Real-Time Operating Systems

RTOS — Multitasking on
embedded platforms




Real Time Operating Systems

Operating systems - Solving problems using
organized tasks that work together
Coordination requires

= Sharing data

s Synchronization

s Scheduling

= Sharing resources

An operating system that meets specified time

constraints is called a Real-Time Operating
System (RTOS)



Tasks

Individual jobs that must be done (in coordination) to complete a
large job

Partition design:

= Based on things that could/should be done together

= In a way to make the problem easier

= Based on knowing the most efficient partitioning for execution

Example tasks/design partitions for a digital thermometer with
flashing temperature indicator

= Detect & Signal button press

= Read Temperature & update flash rate
= Update LCD

= Flash LED



Tasks/Processes

Tasks require resources or access to resources

= Processor, stack memory registers, P.C. I/O Ports,
network connections, file, etc...

These should be allocated to a processes when
chosen to be executed by the operating system

Contents of PC & other pieces of data associated
with the task determine its process state



Task Terminology

Execution Time — Amount of time each process requires
to complete

Persistence — Amount of time between start and
termination of a task

Several tasks time-share the CPU and other resources,

execution time may not equal persistence

= Ex. Task execution time = 10ms, is interrupted for 6ms
during the middle, persistence = 16ms

OS manages resources, including CPU time, in slices to

create the effect of several tasks executing concurrently

» Cannot operate truly concurrently unless there is a multi-
core processor



Scheduling

- Illusion of concurrent execution can be created by scheduling a
process that move tasks between states

T1 —@- .
T2 4D 4D
T3 4D

- Options for scheduling strategies

= Multiprogramming — tasks run until finished or until they must
wait for a resource

= Real-Time — tasks are scheduled and guaranteed to complete with
strict timing specified

= Time-sharing — tasks are interrupted, or preempted after
specified time slices to allow time for other tasks to execute



Preempting/Blocking

To preempt a task:

= Save the state of the process — called the context —
including P.C. and registers

This allows the preempting process to execute

and then restore the preempted task

Saving of state of one process and loading
another is called “context switching” and is the
overhead of multitasking



Threads

An organizational concept that is the smallest set
of information about resources required to run a
program

= Including a copy of the CPU registers, stack, PC

= OS manages several tasks formally as threads



Threads

Ideally, each process should have its own private section of memory

to work with, called its address space

Along with hardware support (memory protection unit MPU) an OS

may be able to enforce that process do not access memory outside

their address space

Organizational Concepts

= Multi-process execution — multiple distinct processes running in
separate threads

= Multi-threaded process — a process with several execution
threads (likely sharing memory and managing resource use
internally)

= Note — intraprocess thread context switching is typically less
expensive than interprocess context switching



Reentrant and Thread Safe Code

By default all code is not safe to run alongside
other code “simultaneously” or even alongside
itself

Thread safe code — other threads or processes
can run safely at the same time (safety with
respect to other code)

Reentrant code — handles multiple simultaneous
calls (safety with respect to same code)



Example

To allow multiple processes to safely time-share
a resource, an OS typically provides check, lock,
and free utility functions.

int AFunction() { //some function that checks and waits for
// availability of a resources and locks/reserves
// it so other processes won't access it
// -> makes this thread safe
wait_for free resource_and_then_lock access();
do_some_stuff();
//free/unreserve the resource
unlock some_resource();

}
This code may not be reentrant



Example - Not Reentrant

Consider when there are simultaneous calls from
a main thread and an ISR

Main Thread (in ISR Thread:

aFunction):
Wait and Lock

Wait and Lock //Stuck here waiting for
resource to unlock

Use

/lInterrupted in Use Use

/[[Has not freed resource

Free Free



Example- Not Thread Safe

int function() {
char *filename="/etc/config";
FILE *config;
if(file_exist(filename)){
// what if file is deleted by another process at this point?
config=fopen(filename,"r"); //At this point, many OSs will prevent deletion
...use file here..

This code can be called over and over in the same process

What if another thread deletes the file after the handle has been verified but
before it has been used?

» Creates a segfault with no way to detect while using it

To prevent this, a process needs a way to lock a resource to hold its
assumptions



Multitasking Coding Practices

Dangerous
= Multiple calls access the same variable/resource

- Globals, process variables, pass-by-reference
parameters, shared resources

Safe

= Local variables — only using local variables makes
code reentrant by giving each call its own copy

For example, some string functions (like

strtok()) use global variables and are not

reentrant



Kernel

The “core” OS functions are as follows

= Perform scheduling — Handled by the scheduler

= Dispatch of processes — Handled by the dispatcher
= Facilitate inter-process communication

A kernel is the smallest portion of OS providing
these functions



Functions of an Operating System

- Process or Task Management
= process creation, deletion, suspension, resumption
= Management of interprocess communication
= Management of deadlocks (processes locked waiting for resources)
+ Memory Management
» Tracking and control of tasks loaded in memory
= Monitoring which parts of memory are used and by which process
> Administering dynamic memory allocation if it is used
- I/0 System Management
s Manage Access to I/0O

» Provide framework for consistent calling interface to I/O devices
utilizing device drivers conforming to some standard



Functions of an OS (continued)

File System Management

= File creation, deletions, access

= Other storage maintenance

System Protection

= Restrict access to certain resources based on privilege
Networking -For distributed applications,

= Facilitates remote scheduling of tasks

= Provides interprocess communications across a network
Command Interpretation

= Accessing I/0O devices through devices drivers, interface with user
to accept and interpret command and dispatch tasks



RTOS

- An RTOS follows (rigid) time constraints. Its key defining trait is the
predictability(repeatability) of the operation of the system, not speed.

> hard-real time -> delays known or bounded

= soft-real time -> at least allows critical tasks to have priority over other
tasks

- Some key traits to look for when selecting an OS:
» scheduling algorithms supported
= device driver frameworks
o inter-process communication methods and control
= preempting (time-based)
» geparate process address space
s memory protection
» memory footprint, data esp. (RAM) but also its program size (ROM)
s timing precision
» debugging and tracing



Task Control Block

The OS must keep track of each task

» Task Control Block (TCB) — a structure containing
a task or a process

Stored in a “Job Queue” implemented with
pointers (array or linked list)

struct TCB {
void(*taskPtr)(void *taskDataPtr); //task function(pointer),one arg.
void *taskDataPtr; // pointer for data passing
void *stackPtr; // individual task's stack
unsigned short priority; // priority info
struct TCB * nextPtr; // for use in linked list
struct TCB * prevPtr; // for use in linked list

¥



Task Control Block

A TCB needs to be generic

> A task can be just about anything the computer can do, a generic
template can be used to handle any task

Each task is written as a function conforming to a generic interface
= Void aTask(void * taskDataPtr){

- //task code
° }
Each task’s data is stored in a customized container. The task must know
the structure, but the OS only refers to it with a generic pointer
= Struct taskData{

- Int task Datao;

- Int task Datazi;

char task Data2;

° }



Kernel Example

Tasks to be performed for this example:
= Bring in some data

= Perform computation on the data

> Display the data

First Implementation:

> System will run forever cycling through each task calling the task and
letting it finish before moving on

Second Implementation

= Declares a TCB for each task

= TCB contains a function pointer for the task

= Data to be passed to the task

» Task queue implemented using array, each task runs to completion
Third Implementation

> Adds usage of ISR to avoid waiting



/f Building a simple 05 kernel -step 1 #include <ggdig.h>
// Declare the prototypes for the tasks
vold get (void* aNumber); // input task
vold increment (void* aMumber): // computation task
vold display (void* aNumber): // output task
Hwoid main(void) |
int i=0: // queue index
int data; // declare a shared data
int* aPtr = &data; // point to it
vold (*queue[3]) (void*); // declare queue a3 an array of polnters to
S/ functions taking an grg of type woid*
queue[0] = get: // enter the tasks intoc the gqueue
queue[l] = increment;
queue[2] diaplay:
EHwhile{l) {
queue[i] (({wocid*) aPtr); // dispatch each task in turn

i = (i+1)=:;
~1

return:
1

Hwoid get (void* aMumber) { // perform input operation
printf ("Enter & number: 0..9 "}):
*(int*) aNumber = getchar():
getchar() : // discard gr
* (int*) aNumber -= '0'; // convert to decimal from gacii
return;
= |
Hwoid increment (void* aNumber) { // perform computation
int* aPtr = (int*) aNumber:
(*aPLE)++
return:
-1
Elvoid display (void* aNumber) { // perform output operation
printf ("The result isz: %d4d\n", *({int*)aNumber):; return:
= |




S Building a simple 05 kermel -step 2 finclude <gtdig-h>»
£ Declare the prototyvpes for the tasks
wold get (woid* alumbker); /) input task
vwolid ipncrement (void* aNumber); /) computation task
woid display (void* aNumber); // cutput task
FF Declare 2 TCE structure
= typedef struct [
wolid* taskDataPrr;
wold (*taskPtr) (void*);
-1 TCB;
Blveoid main{wveoid) {
int i=0; /) gueus index
int data; f/ declare a shared data
int* aPtr = &data; // point to it
TCE* gqueue[2]; [/ declare gueue as an array of pointers to TCEs
S Declare some TCEs
TCB inTask, compTask, ocutTask;
TCE* aTCBEtr:
SF imitializetheTCEs
inTask.taskDatalbPtr = (void*) kdata;
inTask.taskPtr = get;
complask.taskDataPtr = (void*) &data;
complask.taskPtr = increment;
cutTask.taskDataPtr = (void*) &data:
cutTask taskPtr = display:
F4 Imitizlize the task guesue
gueue[0] = &inTask:
gueus[1]
gqueuse[Z] = &outTask:

GocompTask;

Ff schedule and dispatch the tasks
Elwhile{1y {

aTCBEtr = gueue[i]:;
aTCBEtr—->taskPtr (| (aTCEBEtr—->taskDataPtr) ) ;

i = (i+1)&%=;
-1
return;

A




Problems

If any task must wait for something, no other task can run

until the running task no longer needs to wait. This can lead

to system "hanging", trivially waiting on something

In this case, no updates can happen while waiting on user

input

Would be better to break task up into two parts:

o task: display prompt

= task: check if user entered data and move on otherwise ....
implemented using interrupts

Need ISR

> How would you implement this with ISR?



