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Abstract— In this purely numerical work, we discuss the use of
machine learning (ML) techniques to improve the resolution of
local near-field probing (LNFP) measurements when the probe
used in LNFP is larger than the device being studied. The study
demonstrates that through the implementation of ML algorithms,
it is possible to achieve a λ/10 spatial resolution even with probes
that are a few wavelengths wide, while maintaining a maximum
relative error of less than 3%. The investigation further reveals
that fully connected neural networks (FCNNs) exhibit superior
accuracy compared to linear regression when dealing with limited
training datasets. Conversely, for larger training datasets, it is
unnecessary to construct and train neural networks, as linear
regressions prove to be both sufficient and efficient. These find-
ings establish the potential of employing similar ML approaches
to enhance the resolution of measurements obtained from diverse
experimental setups.

Index Terms— Local near-field probing (LNFP), machine
learning (ML), resolution.

I. INTRODUCTION

LOCAL near-field probing (LNFP) is a technique that
enables the measurement of electric field distributions

in microwave and photonic devices with high spatial resolu-
tion [1], [2], [3], [4], [5], [6], [7], provided that the probe
size is smaller than the dimensions of the device under
investigation.

There are various variations of the LNFP technique, includ-
ing apertureless [1], [2], [3], [4], [5], [6] and aperture-based [7]
methods. In the apertureless method, the probe tip is usually
a small metallic tip. As the probe tip is brought closer to
the device, the electric field causes a shift in the resonance
frequency of the probe tip. By measuring the frequency shift at
different points along the device, the electric field distribution
can be mapped out with high spatial resolution. In the aperture-
based method, the probe tip is a small aperture that allows
microwaves to pass through it and interact with the device
being measured. The electric field is measured by detecting
the transmitted or reflected microwave signals.
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Fig. 1. (a) LNFP setup to measure the electric field where the
probe is (a) smaller and (c) larger than the device under investigation.
(b) and (d) Typical comparison of true versus measured field intensity for
the setups shown in (a) and (c), respectively.

When the probe used in LNFP is smaller than the
device being studied, as shown in Fig. 1(a), one can mea-
sure the electric field distribution along the device success-
fully [1], [2], [3], [4], [5], [6], [7], as illustrated in Fig. 1(b).
However, if the probe is wider than the device, as depicted
in Fig. 1(c), since the resolution of LNFP is limited by the
size of the probe and the distance between the probe and the
sample surface, it leads to resolution issues as illustrated in
Fig. 1(d).

Several methods exist to improve the resolution of LNFP
in such situations. For example, imaging algorithms can be
employed to process the data collected by LNFP, which
can aid in improving the resolution. Deconvolution algo-
rithms [8], [9], [10], for instance, can be utilized to mitigate the
effects of probe size and distance from the device. In this study,
we adopt a different approach, namely a machine learning
(ML) approach, to predict the electric field distribution along
a device when the width of a passive electric-field sensing
probe exceeds the length of the device under investigation. The
specific device we consider in this work is a photodetector but
the methods that are discussed below are general and can be
applied to any measurement setup.

The present article is structured as follows. First,
we describe a simple numerical model that imitates a typical
setup used in LNFP measurements. Second, we apply two ML
methods, namely linear regression and fully connected neural
networks (FCNNs) to predict the true electric field profile
inside the device from synthetic LNFP measurement data for
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Fig. 2. Illustration of the geometry that aims to mimic E-field measurement
with a probe over a device.

two distinct scenarios. In the first scenario, all devices under
scrutiny have a uniform length of 1 µm, and we compare
the accuracy and efficiency of the two ML methods as a
function of the size of the training dataset. In the second
scenario, we analyze a dataset of devices with lengths ranging
from 1 to 4 µm. Our findings indicate that when the dataset is
extensive, linear regression can make accurate predictions in a
few seconds, if not milliseconds. So, there is no need to build
and train a neural network. However, the accuracy of FCNNs
is almost independent of the dataset size, making them more
accurate than linear regression for small training datasets.

II. SIMPLE MATHEMATICAL MODEL TO MIMIC
LNFP MEASUREMENTS

Fig. 2 illustrates a simple configuration utilized in this
study to imitate an LNFP measurement setup. The device
under investigation, which we aim to measure the electric
field distribution over via near-field scanning, is centered at
the origin with its upper surface positioned at z = 0. The
width of the device depicted by the dashed black lines is wd .
The gray rectangle represents the probe, with a width of wp,
where wp > wd , and xc represents the center of the probe.
Since our objective here is to mimic an LNFP measurement,
we can simplify matters by disregarding the material properties
of the probe, and we can approximately calculate the measured
field (Em) using layered medium Green’s functions (LMGFs)
as follows.

LMGFs represent the impulse response of a multilayered
structure to electrical and magnetic sources [11]. In this con-
text, a planar multilayered medium assumes that layer inter-
faces are parallel to the xy plane and layer-i is characterized
by its relative electrical permittivity (ϵr,i ), conductivity (σi ),
magnetic relative permeability (µr,i ), and layer thickness (ti ).
G E J

ηζ (x, z|x ′, z′) type of LMGFs give us the η-component of
the electric field at a target point (x, z) due to a Hertzian dipole
antenna located at (x ′, z′) pointing toward ζ , where η and ζ

are either x , y, or z [11].
If we know the true electric field distribution (Er ) along the

device D, then we can assume a finite number of imaginary
transmitter antennas that are placed inside the device and use
the local electric field intensity as the current driving them.
Similarly, we can assume that the fields generated by these
imaginary transmitter antennas can be measured by imaginary
receiver antennas placed within the probe. If, for instance,

Fig. 3. (a) Schematic illustration of a reverse-biased photodetector that is
excited from its n-side. The yellow, purple, orange, light gray, dark gray,
and dark orange layers represent Au (contacts), InGaAs, InP, InGaAsP Q1.1,
InGaAsP Q1.4 layers, and the InP substrate, respectively. (b) Electric field
distribution along the photodetector, where the strength is high along the
intrinsic (i) region. We can also observe some peaks at the interfaces.

the photodetector is excited with a y-polarized light, then
the electric fields established inside the device and measured
by the probe are predominantly y-polarized as well. Hence,
we can utilize G E J

yy -type LMGFs and approximate the Em

using the following expression:

Em(xc, zr ) =

∫ xc+wp/2

xc−wp/2

∫ wd/2

−wd/2
Er (x ′, zt )

× G E J
yy (x, zr |x ′, zt )dx ′dx (1)

where zt and zr are the z-coordinates of the imaginary
transmitter and receiver antennas inside the device and probe,
respectively.

For our numerical study, we selected photodetectors [12],
[13], [14], [15] as the device under investigation. By solving
the drift-diffusion equations [12] on nonuniform spatial and
temporal meshes [13], using monochromatic or broadband
excitations [14], we can accurately and efficiently calculate
both the field and current distributions along the photodetector.
Particularly, with the nonuniform time-stepping capability,
we can analyze thousands of photodetectors in a few hours
using regular personal computers [14], [15].

To generate a variety of realistic electric field profiles,
we created 2330 unique modified uni-traveling wave carrier
photodetectors by randomly selecting layer thicknesses and
doping levels. The number of layers is 16. The material and
doping types are assumed to be the same as those used
in [14]. The beam and photodetector diameters are 28 µm.
The wavelength of the continuous laser is 1550 nm. The
modulation frequency ( fmod) and modulation depth are 1 GHz
and 4%, respectively, i.e., Pin = P0 ×[1 + 0.04 cos(2π fmodt)],
where P0 = 1 mW and t is time. As shown in Fig. 3(a),
the photodetector is reverse biased at 9 V, and the load
resistance is 50 �. Fig. 3(b) shows a typical electric field
distribution over the photodetector. Other than some peaks
occurring at the interfaces, the field strength is typically high
only in the intrinsic (i) region. We calculate the electric
field profiles with the aforementioned drift-diffusion equations
solver [12], [13], [14], [15]. Throughout this work, we will
refer to these field profiles as the “true” field profiles.
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Fig. 4. Electric field profiles: truth (blue solid curves) versus prediction (red
dashed curves) obtained with the linear regression model for two randomly
selected photodetectors.

To calculate the LMGFs, we assume the background con-
sists of two layers: the permittivity of the z < 0 region
is 10, which is the typical value for most semiconductors.
The upper layer z ≥ 0 is air, i.e., ϵr,2 = 1. We assume
Nt imaginary transmitter antennas at zt = −400 nm and
uniformly spaced between x = −wd/2 and x = wd/2.
Additionally, we assume Nr imaginary receiver antennas at
zr = 400 nm, uniformly spaced between x = xc − wp/2 and
x = xc + wp/2, where the probe width, wp, is 10 µm.
Please note that these imaginary antennas are infinitesimal
(“ideal”) dipole antennas, whose length is much smaller than
the wavelength. We determine the parameters Nr and Nt in
such a way that the inter-antenna spacings, both inside the
device and probe, are close to λ/20. It is worth mentioning
that λ/20 inter-antenna spacing is commonly used in the
computational electromagnetic society to ensure a sufficiently
large number of samples for interpolating complex waveforms
from a discrete set of solution points.

III. NUMERICAL RESULTS

A. Scenario-1: Constant Device Length

For the sake of simplicity, we first normalize the thickness
of each layer of the photodetector such that the total length
of each photodetector is 1 µm, i.e., wd = 1 µm. We use two
ML algorithms, linear regression, and FCNNs, to predict the
true electric field profiles along the photodetectors based on
the electric field profiles measured by the probe.1

Fig. 4 shows two sample prediction results of the linear
regression implementation. In both examples, linear regression
successfully predicts the location of the intrinsic layer, where
the electric field strength (|E|) is high, the maximum value
of |E|, and provides an approximate representation of how
|E| changes inside the intrinsic region. However, even though
the training dataset does not include any negative values, the
linear regression makes some negative predictions. Despite
this significant error from a physical point of view, linear
regression can still be considered a useful tool for obtaining
a rough estimate of the |E|, considering the fact that it only
takes a few milliseconds to make these predictions.

1Both the datasets and codes to generate these results can be found at
https://github.com/simsekergun/Resolution

Fig. 5. Electric field profiles: truth (blue solid curves) versus prediction
(red dashed curves) obtained with FCNN for two randomly selected
photodetectors.

Fig. 6. Normalized mean squared error as a function of training dataset size
for linear regression (blue solid curve) and an FCNN (red dotted curve) for
a dataset with devices of constant length.

Our FCNN architecture is defined as follows. The input
is the blurry electric field measurements, Em in (1), and the
output is the true field profile, Er in (1). There are four
hidden layers between the input and output layers, with each
hidden layer containing 800 neurons. Rectified linear unit
(ReLU) activation function [16] is employed in all these layers.
We utilize a learning rate of 10−3 and select Adamax as
the optimizer [17]. The loss function is defined using mean
squared error. The training process consists of 200 epochs.

Fig. 5 shows two sample prediction results of this FCNN
implementation. Once again, we observe accurate predictions
of the location of the intrinsic region and the maximum value
of |E|. However, in this case, the ML algorithm does not make
any negative predictions. In comparison to the linear regression
implementation, training the neural network requires a longer
duration, i.e., 200 epochs take approximately a minute.

If we define the relative error as the absolute value of the
difference between the true (Etrue) and predicted (Epred) values
divided by the Etrue + ξ , where ξ is a small positive number
to avoid a division by zero error, then the average relative
error of both approaches is close to 0.03% ± 0.01% and the
maximum relative error is 2.5% ± 0.3%.

For the results presented in Figs. 4 and 5, 80% of the data
was used for training, while the remaining 20% was used for
testing. To investigate the influence of the training dataset
size (Ntraining) on the accuracy, we conducted an additional
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Fig. 7. Each blue circle represents the true versus predicted value, corre-
sponding to (a) left and (b) right boundaries of the photodetector’s intrinsic
region, for one of the 467 unique photodetector designs used for testing. The
red dashed line is the x = y line, typically used in the ML community to
demonstrate how accurate (or inaccurate) the predictions are with respect to
the true values. Black diamonds represent one of the photodetector designs
with a very thin (140 nm) intrinsic region.

set of predictions by varying the Ntraining from 10 to 1600.
Fig. 6 illustrates how the mean squared error, normalized with
the maximum |E| of the entire training dataset, changes with
Ntraining. We observe that the accuracy of the FCNN remains
nearly independent of Ntraining for Ntraining ≥ 100, whereas
the linear regression implementation yields predictions with a
significant amount of errors for some small Ntraining cases, i.e.,
Ntraining < 200. Considering that each sample in the training
dataset holds equal influence over the prediction of the linear
regression models, it becomes inevitable to encounter inac-
curate predictions, particularly in cases with low correlations
between the training and test datasets, especially when Ntraining
is relatively small or when the training data includes samples
significantly different than the ones in the testing dataset.

To develop an understanding from a resolution point of
view, we now focus on the accuracy of the FCNN imple-
mentation to predict the boundaries of the intrinsic region,
where the electric field strength is high, as illustrated in Fig. 3.
In Fig. 7(a) and (b), each blue circle represents the true versus
predicted value, where the photodetector’s intrinsic region
starts and ends, respectively, for one of the 467 unique pho-
todetector designs used for testing. If we had 100% accuracy,
all of these blue circles would lie on the x = y line, which is
depicted with a red dashed line in each figure. The largest
errors occurred for the left boundary (the p − i interface)
and for the right boundary (the i − n interface) predictions
are 80 and 140 nm, respectively. Considering the excitation
wavelength is 1550 nm and the probe width is 10 µm, these
“largest error” values might be considered as promising results
for converting the blurry measurement results, i.e., the red
dashed line in Fig. 2(d), into a profile that is much closer
to the true field profile, i.e., the blue solid curve in Fig. 2(d).
In Fig. 7, we also highlight one particular photodetector design
with black diamonds and arrows. This design’s intrinsic region
starts at x = −0.36 µm and ends at x = −0.22 µm.
For this 140 nm thin intrinsic region, the ML algorithm’s
predictions for the left and right boundaries of the intrinsic
region are x = −0.34 µm and x = −0.18 µm. Hence, we can
claim that despite using a 6.4λ-wide probe, ML algorithms
can enable λ/10 (or wp/64) resolution. However, we should
emphasize that here we are discussing a hypothetical scenario
where the probe width is larger than the device under the
examination and the sole purpose is to demonstrate that the
ML algorithms have the potential to increase the resolution.

Fig. 8. Follows Fig. 6 for a dataset with devices of varying lengths.

One needs to further investigate the accuracy and efficiency of
the ML algorithms for today’s advanced near-field microscopy
techniques deploying submicrometer probes.

B. Scenario-2: Varying Device Length

In the second scenario, we examine the photodetectors with
their original lengths ranging from 1 to 4 µm, i.e., 1 µm ≤

wd ≤ 4 µm. Employing the same ML models, we observe that
when utilizing 80% of the data for training, we can once again
achieve highly accurate predictions. However, as depicted in
Fig. 8, the accuracy of the linear regression implementation
is heavily influenced by Ntraining. It becomes evident that if
the training dataset lacks samples similar to those present
in the testing dataset, the accuracy of the linear regression
models may be significantly compromised. On the other hand,
akin to the investigation involving constant device length,
the accuracy of the neural network implementation remains
almost unaffected by Ntraining. With the utilization of multiple
layers and hundreds of neurons, they can effectively learn the
underlying patterns, even from small training datasets.

IV. CONCLUSION

We have discussed the utilization of ML techniques to
enhance the resolution of LNFP measurements, particularly
when the probe employed in LNFP surpasses the size of
the device under examination. The results highlight three
key findings: 1) with ML, we can achieve a λ/10 spatial
resolution even with few-λ-wide probes, while maintaining a
maximum relative error of less than 3%; 2) FCNNs exhibit
greater accuracy compared to linear regression models when
dealing with small training datasets; and 3) for extensive
training datasets, constructing and training a neural network
is unnecessary; linear regression proves to be sufficient and
efficient. These findings indicate that similar ML approaches
can be applied to improve the resolution attained in various
measurement setups.
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