatic way 
with manual validation, without taking the degree of uncer-
tainty into consideration. In tackling this problem, (Mitra, 
Noy and Jaiswal 2004) improves existing mapping results 
using BNs (Pearl 1988) by a set of meta-rules that capture 
the structural influence and the semantics of ontology rela-
tions. 
 
 

 
Figure 1. The System Framework 

 
 Different from their contributions, we propose a new 
methodology in supporting uncertainty modelling and rea-
soning in a single ontology, as well as ontology mapping 
using Bayesian networks. As can be seen from Figure 1 
above, the system includes four components: 1) a learner to 
obtain probabilistic ontological information and raw map-
pings using data obtained from web; 2) a representation 
mechanism for the learned uncertain information concern-
ing the entities and relations in given ontologies; 3) a Baye-
sOWL (Ding, Peng, and Pan 2004; Ding and Peng 2004) 
module to translate given ontologies (together with the 
learned uncertain information) into BNs; and 4) a concept 
mapping module which takes a set of learned raw similari-
ties as input and finds mappings between concepts from 
two different ontologies based on evidential reasoning 
across two BNs. The ideas about these four comp onents, 
as well as their related works, are presented in the next four 
sections respectively. The paper ends with a discussion 
and suggestions for future research. 

Learning Probabilities from Web Data 
In this work, we use prior probability distributions P(C) to 
capture the uncertainty about concepts (i.e., how an arbi-
trary individual belongs to class C), conditional probability 
distributions P(C|D)  for relations between C and D in the 
same ontology (e.g., how likely an arbitrary individual in 
class D is also in D’s subclass C), and joint probability dis-

tributions P(C,D)  for semantic similarity between concepts  
C and D from different ontologies.  In many cases these 
kinds of probabilistic information are not available and are 
difficult to obtain from domain experts. Our solution is to 
learn these probabilities using Naïve Bayes text classifica-
tion technique (Craven et al. 2000; McCallum and Nigam 
1998) by associating a concept with a group of sample 
documents called exemplars. The idea is inspired by those 
machine learning based semantic integration approaches 
such as (Doan et al. 2002; Lacher and Groh 2001; Prasad, 
Peng and Finin 2002) where the meaning of a concept is 
implicitly represented by a set of exemplars that are relevant 
to it. 
 Learning the probabilities we need from these exe mplars 
is straightforward. First, we build a model containing statis-
tical information about each concept’s exemplars in Ontol-
ogy 1 using a text classifier such as Rainbow1, and then 
classify each concept in Ontology 2 by their respective 
exemplars using the model of Ontology 1 to obtain a set of 
probabilistic scores showing the similarity between con-
cepts. Ontology 1’s exemplars can be classified in the same 
way by model built using Ontology 2’s exemplars. This 
cross-classification (Figure 2) process helps find a set of 
raw mappings between Ontology 1 and Ontology 2 by set-
ting some threshold values. Similarly, we can obtain prior or 
conditional probabilities related to concepts in a single on-
tology through self-classification with the model for that 
ontology.  
 
 

  
Figure 2. Cross-classification using Rainbow 

 
 The quality of these text classification based mapping 
algorithms is highly dependent on the quality of the exem-
plars (how relevant they are to the concept and how com-
prehensive they are in capturing all important aspects of 
the concept), and it would be a very time-consuming task 
for knowledge workers to choose high quality exemplars 
manually. The need to find sufficient relevant exemplars for 
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a large quantity of concepts manually greatly reduces the 
attractiveness and applicability of these machine learning 
based approaches.  
 Our approach is to use search engines such as Google 1 
to retrieve exemplars for each concept node automatically 
from WWW, the richest information resource available 
nowadays. The goal is to search for documents in which 
the concept is used in its intended semantics. The rationale 
is that the meaning of a concept can be described or de-
fined in the way it is used. 
 To find out what documents are relevant to a term, one 
can use words of the term as keywords to query the search 
engine. However, a word may have multiple meanings 
(word senses) and a query using only words of the term in 
attention may return irrelevant documents based on a dif-
ferent meaning of that word. For example, in an ontology for 
“food”, a concept named “apple” is a subconcept of “fruit”. 
If one only uses “apple” as the keyword for query, docu-
ments showing how to make an apple pie and documents 
showing how to use an iPod may both be returned. Appar-
ently, the documents using “apple” for its meaning in com-
puter field is irrelevant to “apple” as a fruit. Fortunately, 
since we are dealing with concepts in well defined ontolo-
gies, the semantics of a term is  to a great extent specified by 
the other terms used in defining this concept in the ontol-
ogy, names, the properties of that concept class, its super- 
and sub-concept classes. For example, if a given ontology 
is a concept taxonomy, the search query can be formed with 
all the terms on the path from root to the node in the taxo n-
omy. By this method, the number of irrelevant documents 
returned is greatly reduced. In the “apple” example, the 
query would then become “food fruit apple” instead of 
“apple” itself. Documents about iPod and Apple computers 
will not be returned. 
 Search results returned by search engines are html files. 
There are some choices on how to use them. The simplest 
one is to use the entire  html file as one exemplar. A second 
option is to use each paragraph where a keyword in the 
query shows up. A third option is to collect sentences con-
taining a keyword in the html file and use this collection as 
an exemplar. We are currently experimenting these options, 
and the preliminary results suggest the second approach is 
the most suitable one. 

Representing Probabilities in OWL 
Information about the uncertainty of the classes and rela-
tions in an ontology can often be represented as probabil-
ity distributions (e.g., P(C) and P(C|D) mentioned earlier), 
which we refer to as probabilistic constraints on the on-
tology. These probabilities can be either provided by do-
main experts or learned from web data as described in the 
previous section.  
                                                 
1 http://www.google.com 

 Although not necessary, it is beneficial to represent the 
probabilistic constraints as OWL statements. We have de-
veloped such a representation. At the present time, we only 
provide encoding of two types of probabilities: priors and 
pair-wise conditionals. This is because they correspond 
naturally to classes and relations (RDF triples) in an ontol-
ogy, and are most likely to be available to ontology design-
ers. The representation can be easily extended to con-
straints of other more general forms  if needed.  
 The model-theoretic semantics of OWL treats the domain 
as a non-empty collection of individuals. If class A  repre-
sents  a concept, we treat it  as a random binary variable of 
two states a  and a , and interpret )( aAP =  as the prior 
probability or one’s belief that an arbitrary individual be-
longs to class A , and )|( baP  as the conditional probabil-
ity that an individual of class B  also belongs to class A . 
Similarly, we can interpret )(aP , )|( baP , )|( baP , and 

)|( baP  with the negation interpreted as “not belonging 
to”.  
 We treat a probability as a kind of resource, and define 
two OWL classes: “PriorProb” and “CondProb”. A prior 
probability of a variable is defined as an instance of class 
“PriorProb”, which has two mandatory properties: “has-
Varible” (only one) and “hasProbValue” (only one). A con-
ditional probability of a variable is defined as an instance of 
class “CondProb” with three mandatory properties: “has-
Condition” (at least has one), “hasVariable” (only one), and 
“hasProbValue” (only one).  
 The range of “hasCondition” and “hasVariable” is a de-
fined class named “Variable” with two mandatory proper-
ties: “hasClass” and “hasState”. “hasClass” points to the 
concept class this probability is about and “hasState” 
gives the “True” (belong to) or “False” (not belong to) 
state of this probability.  
 For example, 3.0)( =cP , the prior probability that an arbi-
trary individual belongs to class C , can be expressed as 
 
 <Variable rdf:ID="c"> 

 <hasClass>C</hasClass> 
 <hasState>True</hasState> 

 </Variable> 
 <PriorProb rdf:ID="P(c)"> 

 <hasVariable>c</hasVariable> 
 <hasProbValue>0.3</hasProbValue> 

 </PriorProb> 
 
and conditional probability 8.0)2,1|( =ppcP  can be en-
coded as  
 
 <CondProb rdf:ID="P(c|p1, p2)"> 

 <hasCondition>p1</hasCondition> 
 <hasCondition>p2</hasCondition> 
 <hasVariable>c</hasVariable> 
 <hasProbValue>0.8</hasProbValue> 

 </CondProb> 
 
with variables c, p1, and p2 properly defined. 



 Similar to our work, (Fukushige 2004) proposes a vocabu-
lary for representing probabilistic relationships in a RDF 
graph.  Three kinds of probability information can be en-
coded in his framework: probabilistic relations (prior), prob-
abilistic observation (data), and probabilistic belief (poste-
rior). And any of them can be represented using probabilis-
tic statements which are either conditional or unconditional.  

The BayesOWL Framework 
BayesOWL (Ding, Peng and Pan 2004; Ding and Peng 2004) 
is a framework which augments and supplements OWL for 
representing and reasoning with uncertainty, based on 
Bayesian networks (BN). This framework provides a set of 
rules and procedures for direct translation of an OWL on-
tology into a BN structure and a method that incorporate 
encoded probability information when constructing the 
conditional probability tables (CPTs) of the BN. The trans-
lated BN, which preserves the semantics of the original 
ontology and is consistent with the probability information, 
can support ontology reasoning, both within and across 
ontologies as Bayesian inferences. Below we give a brief 
summary. 

Structural Translation 
A set of translation rules is developed to convert an OWL 
ontology (about TBox only at the present time) into a di-
rected acyclic graph (DAG) of BN. The general principle 
underlying these rules is that all classes (specified as “sub-
jects” and “objects” in RDF triples of the OWL file) are 
translated into nodes in BN, and an arc is drawn between 
two nodes in BN if the corresponding two classes are re-
lated by a “predicate” in the OWL file, with the direction 
from the superclass to the subclass. Control nodes are cre-
ated during the translation to facilitate modelling relations 
among class nodes that are specified by OWL logical op-
erators, and there is a converging connection from each 
concept nodes involved in this logical relation to its spe-
cific control node. There are five types of control nodes in 
total, which correspond to the five types of logical rela-
tions: “and” (owl:intersectionOf), “or” (owl:unionOf), “not” 
(owl:complementOf), “disjoint” (owl:disjointWith), and 
“same as” (owl:equivalentClass). 

Constructing CPTs  
The nodes in the DAG obtained from the structural transla-
tion step can be divided into two disjoint groups: XR, nodes 
representing concepts in ontology, and XC, control nodes 
for bridging logical relations. The CPT for a control node in 
XC can be determined by the logical relation it represents so 
that when its state is “True”, the corresponding logical 
relation holds among its parent nodes. When all the control 
nodes’ states are set to “True” (denote this situation as 
CT), all the logical relations defined in the original ontology 
are held in the translated BN. The remaining issue is then to 
construct the CPTs for each node in XR so that P(XR|CT) , 

the joint distribution of all regular nodes in the subspace of 
CT, is consistent with all the given probabilistic constraints 
(which can be learned from web data as described earlier).  
 This is difficult for two reasons. First, the constraints are 
usually not given in the form of CPT. For example, CPT for 
variable C with two parents A and B is in the form of 
P(C|A,B) but a constraint may be given as Q(C|A) or even 
Q(C). Secondly, CPTs are given in the general space of X = 
XR∪XC, but constraints are for the subspace of CT (the 
dependencies changes when going from the general space 
to the subspace of CT). For example, with the constraint 
Q(C|A), P(C|A,B), the CPT for C, should be constructed in 
such a way that P(C|A,CT) = Q(C|A). To overcome these 
difficulties, we developed an algorithm named D-IPFP 
(Ding, Peng, and Pan 2004) to approximate these CPTs for 
XR based on the “iterative proportional fitting procedure” 
(IPFP), a well-known mathematical procedure that modifies 
a given distribution to meet a set of probabilistic con-
straints while minimizing I-divergence to the original distri-
bution (Deming and Stephan 1940; Csiszar 1975; Bock 1989; 
Vomlel 1999; Cramer 2000). 
 Figure 3 below is a BN translated from a simple ontology. 
In this ontology, “Animal” is a primitive concept class; 
“Male”, “Female”, “Human” are subclasses  of “Animal”; 
“Male” and “Female” are disjoint with each other; “Man” is 
the intersection of “Male” and “Human”; “Woman” is the 
intersection of “Female” and “Human”; “Human” is the 
union of “Man” and “Woman”.  
 The following probability constraints are attached to 

RX  = {Animal, Male, Female, Human, Man, Woman}: 
 
 P(Animal) = 0.5;      P(Male|Animal) = 0.5; 
 P(Female|Animal) = 0.48;   P(Human|Animal) = 0.1; 
 P(Man|Human) = 0.49;    P(Woman|Human) = 0.51.  
 

 

 
 
 
 
 
 
 
 
 

 
 

Figure 3. A Translation Example 

Reasoning within Single Ontology 
The BayesOWL framework can support common ontology 
reasoning tasks as probabilistic inferencesg in the trans-
lated BN, for example, given a concept description e, it can 
answer queries about concept satisfiability (whether 
P(e|CT)  = 0), about concept overlapping (how close e is to 



a concept C as P(e|C,CT)), and about concept subsump-
tion (find the concept which is most similar to e) by defin-
ing some similarity measures such as Jaccard Coefficient 
(Rijsbergen 1979). 

Prototype Implementation 
A prototype system named OWL2BN (Figure 4) is currently 
under active construction. It takes a valid OWL ontology 
and some consistent probabilistic constraints as input and 
outputs a translated BN, with reasoning services provided 
based on BN inference methods. 
 

 
Figure 4. OWL2BN: Implementation of BayesOWL 

Comparison to Related Works 
Many of the suggested approaches to quantify the degree 
of overlap or inclusion between two concepts are based on 
ad hoc heuristics, others combine heuristics with different 
formalisms such as fuzzy logic, rough set theory, and 
Bayesian probability (see (Stuckenschmidt and Visser 2000) 
for a brief survey). Among them, works that integrate prob-
abilities with description logic (DL) based systems are most 
relevant to BayesOWL. This includes probabilistic exten-
sions to ALC based on probabilistic logics (Heinsohn 1994, 
Jaeger 1994); P-SHOQ(D) (Giugno and Lukasiewicz 2002), a 
probabilistic extension of  SHOQ(D) based on the notion of 
probabilistic lexicographic entailment; and several works on 
extending DL with Bayesian networks (P-CLASSIC (Koller 
et al. 1997) that extends CLASSIC, PTDL (Yelland 1999) that 
extends TDL (Tiny Description Logic with only “Conjunc-
tion” and “Role Quantification” operators), and the work of 

Holi and Hyvönen (2004) which uses BN to model the de-
gree of subsumption for ontologies encoded in RDF(S)). 
 The works closest to ours in this field are P-CLASSIC 
and PTDL. In contrast to these works, one of BayesOWL’s 
major contribution is its D-IPFP mechanism to construct 
CPTs from given piece-wised probability constraints. 
Moreover, in BayesOWL, by using control nodes, the 
“rdfs:subclassOf” relations (or the subsumption hierarchy) 
are separated from other logical relations, so the in-arcs to a 
regular concept node C will only come from its parent su-
perclass nodes, which makes C’s CPT smaller and easier to 
construct than P-CLASSIC or PTDL, especially in a domain 
with rich logical relations.  
 Also, BayesOWL is not to extend or incorporate into 
OWL or any other ontology language or logics with prob-
ability theory, but to translate a given ontology to a BN in a 
systematic and practical way, and then treats ontological 
reasoning as probabilistic inferences in the translated BNs. 
Several benefits can be seen with this approach. It is non-
intrusive in the sense that neither OWL nor ontologies de-
fined in OWL need to be modified. Als o, it is flexible, one 
can translate either the entire ontology or part of it into BN 
depending on the needs. Moreover, it does not require 
availability of complete conditional probability distribu-
tions, pieces of probability information can be incorporated 
into the translated BN in a consistent fashion. With these 
and other features, the cost of our approach is low and the 
burden to the user is minimal. We also want to emphasis 
that BayesOWL can be easily extended to handle other on-
tology representation formalisms (syntax is not important, 
semantic matters), if not using OWL.   

Concept Mapping between Ontologies as an 
Application of BN Mapping 

It is often the case when attempting to map concept A de-
fined in Ontology 1 to Ontology 2 there is  no concept in 
Ontology 2 which is semantically identical to A. Instead, A 
is similar to several concepts in Ontology 2 with different 
degree of similarity. A solution to this so-called one-to-
many problem, as suggested by (Prasad, Peng, and Finin 
2002) and (Doan et al. 2003), is to map A to the target con-
cept B which is most similar to A by some measure. This 
simple approach would not work well because 1) the degree 
of similarity between A and B is not reflected in B and thus 
will not be considered in reasoning after the mapping; 2) it 
cannot handle the situation where A itself is  uncertain; and 
3) potential information loss because other similar concepts 
are ignored in the mapping. 
 With BayesOWL, concept mapping can be processed as  
some form of probabilistic evidential reasoning between the 
BN1 and BN2, translated from the Ontologies 1 and 2. This 
may allow us to address some of the aforementioned diffi-
culties by utilizing BN techniques for integrating probabilis-
tic knowledge and information from various sources. This 
section will first present a framework of variable mapping 



between BNs, before illustrating how ontology mapping 
can be conducted using this framework.  

BN Mapping Framework 
In applications on large, complex domains, often separate 
BNs describing related subdomains or different aspects of 
the same domain are created, but it is difficult to combine 
them for problem solving –– even if the interdependency 
relations are available. This issue has been investigated in 
several works, including most notably Multiply Sectioned 
Bayesian Network (MSBN) by Xiang (2002) and Agent En-
capsulated Bayesian Network (AEBN) by Va ltorta et al. 
(2002). However, their results are still restricted in scalabil-
ity, consistency and expressiveness. MSBN’s pair-wise 
variable linkages are between identical variables with the 
same distributions, and, to ensure consistency, only one 
side of the linkage has a complete CPT for that variable. 
AEBN also requires a connection between identical vari-
ables, but allows these variables to have different distribu-
tions. Here, identical variables are the same variables reside 
in different BNs. 

What we need in supporting mapping concepts is a 
framework that allows two BNs (translated from two on-
tologies) to exchange beliefs via variables that are similar 
but not identical. We illustrate our ideas by first describing 
how mapping shall be done for a pair of similar concepts (A 
from ontology 1 to B in ontology 2), and then discussing 
how such pair-wise mappings can be generalized to net-
work to network mapping. We assume the similarity infor-
mation between A and B is captured by the joint distribu-
tion P(A, B). 

Now we are dealing with three probability spaces:  SA and 
SB for BN1 and BN2, and SAB for P(A, B). The mapping from 
A to B amounts to determine the distribution of B in SB, 
given the distribution P(A) in SA under the constraint P(A, 
B) in SAB.  

To propagate probabilistic influence across these 
spaces, we can apply Jeffrey’s rule and treat the probability 
from the source space as soft evidence to the target space 
(Pearl, 1990, Valtorta et al., 2002).  The rule is given in (1), 
where Q denotes probabilities associated with soft evi-
dence 

(1)     ∑= i ii XQXYPYQ )()|()( .                                               

As depicted in Figure 5, mapping A to B is accomplished 
by applying Jeffrey’s rule twice, first from SA to SAB,, then 
SAB to SB. Since A in SA is identical to A in SAB,, P(A) in SA 
becomes soft evidence Q(A) to SAB and by (1), the distribu-
tion of B in SAB  is updated to  

(2)     ∑= i ii AQABPBQ )()|()( .  

Q(B) is then applied as soft evidence from SAB to node B in 
SB, updating beliefs for every variable V in SB by 

(3)     ∑= j jj BQBVPVQ )()|()(   

          )()|()|( iii jj j APABPBVP ∑∑=         

 
 

 
 
 
 
 
 

 
Figure 5. Mapping concept A to B 

 
 Back to the example in Figure 3, where the posterior dis-
tribution )|( AnimalMaleHumanP ∩¬  is (0.102, 0.898). Sup-
pose we have another BN with a variable “Adult” with 
marginal distribution (0.8, 0.2). Suppose we also know that 
“Adult” is similar to “Human” with conditional distribution  







=

10
3.07.0

)|( HumanAdultP .  

Mapping “Human” to “Adult” leads to a change of latter’s 
distribution from (0.8, 0.2) to (0.0714, 0.9286). This change 
can then be propagated to further update believes of all 
other variables in the target BN by (3).  

Mapping Reduction 
A pair-wise linkage as described above provides a channel 
to propagate belief from A in one BN to influence the belief 
of B in another BN. When the propagation is completed, (2) 
must hold between the distributions of A and B.  If there are 
multiple such linkages, (2) must hold simultaneously for all 
pairs. In theory, any pair of variables between two BNs can 
be linked, albeit with different degree of similarities. There-
fore we may potentially have 21 nn ⋅  linkages ( 1n  and 2n are 
the number of variables in BN1 and BN2, respectively). Al-
though we can update the distribution of BN2 to satisfy all 
linkages by IPFP using (2) as constraints, it would be a 
computational formidable task. 
 Fortunately, satisfying a given probabilistic relation be-
tween P(A, B) does not require the utilization, or even the 
existence, of a linkage from A to B. Several probabilistic 
relations may be satisfied by one linkage. As shown in Fig-
ure 6, we have variables A and B in BN1, C and D in BN2, 
and probability relations between every pair as below:  
 







=

6.01.0
03.0

),( ACP , 





=

42.007.0
18.033.0

),( ADP ,




= 378.0112.0
162.0348.0),( BDP , 





=

54.016.0
03.0

),( BCP . 
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Figure 6. Mapping Reduction Example 
 
However, we do not need to set up linkages for all these 
relations. As Figure 6 depicts, when we have a linkage from 
A to C, all these relations are satisfied (the other three link-
ages are thus redundant). This is because not only beliefs 
on C, but also beliefs on D are properly updated by the 
mapping A to C. 

Several experiments with large BNs have shown that only 
very small portions of all 21 nn ⋅  linkages are needed in satis-
fying all probability constraints. This, we suspect, is due to 
the fact that some of these constraints can be derived from 
others based on the probabilistic interdependencies among 
variables in the two BN. We are currently actively working 
on developing a set of rules that examine the BN structures 
and CPTs so that redundant linkages can be identified and 
removed.  

Discussion and Future Work 
This paper describes our ongoing research on developing a 
probabilistic framework for automatic ontology mapping. In 
this framework, ontologies (or parts of them) are first trans-
lated into Bayesian networks, then the concept mapping is 
realized as evidential reasoning between the two BNs by 
Jeffrey’s rule. The probabilities needed in both translation 
and mapping can be obtained by using text classification 
programs, supported by associating to individual relevant 
text exemplars retrieved from the web.  
 We are currently actively working on each of these com-
ponents. In searching for relevant exemplar, we are attempt-
ing to develop a measure of relevancy so that less relevant 
documents can be removed. We are expanding the ontol-
ogy to BN translation from taxonomies to include proper-
ties, and develop algorithms to support common ontology-
related reasoning tasks. As for a general BN mapping 
framework,  our current focus is on linkage reduction. We 
are also working on the semantics of BN mapping and ex-
amine its scalability and applicability. 
 Future work also includes developing methods in han-
dling inconsistent probability constraints . The study of 
IPFP also motivated us to develop a new algorithm named 
E-IPFP (Peng and Ding 2005). This algorithm is more gen-
eral than the D-IPFP algorithm we used for constructing 
CPTs in ontology to BN translation in that it can accommo-
date any types of probability constraint, not only priors 
and pair-wise conditionals . We are working on a new algo-
rithm that combines both E-IPFP and D-IPFP for a comp uta-
tionally efficient construction of CPTs for general BN. 
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