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Abstract—With the rapid advance of machine learning
techniques and the increased availability of high-speed computing
resources, it has become possible to exploit machine-learning
technologies to aid in the design of photonic devices. In this
work we use evolutionary optimization algorithms, machine
learning techniques, and the drift-diffusion equations to optimize
a modified uni-traveling-carrier (MUTC) photodetector for low
phase noise at a relatively low bias of 5 V. We compare the particle
swarm optimization (PSO), genetic, and surrogate optimization
algorithms. We find that PSO yields the solution with the lowest
phase noise, with an improvement over a current design of
4.4 dBc/Hz. We then analyze the machine-optimized design to
understand the physics behind the phase noise reduction and
show that the optimized design removes electrical bottlenecks in
the current design.

Index Terms—photodetectors, frequency combs, optimization

I. INTRODUCTION

Low-bias photodetectors are important for chip-scale
frequency comb applications [1] because a low bias reduces
power consumption, improves thermal performance, and
simplifies the electronic design. Modern epitaxial technologies
enable high-precision control of the doping and composition
of compound semiconductor devices [2]. At the same time,
advances in computational power and numerical techniques
make it possible to design, optimize, and understand the
operational mechanisms of these devices. Among the numerical
techniques that are used to simulate photodetectors, simulations
based on the drift-difffusion equations (DDEs) are a useful
compromise between computationally-intensive Monte Carlo
simulations and purely empirical models that are not
physics-based [3], [4].

To compute the white phase noise floor and cut-off frequency
in a photodetector, one approach is to calculate the impulse
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response of the individual electrons that are created in
response to the Poisson-distributed incoming light [5], [6], but
this approach is computationally time-consuming [7]. Jamali
Mahabadi et al. [8] showed that it is possible to calculate
phase noise by first calculating the impulse response of a
photodetector from the drift-diffusion equations and then take
advantage of the Poisson distribution of electrons in any time
slot to calculate the phase noise using simple integrals over
the impulse response. Using this approach greatly reduces the
computation time and simplifies both the calculation and the
physical interpretation of the results. As a result, we are able
to use evolutionary methods to optimize the device for low
phase noise at a relatively low bias of 5 V while varying all
the device layer thicknesses and doping densities.

A uni-traveling-carrier photodiode (UTC) [9], [10] mainly
uses electrons as active carriers in the device, rather than
both electrons and holes. As electrons have higher velocities
than holes, the use of electrons as the sole carriers has made it
possible to increase the speed, bandwidth and saturation current
of photodetectors. A modified uni-traveling-carrier (MUTC-4)
photodetector has been designed by Li et al. [11] in which
the space-charge effect is reduced by adding a cliff layer
between the collection layer and the absorption layer, which
further improved the performance. MUTC photodetectors are
widely used in frequency comb applications, RF-photonics,
time and frequency metrology, and photonic low-phase-noise
generation [12]. However, phase noise in photodetectors can
limit the system performance in these applications [5], [13].
In particular, the low noise of an optical pulse train from an
optical frequency comb can be transmitted to the microwave
domain only to a limited extent due to phase noise in the
photodetection process [13].

In order to achieve enhanced performance, multiple layers
are used in the design of MUTC photodetectors. The number of
layers increases the number of design parameters, which makes
the optimization process complex. Evolutionary optimization
algorithms are very efficient in finding global minima in
optimization problems that have a large search space and tens
of dimensions [14]. Analysis of the optimized designs can
also provide physical insight into the device dynamics. By
using this inverse approach to learn about complex interactions,
new and less obvious physics can be discovered and used to
design better devices. In this work, we extend the prior work
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in which we only used particle swarm optimization (PSO) and
did not provide a detailed description of the physics that led
to an improved device performance [15]. Here we compare
three evolutionary optimization algorithms — particle swarm
optimization (PSO) [16]–[18], genetic algorithm (GA) [19],
[20], and surrogate optimization algorithm (SO) [21], [22] — to
optimize the MUTC-4 photodetector that was designed by Li
et al. [11]. In all three optimization algorithms, we vary the
doping densities and thicknesses of the photodetector layers
while keeping the bias fixed at 5 V. We find that both PSO and
SO perform well. SO generates several designs with nearly
the same performance when it approaches a local minimum,
while PSO still explores the solution space for the possibility
of finding other local minima. We investigate in detail the
optimized design that is found by the PSO algorithm to gain
insight into the physics behind the optimized design. We find
that at the relatively low bias of 5V that we are considering here,
electric-field “bottlenecks” can be created in the intrinsic region,
which can be removed by adjusting the doping densities and
thicknesses of the layers in the intrinsic region. Additionally,
we find than an enhanced electric field at the layer boundaries
in the photon absorption region also contributes towards the
reduction of phase noise.

II. COMPUTATIONAL MODEL AND PHASE NOISE
CALCULATION

We use the one-dimensional (1-D) computational model
developed by Hu et al. [24] and improved upon by Simsek
et al. [25], [26] that is based on the drift-diffusion equations.
In order to accurately simulate the nonequilibrium phenomena,
we include the physical effects — impact ionization [4], carrier
recombination [27] and Franz-Keldysh effect [28]— in our
simulation model. We use empirical expressions to make the
electron velocity functions of electric field [29], temperature
[24] and doping densities [30]. We did not include quantum
confinement in the simulation model since the photodetector
designs do not include quantum confined structures. We did
not include quantum tunneling in our solver. The photodetector
structures are around 3 µm in length, and the minimum layer
thickness in the original and optimized structure is 15 nm, so
that the probability of quantum tunneling is neglibile.

We follow the procedure described by Jamali Mahabadi
et al. [8] to calculate the phase noise. We first use the
drift-diffusion equations to compute the electronic impulse
response he(t) of the device for an optical pulse that is
sufficiently short that he(t) is entirely determined by the pulse
energy. We then compute the phase noise using the expression
[8]

⟨Φ2
n⟩ =

1

Ntot

∫ TR

0
he(t sin

2 [2πn(t− tc)/TR] dt{∫ TR

0
he(t) cos [2πn(t− tc)/TR] dt

} , (1)

where ⟨Φ2
n⟩ is the mean square phase fluctuation at the

comb-line number n, Ntot is total number of electrons in
the photocurrent, TR is the repetition rate, he(t) is the impulse
response of the output current in the limit of short (≲500 fs)

input optical pulses, and tc is the central time of the impulse
response he(t). The impulse response is defined as

he(t) =
∆Iout(t)∫ TR

0
∆Iout(t) dt

, (2)

where ∆Iout is the change in the output current due to the
input optical pulse. The central time is defined implicitly by
the relation

0 =

∫ TR

0

he(t) sin

[
2πn

TR
(t− tc)

]
dt. (3)

In the short-optical-pulse limit, the output current impulse
response only depends on the total energy in the input optical
pulse and not its shape [8].

III. MUTC PHOTODETECTOR STRUCTURES

We optimized the MUTC-4 photodetector that was designed
by Li et al. [11]. In Fig. 1(a) we show the original MUTC-4
structure and in Fig. 1(b) we show the optimized MUTC-4
structure found by the PSO algorithm. In this work, the output
current Iout that is the mean of ∆Iout(t) is 100 µA; the external
load impedance Rload is 50 Ω; the diameter of the MUTC
photodetectors is 50 µm; the pulse-width is 100 fs and the
repetition frequency is 50 MHz, corresponding to setting TR =
20 ns.

IV. OPTIMIZATION PROCESS

We optimized the doping levels and thicknesses of the 17
layers; hence there are 34 optimization parameters. We used
the PSO, GA and SO optimization algorithms and set the phase
noise as the cost function.

PSO and GA are based on principles derived from nature.
PSO is inspired from a flock of birds or a swarm of bees or
ants looking for food [16] while GA is inspired by Darwin’s
concept of survival of the fittest [19]. In PSO, a population is
initialized throughout the solution space. Each of these points
are candidate solutions and are called particles. These particles
are also given velocities and they move across the solution
space searching for the optima. Similar to a swarm of bees,
each of the particles informs the others of its findings.

In GA, an initial population evolves in a manner similar
to biological evolution. The parameters to be optimized are
called genes. The genes together form the chromosome. In our
case, the chromosome consists of the doping concentrations
and thicknesses of the 17 layers. Hence there are 34 genes that
make up a chromosome. The initial population evolves through
three mechanisms — selection, crossover and mutation of the
genes.

SO uses machine learning techniques to accelerate the
optimization process [22]. SO works by creating a statistical
model of the objective function, so that the model can
approximate the objective function’s output given an input.
Since a single evaluation of the surrogate function takes a
small amount of time, this approach is particularly effective
for optimization problems where the objective function
is expensive. After a user-controlled number of function
evaluations, the surrogate model uses the new data to refine
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(a)

(b)

Fig. 1: Structure of the (a) original MUTC photodetector [11]
and the (b) optimized MUTC photodetector. Modified layer
parameters are indicated with boldface. Blue indicates the
p-region, red indicates the n-region, white indicates the i-region
and grey indicates the substrate. We label each level with the
material, doping type, doping density, and thickness.

itself and focuses the search in the regions where the probability
of finding the global optimum is high.

We ran the three optimization algorithms on the UMBC
high-performance computing cluster [23] in parallel for 24
hours using the design of Li et al. [11] as our starting point.
PSO generated 709 designs, GA generated 225 designs, and
SO generated 374 designs. Out of the 1308 designs in total for
all three algorithms PSO generated the design with the least

Fig. 2: Scatter plots of the designs generated by PSO, GA, and
SO. The red arrow in the inset indicates the least-phase-noise
design found by the PSO.

Fig. 3: Phase noise histograms of the designs generated by
PSO, GA, and SO.

phase noise. PSO generated better results than the other two
algorithms because it better explores the solution space. We
rounded the parameters of the design that the PSO algorithm
found to make the design suitable for fabrication, and found
a further reduction in the phase noise. For PSO, we used a
swarm size of 400. For GA, we set the crossover fraction that
is the fraction of each population available to crossover to 0.8.
For SO, we set the number of function evaluations before the
surrogate model is updated to 4. For PSO and GA, we set
the algorithms to stop if the relative change in the objective
function is less than or equal to 1.0×10−6. For SO, we set the
limit of the objective function to negative infinity. Although
with evolutionary optimization algorithms with such a large
parameter space, finding the global optimum is not guaranteed,
the improvement in the objective function becomes less than
0.3 dBc/Hz — respectively 10, 5, and 3 hours before the end
of the 24 hour runtime for SO, GA, and PSO. Hence it is likely
that the design that PSO found is close to the optimum. We set
the minimum and maximum doping densities to 1.0×1017 and
2.0×1019 respectively in the p-region, 1.0×1017 and 2.0×1019

respectively in the n-region and, 1.0 × 1016 and 2.0 × 1017

respectively in the i-region. For the layer thicknesses, we set the
minimum limit to 10 nm and the maximum limit to 1000 nm.

In Fig. 2, we show scatter plots of decay time vs. phase
noise. The decay time is the time that it takes the impulse
response to decay to 1% of its initial value. We can see the
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(a)

(b)

Fig. 4: Normalized impulse response (a) of the original MUTC
device and (b) of the optimized MUTC device.

positive correlation between phase noise and decay time of the
designs [8]. In Fig. 3, we show the phase noise histograms of
the designs generated by the three algorithms. We see that PSO
generated the greatest number of designs, followed by SO and
GA. If we compare the scatter plots and histograms of the three
algorithms, we see that for SO, the histogram is skewed towards
the low phase noise region. This skew occurred because SO
reached near the low-phase-noise limit (≤ 0.3 dBc/Hz change
in phase noise) in about 14 hours, which is earlier than was
the case for PSO and GA. For PSO and GA, the time was
about 21 and 19 hours respectively. Hence, SO was the most
efficient of the three algorithms at finding designs with low
phase noise, although PSO found a better design at a later time.
We conclude that SO was successful in building a surrogate
model of the cost function, and exploiting the active learning
to concentrate searches in the regions where the probability of
finding low phase noise designs is higher. In contrast to the
other two algorithms, PSO explored the solution space for a
longer time and eventually found the best design. Thus, we
found that SO yields a converged result more quickly than
the other two algorithms by taking advantage of its machine
learning acceleration. However, we also found that PSO is the
most effective in finding the global optimum, but it is not as
efficient as SO in reaching the low-phase-noise limit. These
results suggest that if there is a constraint on computational
resource and time, it is best to use SO and if finding the global
optimum has a greater priority and computing resources are

(a)

(b)

Fig. 5: Electric field inside the (a) original MUTC device and
the (b) optimized MUTC device in dark mode. Vertical green
dashed lines indicate the intrinsic region.

Fig. 6: Electron drift velocity variation as a function of the
electric field in InGaAs.

not limited, it is best to use PSO.

In the design optimized using PSO, the changes are made
in layers 6, 7, 8 and 12 in Fig. 1. Layer 12 in the original
MUTC photodetector is merged with layer 13 in the optimized
MUTC photodetector, since the doping densities of the two
layers are the same. The device length of the original MUTC
photodetector is 3230 nm whereas that of the new design is
2865 nm. The optimized device is about 10% thinner than the
original device.
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(a)

(b)

Fig. 7: Electron drift current inside (a) the original MUTC
device at 105 ps and the (b) the optimized MUTC device
at 107 ps showing the presence and absence of a bottleneck.
Vertical dashed lines enclose the intrinsic region. The times
are selected based on when the bottleneck region is reached
by the photogenerated electrons.

V. RESULTS AND ANALYSIS OF THE OPTIMIZED DESIGN

The electron drift velocity in the photodetector is a
nonmonotonic function of the ambient electric field, as Fig. 6
indicates. Moreover, incident light injects an electron-hole
plasma into the drift region, which also affects the electric
field distribution. The transit time of electrons through the
device depends on the overall field structure; a shorter transit
time results in a lower phase noise. In addition, the variation
in the transit time is larger, and therefore the phase noise
is larger, when the slope of the electron velocity vs. field
curve is larger [31]. Finding optimum thicknesses and doping
levels of the layers in the intrinsic region to produce the
lowest phase noise is therefore a complex process, which can
be greatly aided by computer optimization and evolutionary
optimization algorithms, since these algorithms are especially
effective at global optimization problems involving high
numbers of parameters.

We plot the impulse responses of the original and optimized
design in Fig. 4(a) and 4(b) respectively. The original MUTC
photodetector has a phase noise of −182.2 dBc/Hz, while the
optimized MUTC photodetector has a phase noise of −186.6
dBc/Hz. There is an improvement of 4.4 dBc/Hz in phase
noise. The original MUTC has a FWHM of 43 ps whereas the
optimized MUTC has a FWHM of 27 ps. There is a reduction
of 37.5% in the FWHM and a 22.3% reduction of decay

(a)

(b)

Fig. 8: (a) Electric field and (b) the electron drift current inside
the original MUTC photodetector at 106 ps. The rectangles
indicate the region where the electric field and electron drift
current is low. The blue and red dashed lines indicate the
electric field and electron drift current respectively in dark
mode. Vertical green dashed lines enclose the intrinsic region.

time. However, there is a 10% decrease in responsivity in the
optimized device. We further tested the optimized design for
robustness. To address the uncertainty in epilayer growth, we
randomly varied the parameters by 10% and simulated ten test
cases. We consistently found an improvement in phase noise of
about 4 dBc/Hz. Since the optimized design has a shorter tail,
there is an improvement of 24% in the 3-dB bandwidth as well.
To test if the phase noise is affected by the optical power, we
gradually increased the optical power at regular intervals and
found that there is a decrease in the phase noise improvement as
the optical power increases. When the optical power is doubled
to 0.3 mW, the phase noise improvement decreases from 4.4
dBc/Hz to 2.2 dBc/Hz. In order to determine the photodetector’s
high power behavior, we calculated the saturation current of
the optimized design. We found that the optimized design has
a 0.4% higher saturation current than the original design.

The original MUTC design results in two low electric field
regions in the intrinsic layers. One low electric field region
occurs at the end of the 800 nm InP drift layer as shown in
Fig. 5(a). The bottleneck created by the low-field in the electron
drift current is shown in Fig. 7(a). The second low-field region
is caused by the space charge effect and occurs at the middle
of the drift layer at 106 ps. The low-field region and electron
drift current occurring at 106 ps is shown in Fig. 8(a) and 8(b)
respectively. The low-field region at the end of the drift region
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(a)

(b)

Fig. 9: (a) Electric field and (b) the electron drift current inside
the optimized MUTC photodetector at 108 ps. The rectangles
indicate the region where the electric field and electron drift
current exceed those of the original design. The blue and red
dashed lines indicate the electric field and electron drift current
respectively in dark mode. Vertical green dashed lines indicate
the intrinsic region.

is built-in and permanent and the one at the middle occurs
for a short duration while the electrons are passing through
the intrinsic region. These low-electric-field regions increase
the transit time and lengthen the tail of the impulse response,
increasing the phase noise. In the optimized design both the
low-field regions are removed, shortening the transit time and
reducing the phase noise. This result is obtained by decreasing
the doping density in the 50 nm InP layer and merging it with
the 800 nm drift layer. We show the higher electric field and
the absence of a bottleneck in electron drift current at the end
of the drift layer in the optimized design in Fig. 5(b) and 7(b)
respectively. We show the higher electric field and electron
drift current in the middle of the optimized design at 108 ps
in Fig. 9(a) and 9(b) respectively. We see that in the optimized
design, the electric field does not completely collapse, leading
to a higher electron drift current in the intrinsic region.

The optimized electric field distribution found by PSO takes
advantage of the electron velocity overshoot, removes the
low-field bottlenecks, and thus minimizes the transit time and
hence the phase noise. The absence of bottlenecks in the
optimized electric field distribution also improves the linearity
and saturation current.

The PSO algorithm suggested changes in the doping densities
and thicknesses of the three layers in the photon absorption

region that led to larger electric fields at the layer boundaries.
This increase in the electric field and electron drift velocity
assists the electrons as they move from the absorption layers in
the p-region into the intrinsic region. This shortens the transit
time and the tail of the impulse response, decreasing the phase
noise.

If we shorten the intrinsic region length, the electron transit
time decreases, but the electron RC time constant increases.
The PSO algorithm found that 800 nm is the optimal length
that balances this tradeoff.

VI. CONCLUSION

We have demonstrated that it is possible to optimize
photodetectors using three evolutionary optimization
algorithms — PSO, GA, and SO. The PSO algorithm found the
device with the lowest phase noise, although it was somewhat
more computationally expensive than the other algorithms.
The optimized MUTC photodetector has 4.4 dBc/Hz
lower phase noise than the original MUTC photodetector and is
also thinner and faster. We interrogated the optimized design
and gained physical insight into the dynamics of carrier
transport inside the photodetector. We find that at low bias,
bottlenecks are created inside the photodetector that increase
the phase noise. We thus conclude that phase noise from
photodetectors can be reduced by carefully tailoring the
doping levels and thicknesses of the layers, and evolutionary
optimization algorithms can assist in this design process.
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