
Real-Time Electricity Pricing for Demand Response

Using Online Convex Optimization

Seung-Jun Kim and Geogios B. Giannakis

Department of Electrical and Computer Engineering

University of Minnesota

Minneapolis, MN 55455, USA

E-mail: {seungjun,georgios}@umn.edu

Abstract—Real-time electricity pricing strategies for demand
response in smart grids are proposed. By accounting for individ-
ual consumers’ responsiveness to prices, adjustments are made so
as to induce desirable usage behavior and reduce peaks in load
curves. An online convex optimization framework is adopted,
which provides performance guarantees with minimal assump-
tions on the dynamics of load levels and consumer responsiveness.
Two feedback structures are considered: a full information setup,
where aggregate load levels as well as individual price elasticity
parameters are directly available; and a partial information
(bandit) case, where only the load levels are revealed. Fairness
and sparsity constraints are also incorporated. Numerical tests
verify the effectiveness of the proposed approach.

I. INTRODUCTION

Demand response (DR) is an important smart grid task, in
which power consumptions of end users are coordinated so
as to elicit economically desirable power usage patterns [1].
Such a coordination can be effected either directly by allowing
the load serving entities to exert direct control over consumer
loads, or indirectly by adjusting electricity prices over time,
driving consumers to adapt their loads accordingly. The pricing
mechanism also emerges when devising distributed algorithms
that seek optimal load schedules based on some global opti-
mization formulations, in which case it is also assumed that
the consumer responses to prices can be programmed in the
smart meters at consumer premises. In any case, the idea is to
raise the price during the periods of peak usage, and lower it
at the valley so that variations in the load curve are abated.

DR becomes effective when more loads are “elastic” in
the sense that more consumers are willing to adjust the
amount of power used and/or shift the time of use. Some
loads are inherently elastic. For example, electric vehicle (EV)
charging can wait until the electricity price is right, as long
as the desired amount of energy can be accumulated by
some specified time [2], [3]. On the other hand, elasticity is
related to consumers’ behavioral patterns and preferences as
well. Some consumers may be more responsive to prices than
others, providing more elasticity, while some may be relatively
indifferent. Although DR with humans in the chain is welcome
to the smart grid’s open paradigm promoting consumer partici-
pation, it is quite challenging since the patterns may be difficult
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to model and learn, especially when they can vary drastically
owing to changes in individual needs and preferences.

Attempts to capture consumer behavioral patterns in the
context of smart grids have appeared recently. In [4], individual
consumer responsiveness to price was estimated in a linear
regression framework, where the shift in the total load was
fit to the price changes announced to individual consumers.
An algorithm to learn EV charging preferences was developed
based on a conditional random field (CRF) model in [5], where
spatial dependencies among consumers were also accounted
for. The premise in these works is that once a model that
allows prediction of consumer behaviors is acquired, it can be
exploited subsequently to appropriately set the prices so as to
induce favorable load profiles.

In this work, the problem of price setting is tackled,
where learning consumer price responsiveness is implicit. In
particular, our focus is on real-time pricing, where adjustments
to the prices announced prior to a scheduling horizon are made
to cope with the discrepancy in the actual consumer behaviors
and load levels from forecast and planning. Thus, the algorithm
must be able to accommodate unmodeled variations in the
underlying consumer behavior and load levels. The relevant
measurements may be limited due to privacy or technical rea-
sons, and may even contain effects from adversarial behaviors
of rational consumers that take strategic actions.

Our approach consists of an online convex optimization
(OCO) framework, which can provide performance guarantees
with minimal modeling assumptions even under adversarial
setups [6], [7]. Depending on the scope of available ob-
servations necessary for learning and adaptation, two cases
are considered. In the full information setting, the (true)
elasticity of individual consumers is revealed after the price
is set, allowing a gradient descent-type update for prices. In
the partial information case, only the total load is revealed
corresponding to the price set, levying the additional task of
estimating the gradient. Desirable structures in the generated
prices, such as fairness and sparsity, are incorporated in the
form of appropriate regularizers.

The rest of the paper is organized as follows. The DR
problem formulation is presented in Sec. II. In Sec. III, the
OCO framework is summarized. Real-time pricing algorithms
are developed in Sec. IV. Numerical tests are performed in
Sec. V. Conclusions are provided in Sec. VI.



II. PROBLEM FORMULATION

Consider a distribution grid serving K customers. To
effectively control load, the utilities can adopt a time-of-use
(ToU) pricing mechanism, in which the electricity prices {p̄tk}
for individual consumers k = 1, 2, . . . ,K for different times
t over a horizon t = 1, 2, . . . , T (e.g., hourly prices over a
day) are announced before the beginning of the horizon. An
important premise of the smart grid is that based on such
information, intelligent scheduling of load becomes feasible,
which yields a planned aggregate load profile l̄t [8]. However,
day-ahead scheduling inherently involves many uncertainties
that cannot be always predicted with sufficient accuracy.

Once the time horizon of interest emerges, the actual load
level lt is revealed at each time t. In order to reflect real-
time supply and demand imbalance, the utilities can make
adjustments of the prices through real-time pricing (RTP). Let
ptk denote the price adjustment for consumer k at time t such
that the actual price becomes p̄tk + ptk. Since individual con-
sumers have different constitution of elastic loads and distinct
preferences, the load-to-price sensitivities vary. Making a first-
order approximation that the load change is linear in the price
variation, the increase in consumer k’s load demand at time t
can be modeled as

dtk = −θtkptk (1)

where −θtk is the slope, capturing customer k’s price elasticity.
Note that θtk (or dtk) might not be directly available to the
utility due to privacy and/or technical reasons. Instead, it may

be that only the aggregate load lt+
∑K
k=1 d

t
k can be observed

at the end of time t. Upon defining θ
t := [θt1, . . . , θ

t
K ]T and

pt likewise, the aggregate load can be equivalently expressed

as lt − θ
tTpt, where ·T denotes transposition.

An important goal of the utility is to minimize load
variations over time by judicious price setting [2], [3]. This
can be achieved by minimizing the variance of the aggregate
load around prescribed average load levels {mt}, given by [9]

1

2

T
∑

t=1

(

lt − θ
tTpt −mt

)2

. (2)

One issue with adjusting individual customer prices is
fairness. It is undesirable to have large adjustments only in
few customers’ prices. To ensure that the price variation among
customers remains small, one can adopt a penalty term discour-

aging large deviation, such as
∑

t ||pt||22 :=
∑

t

∑K
k=1(p

t
k)

2.
On the other hand, the set of elastic consumers that react
sensitively to price adjustments may constitute only a small
portion of the entire population [4]. For many consumers, θtk
will remain zero, and thus choosing nonzero ptk will have no
effect in inducing desired load changes. Therefore, it is natural
to incorporate this prior knowledge by promoting sparsity in
pt in each time t, which can be achieved by incorporating the

penalty term
∑

t ||pt||1, where ||pt||1 :=
∑K
k=1 |ptk|. Upon

introducing non-negative weights λ and µ for the sparsity and
fairness terms, the overall cost per time is given by

ct(pt) :=
1

2

(

lt − θ
tTpt −mt

)2

+ λ||pt||1 +
µ

2
||pt||22. (3)

The goal becomes to attain small total cost
∑T
t=1 c

t(pt) by
setting {pt} appropriately.

If exact values of lt and θ
t for all t ∈ {1, 2, . . . , T} were

available to the utility before the time horizon of interest, opti-
mal {pt} that minimize

∑

t c
t(pt) would be readily obtained

by solving a quadratic program (QP). In reality, however, only
forecasts of those quantities are available, which are subject to
uncertainties. Therefore, it is prudent to adjust prices in an on-
line fashion by observing consumers’ reactions to the prices
presented to them and learning load elasticity on the fly.

Thus, the problem of interest is as follows. At each time t,
based on the past prices pτ , τ = 1, 2, . . . , t − 1, and the
corresponding observations, set prices {ptk}Kk=1 so that at

the end of the horizon, the total cost
∑T
t=1 c

t(pt) is small.
Two types of observations are considered in this work. In
the full information case, it is assumed that the utilities can
acquire the values of lτ and θ

τ (possibly through observing
{dτk}Kk=1) explicitly at the end of each time slot τ . In the
partial information or bandit case, only the aggregate load

(lτ − θ
τTpτ ) can be observed at each time τ .

III. ONLINE CONVEX OPTIMIZATION APPROACH

A. Online Convex Optimization Models

For online price setting, an OCO approach is pursued. The
framework considers a multi-round game between a learner
and an adversary [6]. In our setup, the utility plays the role of
the learner, while consumers are the adversaries. In round t, the
learner plays an action pt ∈ P , and subsequently the adversary
chooses a convex function ct : P → R. Then, the learner
suffers cost ct(pt) and receives some feedback information
(observations) F t. The goal of the learner is to minimize the
so-termed regret Rc(T ) over T rounds, given by

Rc(T ) :=

T
∑

t=1

ct(pt)−min
p∈P

T
∑

t=1

ct(p) (4)

which represents how well the learner performed compared to
a single best strategy that can be chosen with the advantage
of knowing all ct, t = 1, 2, . . . , T , as in hindsight.

Again, depending on the richness of feedback {F t}, either
the full information or the bandit case emerges. The full
information corresponds to revealing the entire function ct

in each round t. The bandit case refers to revealing only the
value of ct evaluated at pt, that is, ct(pt). Under appropriate
conditions, online algorithms can be constructed for both cases,
to yield {pt} with regret upper-bounds that grow sublinearly
in T [6]. Thus, as T increases, the algorithms perform at least
as good as the fixed action chosen in hindsight (in the sense
that Rc(T )/T tends non-positive).

B. Dealing with Composite Objectives

It is worth paying a special attention to cases where the
per-time objective functions ct are composite and consist of
two parts: ct = φt + r, where φt : P → R is a convex
function related to the actual datum associated with the t-th
round, while r : P → R is a convex regularization function,
which encodes application-specific prior knowledge, such as
sparsity.



Many efficient OCO algorithms entail first-order iterations
that use the (sub)gradient of ct to produce the next iterate
pt+1 [10]. However, using the (sub)gradient of r might not
successfully induce in pt+1 the properties intended by adopt-
ing the regularizer r. For instance, using a subgradient of an ℓ1-
norm-based regularizer does not necessarily yield sparse pt+1

for intermediate t, although a sublinear regret bound may still
be achieved, yielding sparse iterates asymptotically.

A remedy is to incorporate the regularizer explicitly with-
out resorting to (sub)gradients. In the full information case,
a number of algorithms implementing this idea have been
reported [11], [12]. In Sec. IV-B, an OCO algorithm that
respects sparsity for quadratic φt is derived for the bandit case.

IV. REAL-TIME PRICE SETTING

A. Full Information Case

For the full information case, the so-termed composite
objective mirror descent (COMID) algorithm of [11] will be
adapted. To this end, define first

φt(p) :=
1

2

(

lt − θ
tTp−mt

)2

(5)

r(p) := λ||pt||1 +
µ

2
||pt||22 . (6)

Also, introduce the Bregman divergence Dψ(p,p
′) associated

with a strongly convex function ψ(p) as

Dψ(p,p
′) := ψ(p)− ψ(p′)− 〈∇ψ(p′),p− p′〉 (7)

where 〈·, ·〉 denotes the inner product. Then, the COMID
update sets pt+1 at time t+ 1 as (η is a weighting factor)

pt+1 = argmin
p∈P

η〈∇φt(pt),p〉+Dψ(p,p
t) + ηr(p). (8)

Choosing ψ(p) = 1
2 ||p||22 for simplicity, and plugging (5)–(6)

into (8) yields1

pt+1 = argmin
p∈P

[

−η(lt − θ
tTpt −mt)θt

T

p+
1

2
||p− pt||22

+η
(

λ||p||1 +
µ

2
||p||22

)]

. (9)

If P is given by a Cartesian product of intervals, i.e., P :=
∏K
k=1[P k, P k], the update in (9) can be written in closed form

per consumer k as

pt+1
k =

[

η

ηµ+ 1
soft thλ

(

ptk
η

+ (lt − θ
tTpt −mt)θtk

)]Pk

Pk

(10)

where [·]ba := min{max{·, a}, b}, and soft thλ(·) is a soft-
thresholding function defined as

soft thλ(x) := sgn(x)max{0, |x| − λ}. (11)

To assess performance of the pricing scheme in (10), the
following regret bound can be derived straightforwardly based
on the results in [11].

1If {dt
k
}K
k=1

are available, one way to estimate {θt
k
}K
k=1

is to use θ̂t
k
=

−dt
k
/(pt

k
+ ε) per (1), where small ε > 0 prevents division by zero.

TABLE I. PROPOSED ALGORITHM FOR THE BANDIT CASE.

1: Set p1 = 0

2: At each t = 1, 2, . . . , T
3: Select kt ∈ {1, 2, . . . , K} and ǫt ∈ {−1, 1} randomly

4: Set p̃t = p
t + δǫtekt

5: Play p̃
t and observe cost φt(p̃t)

6: p
t+1 = arg min

p∈(1−α)P

[

η〈Kǫt

δ
φt(p̃t)ekt ,p〉

+ 1
2 ||p − p

t||22 + η
(

λ||p||1 + µ
2 ||p||22

)]

7: Next t

Proposition 1: Suppose ||θt||2 ≤ θmax for all t and p1 = 0.

Let p∗ := argminp∈P

∑T
t=1 c

t(p) denote the offline “hind-

sight” optimum. Then, with η ∝ 1/
√
T , the update in (9) yields

a regret

Rc(T ) = O(θ2max

√
T ||p∗||22). (12)

B. Partial Information (Bandit) Case

Since the values of θ
t and lt are not explicitly observed

in the bandit case, ∇φt necessary for mirror descent updates
is not available. Since {φt} change over time in general,
no more than one function evaluation can be performed per
time t. Thus, finite difference approximations of gradients,
which require multiple function evaluations at different nearby
points, cannot be employed naturally for online optimization.

An observation instrumental in this context is that an
unbiased estimate of a gradient can still be constructed based
on a single evaluation of φt. For instance, an estimate of the
gradient at a point p of a smoothed version of ct was obtained
as (K/δ)ct(p + δu)u in [13], where δu ∈ R

K is a random
perturbation vector chosen uniformly from a sphere of radius δ.
Then, it was shown that employing this estimate in an online
gradient descent algorithm could provide a sublinear regret
bound. However, this technique cannot be applied here directly
since it does not bring forth the desired sparsity in pt, as the
algorithm does not account for composite objectives, and the
perturbation vector used is not sparse.

Our approach is to recognize the composite objectives
by developing a COMID-like algorithm in the bandit setting,
which does not require a subgradient of r. Also, only a single
entry of p per time is perturbed so that sparsity can be
preserved [14]. It can be shown that an unbiased estimate of
∇φt is still obtained for quadratic φt, which is the case in our
problem setup.

Specifically, consider in general a quadratic function

φt(p) = pTAtp + bt
T
p, where At ≥ 0. To obtain a

perturbation of p, which is the point to evaluate the gradient
of φt at, randomly generate integers kt ∈ {1, 2, . . . ,K}
and ǫt ∈ {−1, 1} from uniform distributions. Then, upon
introducing δ > 0 and ek, which represents the k-th canonical
vector in R

K , the perturbed vector p̃t is given by

p̃t := pt + δǫtekt . (13)

An estimate of the gradient is then formed from φt(p̃t) as

gt :=
Kǫt

δ
φt(p̃t)ekt . (14)

It is easy to verify that E[gt|pt] = ∇φt(pt) = Atpt + bt.

Now, define

(1− α)P := {(1− α)p : p ∈ P}, 0 ≤ α < 1 (15)

ρB := {p ∈ R
K : ||p||2 ≤ ρ}. (16)
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Fig. 1. Load curves before and after real-time DR.

Then, the algorithm in Table I is proposed. It can be seen that

the algorithm uses gt instead of ∇φt(pt) = −(lt − θ
tT −

mtpt)θt, and replaces P with (1− α)P in the update in (9).
The latter is necessary to make sure that p̃t stays in P . Due to
the COMID-like update in line 6, pt is sparse with the level
of sparsity controlled by λ, and consequently p̃t is also sparse
(since it has at most one more nonzero entry than p). The
regret bound for this algorithm is assessed in the following
proposition, whose proof is omitted due to space limitation.

Proposition 2: Let P ⊂ R
K be a compact set with

ρinB ⊂ P ⊂ ρoutB. Suppose that φt : P → R is quadratic
and convex, r : P → R convex, and |φt(p)+r(p)| ≤ C for all
t and p ∈ P . Since P is compact, ct is Lipschitz continuous
with Lipschitz constant L. Then, for sufficiently large T , the
algorithm in Table I with

δ =

√

ρoutCK

L+ 2C/ρin
T− 1

4 (17)

α = δ/ρin (18)

η =

√

ρout3

CK(L+ 2C/ρin)
T− 3

4 (19)

produces {p̃t} that satisfy

E

[

T
∑

t=1

(

φt(p̃t) + r(p̃t)
)

]

−min
p∈P

T
∑

t=1

(

φt(p) + r(p)
)

= O
(

ρoutCK (L+ 2C/ρin)T
3
4

)

. (20)

Note that condition |φt(p)+r(p)| ≤ C is satisfied for (5)–(6)
when P is compact. Lipschitz continuity follows either from
compactness of P , or from boundedness of lt, θ

t and mt,
both of which are readily satisfied in practice. Proposition 2
asserts that even with bandit feedback, a sublinear regret can
be achieved, although the speed of convergence deteriorates to

O(T 3/4) from O(
√
T ) of the full information counterpart.

V. NUMERICAL TESTS

To verify the effectiveness of the proposed pricing strate-
gies, numerical tests were performed. A full information
case involving K = 100 consumers with constant elasticity
parameters θtk = θk is considered first, where θk for k =

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time index t

P
ric

e 
re

sp
on

si
ve

ne
ss

 θ
kt

Fig. 2. Time-varying price responsiveness.
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Fig. 3. Load curves for time-varying elasticity.
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Fig. 4. Price adjustments in the full information case.



0 2000 4000 6000 8000 10000 12000 14000
0

20

40

60

80

100

120

Iterations t

Lo
ad

 le
ve

ls

 

 

Scheduled load
Actual load
Average load

Fig. 5. Load curves in the bandit case.

1, . . . , 80 were picked uniformly at random from [0, 0.5], while
θk = 0 for k = 81, . . . , 100. A maximum price deviation
of P k = −P k = 5 was used. The update was performed
every half an hour over a three-day horizon. The values of
λ and µ were set to 0.1 and 0.5, respectively. The values of

mt were set as mt+1 = (t − 1)t−1mt + t−1(lt − θ
tTpt). In

Fig. 1, the solid curve depicts the base aggregate load lt, and

the dashed one corresponds to the overall load (lt − θ
tTpT ),

which reflects the price-induced load adaptation. The dash-
dotted curve represents the mean level mt. It is observed
that the proposed pricing scheme significantly reduces load
variations.

Another full-information case employing time-varying θ
t

was considered, where the employed values of θt are shown
in Fig. 2. It is noted that the case is challenging as the
consumers tend to have low responsiveness during the peak
periods. The corresponding load curves in Fig. 3 still exhibit
sizable improvement over the base load. Fig. 4 depicts the
prices ptk generated from the proposed algorithm. It is seen
that consumers with higher elasticity are given larger incen-
tives (price amendments) to adjust their loads. However, the
amount of price deviations can be controlled by the “fairness”
parameter µ. It is also apparent that the algorithm correctly
identified the subset of non-elastic consumers, and set their
price adjustments to zero, thanks to the sparsity-promoting reg-
ularizer. Incorporating sparsity may improve tracking abilities,
in addition to possibly lowering the signaling overhead in our
context.

Fig. 5 presents the load curves for the bandit setting. Again,
K = 100 consumers with constant random θtk ∈ [0, 0.5] for
80 of them were considered. The values of λ = 0.5 and µ = 0
were used. The updates were performed every 18 seconds.
It is seen from the figure that it takes much longer time
to track compared to the full information case. In fact, for
the larger magnitude peaks, the dynamics of lt seems to be
too fast for the algorithm to track, while for smaller peaks,
the algorithm could significantly reduce the peaks. Since, in
practice, real-time pricing is overlaid on top of day-ahead
offline scheduling, severe dynamics used in the present tests
may be unusual. Also, incorporation of appropriate dynamic
models might mitigate this issue, which will be explored in
our future work.

VI. CONCLUSION

Algorithms for real-time electricity pricing were developed
for DR in smart grids. Price responsiveness of individual
consumers and loads is taken into account to set optimal prices
for inducing desired power consumption behaviors to curb load
variations. Structural constraints such as fairness and sparsity
of prices have also been incorporated. The proposed strategies
provide performance guarantees based on an OCO framework
with minimal modeling assumptions on the dynamics of load
levels and consumer preferences, capable of coping even with
adversarial (strategic) actions of consumers. Pricing strategies
for both full and limited information setups have been pro-
posed. Numerical tests showed that the novel approach could
reduce load variation significantly through implicitly learning
load elasticity in an online fashion.
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