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Abstract: Modern optimization techniques are used to design high-performance photodetectors. All 
the designs created during these optimization studies are then used to train a physics-inspired, two-
stage neural network to obtain even better-performing devices. © 2022 The Author(s) 

 
1. Introduction 
Highly linear, high-current photodetectors (PDs) with extremely low phase noise are key components in systems that 
are used in many photonic and RF applications [1] to achieve high link gain, high-speed operation, low signal 
distortion, and a large spurious-free dynamic range. Designing a high-performance PD or even improving the 
performance of an already existing design is a challenging task due to the required computation time, difficulties in 
estimating the sensitivity of the device to the design parameters, and the existence of design constraints, e.g., the 
electrical breakdown potential of the materials used in the device. From number of layers to thickness of each layer, 
material types to doping levels, there are several variables that should be considered to design a highly efficient PD 
meeting the desired specifications for a given task. Today’s modern numerical optimization and machine learning 
algorithms can be used to efficiently determine those variables [2]. In this work, we first use both traditional and 
modern numerical optimization (NO) techniques to design high-performance PDs operating at 1550 nm. All the 
designs, both the good and bad ones, are saved to be used later to train a two-stage neural network (NN) for additional 
improvement. The layers of these NNs and the connections among neurons are chosen to mimic the current flow and 
pulse propagation inside the PD. 

2.  Numerical Optimization 
To simulate and to determine the performance metrics (phase noise, Pn, average output current, Ia, and maximum 
value of the impulse response, Hm) of PDs, we use numerical models that we developed that are based on the drift-
diffusion equations [3]. These models include many important real-world effects and have demonstrated excellent 
agreement with experiments when these photodetectors operate in both continuous-wave and pulsed modes. We use 
the modified uni-traveling carrier PD proposed in [4] as the starting point in our optimization study. As shown in Fig. 
1(a), this PD has 17 semiconducting layers. With varying material types, thicknesses, dopants, and doping densities, 
this PD is designed to block the motion of photogenerated holes, so that only electrons contribute to the photocurrent. 
Its phase noise is –178 dBc/Hz. All the design parameters and the details of our numerical model can be found in [4].  
For the NO, we assume that material and doping types are fixed. Hence, there are 34 variables to be optimized: the 
doping density and thickness of each layer. We use four different NO techniques (Nelder-Mead simplex method [5], 
particle swarm optimization, genetic algorithm, and surrogate optimization) to design PDs that (i) produce lower phase 
noise, (ii) can handle stronger excitations, and (iii) lead to higher output currents. Eventually all the methods 
successfully reduce this multi-objective cost function, but there are major differences among them in terms of 
convergence rate, number of successful designs generated, and memory usage. The pros and cons of these algorithms 
will be discussed at the conference in detail. All the designs generated during the optimization studies, both high- and 
low-performing ones, are saved to be used as a training dataset in our NN implementation.  

3.  Machine Learning 
Our NN implementation consists of two separate networks. The forward NN predicts the device performance metrics  
from the device parameters (layer thicknesses, ti, and doping concentrations, di, for i = 1, 2, 3, …, 17) and the backward 
NN recommends a new set of parameters to obtain a new PD with the desired performance metrics. In order to achieve 
most efficient learning, both NNs are designed in a unique way to mimic the current flow and wave propagation 
occurring inside the device. For example, as depicted in Fig. 1(b), we first utilize a few NN layers to pair the parameters 
of each PD layer. By doing so, we tell the NN that these are not just 34 uncorrelated numbers, there are two distinct 
groups. Then we use another group of NN layers to inform our network about the interfaces separating PD layers. The 
third group of NN layers is designed to mimic the current transport among neighboring PD layers. The fourth group 
aims to teach the NN that there is a certain order among these 17 paired inputs. At the end, we have additional NN 
layers to do the regression of the device performance metrics.  
The Backward NN consists of two sub-NNs and it is trained and run to predict the ti-di pairs for each PD layer 
separately. The first sub-NN is a fully connected one and it generates some rough estimates of ti-di pairs. The second 
sub-NN takes performance metrics (Pn, Ia, Hm) and the estimates of all the other PD layers as inputs to calculate a 
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better estimate of ti-di for one layer only, in an iterative fashion. This procedure is repeated to obtain ti-di estimates for 
all of the 17 layers. Then, the design recommended by the backward NN is input to the forward NN. If the predicted 
performance metrics are close to the initial (desired) performance metrics, then the NN-recommended design is 
accepted. Otherwise, a secondary refinement is applied as follows. The PD, whose performance metrics has the closest 
Euclidean distance to the predicted performance metrics, is determined from the training data. Similar layers of these 
two PDs are identified assuming those are the layers causing performance degradation. New pairs of ti-di values are 
chosen after a grid-based search, which uses the forward NN as a device simulator. If the grid-based search does not 
lead to an improvement in the performance metrics, then device design with the NN is halted. 

 
Figure 1 (a) A schematic of the MUTC photodetector with varying layer thicknesses and doping concentrations, ti and di, respectively, for i = 1, 
2,3, …, 17, (b) An illustration of the neural network specifically designed to learn from device parameters to predict performance metrics (Pn, Ia, 
Hm), (c) Training loss (blue curve) and validation loss (red dashed curve) vs. epoch number, and (d) ground truth vs. predicted Ia values. 

4.  Numerical Results 

The best design obtained at the end of NO has a phase noise floor of –184 dBc/Hz. It is two times faster and it outputs 
50% more current than the one proposed in [4]. The forward NN, which is designed to mimic the physical mechanisms, 
has a higher accuracy compared to the traditional NN used in [5], i.e., 99.8% vs. 97.53%. Figure 1(c) shows how the 
losses decay during the training. Figure 1(d) compares the calculated vs. predicted Ia values. We use our drift-diffusion 
equation solver to simulate the design recommended by the backward NN and we find out that it has a phase noise of 
–185 dBc/Hz. The parameters of this new design are given in Table 1.  

Table 1. Thickness and doping concentrations of the design recommended by the NN. 
L. No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
ti (nm) 65 29 24 19 85 48 67 201 392 39 38 34 1170 61 1058 32 296 
di /1016 
(cm-3) 

381 397 108 131 7480 1550 88.8 10.3 0.16 0.5 0.12 6.85 0.1 70.1 1560 8140 1290 

5.  Conclusions 

With the availability of affordable processing units specifically designed for scientific computing, modern numerical 
optimization methods bring a remarkable efficiency in improving the performance of existing devices. Even though 
a relatively small improvement is achieved in this work, our results clearly demonstrate that NNs can design 
photodetectors that perform better than all the samples used for training. 
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