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Abstract— This article compares the accuracy and efficiency of two neural network architec-
tures for estimating the performance metrics of a modified uni-traveling wave carrier (MUTC)
photodetector: a fully connected neural network (FCNN) and a recurrent neural network (RNN)-
like architecture designed specifically for the unique properties and operation principles of the
device. The RNN-like architecture mimics the current flow and wave propagation inside the
MUTC PD, with distinct neural network layers used to pair parameters of each PD layer, inform
the network about interfaces between layers, mimic current transport between neighboring layers,
and teach the network about the order and bi-directional interaction among the paired inputs.
Results show that while the RNN-like architecture exhibits slightly higher learning accuracy than
the FCNN, the RNN-like architecture consumes less energy and requires less time for training due
to using fewer neurons. This study highlights the potential of physics-inspired neural networks
in solving problems in electromagnetics and photonics.

1. INTRODUCTION

The design of photonic and optoelectronic devices is usually done through numerical solvers. These
devices display complex and nonlinear behavior, and machine learning algorithms can be used to
design them more efficiently. However, to use these algorithms, a large amount of data is required
to make accurate predictions. Therefore, a fast numerical solver is needed to create a sufficient
dataset. We recently achieved this goal by developing a new drift-diffusion equation solver that is
much faster than traditional solvers, allowing for the study of group IV and III-V photodetectors [1].
This significant reduction in simulation time is possible by using non-uniform time-stepping [2] and
implementing window functions as broadband modulations [3].

Once we have a moderately large database, we can use a variety of machine learning techniques
for both forward and inverse problems, such as predicting the device performance metrics from
design parameters and designing a photonic device that performs at a desired level, respectively.
However, not all the machine learning algorithms would perform well or be efficient for a given
task. For example, fully connected neural networks (FCNNs) can be computationally intensive and
require significant energy for training and inference, especially for large models with many neurons
and multiple hidden layers. Even though the energy consumption of FCNNs can be reduced through
techniques such as weight quantization and pruning, designing neural networks (NNs) according
to the physical specifications of the system (or device) under investigation and according to that
system’s (device’s) operation principles can lead to a more significant reduction in energy consump-
tion of the NN. In this work, we compare the accuracy and efficiency (in terms of training time and
energy consumption) of two NN architectures: an FCNN vs. a recurrent neural network (RNN)-like
architecture designed according to the unique properties of the device under investigation, which
is a modified uni-traveling wave carrier (MUTC) photodetector (PD).

2. DATASET

The MUTC PDs that we study include 17 layers of semiconducting materials with varying thick-
nesses (ti) and doping levels (di) for i = 1, 2, . . . , 17, as shown in Fig. 1(a). The photodetector is
reverse-biased (Vbias = −5V) and is illuminated by a continuous wave laser operation at 1550 nm
that is modulated by an input RF signal. The diameters of the incident beam and photodetector
are 40 µm and 28µm, respectively. The load resistance is 50 Ω. More details of our simulation
model may be found in [5]. We use our fast solver [2, 3] in combination with the particle swarm
optimization (PSO) [6, 7] algorithm to design an MUTC photodetector with a lower phase noise. In
the end, we obtained database with 1611 unique MUTC designs. In Fig. 2, we provide histogram
plots of (a) phase noise, (b) quantum efficiency, (c) decay times (ps), and (d) average current of
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these photodetectors. As it clear from the histogram plots, we have a mildly skewed dataset (nega-
tive skewness for quantum efficiency and average current and positive skewness for phase noise and
decay time).

(a) (b)

Figure 1: (a) A schematic of the MUTC photodetector with varying layer thicknesses and doping concentra-
tions, ti and di, respectively, for i = 1, 2, 3, . . . , 17, and (b) an illustration of the neural network specifically
designed to learn from device parameters to predict performance metrics such as the phase noise (PN),
quantum efficiency (Qeff ), bandwidth (BW ), etc.

(a) (b)

(c) (d)

Figure 2: Histogram plots of (a) phase noise, (b) quantum efficiency, (c) decay times (ps), and (d) average
current of the 1661 unique MUTC photodetectors generated during the optimization study.

3. ENERGY EFFICIENT NEURAL NETWORKS

The goal is to estimate the photodetector performance metrics, namely the phase noise (PN) and
quantum efficiency Qeff , from ti’s and di’s. When we use traditional machine learning methods,
such as linear regression, k-nearest neighbor, random forests, and fully-connected neural networks,
we can achieve predicting out metrics with mean absolute errors of 9.9%, 11.3%, 7.1%, and 5.04%,
respectively.

To increase the accuracy and to decrease the energy consumption, we design a recurrent neural
network (RNN)-like architecture in a unique way to mimic the current flow and wave propagation
occurring inside the device. To achieve this, we first utilize a neural network (NN) layer to pair
the parameters of each PD layer as depicted in Fig. 1(b). By doing so, we inform the network
that these are not just 34 uncorrelated numbers and there are two distinct groups. Then we use
another NN layer to inform our network about the interfaces separating PD layers. The third
NN layer is designed to mimic the current transport among neighboring PD layers. The fourth
group aims to teach the NN that there is a certain order among these 17 paired inputs and the
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interaction is bi-directional, similar to reflections of electromagnetic waves back and forth between
the physical layers. In the end, we have additional NN layers to do the regression of the device
performance metrics. Fig. 3(a) compares the ground truth vs. prediction of the quantum efficiency.
Fig. 3(b) shows how loss decays as a function of epoch number during the training. With this novel
architecture, we achieve to reduce the mean absolute error to 2%. More importantly, due to using
a fever number of neurons in our physics-inspired neural network, we achieve to reduce the energy
consumed for computing and the period of time spent during training.

(a) (b)

Figure 3: ((a) Ground truth vs. predicted quantum efficiencies, and (b) training loss (blue curve) and
validation loss (red dashed curve) vs. epoch number.

4. CONCLUSION

In conclusion, this paper has demonstrated the potential of physics-inspired neural networks in
solving problems in electromagnetics and photonics, specifically in the design of photonic and opto-
electronic devices. The study compared the accuracy and efficiency of two neural network architec-
tures for estimating the performance metrics of a modified uni-traveling wave carrier photodetector.
While FCNNs are commonly used, the study showed that designing an RNN-like architecture ac-
cording to the unique properties of the device under investigation can lead to a more significant
reduction in energy consumption of the NN. The RNN-like architecture, which mimics the current
flow and wave propagation occurring inside the device, consumed less energy and required less time
for training due to using fewer neurons, while exhibiting similar learning accuracy. The results
suggest that physics-inspired neural networks can be a promising approach to efficiently design and
optimize complex photonic devices.
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