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Abstract—In the last decade, we have experienced a fascinating
transformation in the research and development of atomically
thin-layered material (ATLM) systems. Graphene and its com-
pounds have enabled the development of novel devices for a
wide variety of applications in an extremely short period of
time. In addition, non-graphene ATLMs have recently been
utilized to produce devices with exceptional performances. It is
anticipated that ATLMs will play a crucial role in the integration
of nano electronics with photonics and plasmonics in the coming
decades. However, there are many challenges that need to be
addressed before it is possible to convert the potential of ATLMs
into reality. Their accurate and efficient modeling is one of
these challenges. In this work, I briefly discuss our recent
efforts on the development of a hybrid Schrödinger-Poisson and
Maxwell’s Equations solver that will enable us exploring how
light interacts with ATLM systems in different configurations
and under different biasing conditions.

I. INTRODUCTION

The discovery of graphene [1] can be considered a rev-
olutionary point in the research and development of stable
ATLM systems. This one-atom-thick fabric of carbon uniquely
combines extreme mechanical strength, exceptionally high
electronic and thermal conductivities, impermeability to gases,
as well as many other supreme properties making it a highly
attractive material for numerous applications [2]. This break-
through has opened up the possibility of isolating and explor-
ing the fascinating properties of atomic layers of several other
materials, which could potentially offer functional flexibility,
new properties, and novel applications. Some of the material
systems where preliminary work has already been released
include nitrides, dichalcogenides, and oxides.

Apart from the chemical and material analyses, scientists
and engineers have been using different approaches to ana-
lyze ATLM systems. For electronic applications, numerical
Schrödinger-Poisson solvers have been used to characterize
ATLM devices (by calculating current-voltage curves) [3].
Since graphene’s electronic properties are described by the
Dirac rather than Schrödinger equation, it is very common
to use electrostatics or lumped-element circuit modeling to
analyze graphene based devices (e.g. graphene loaded plas-
monic antennas [4]). To demonstrate this approach, a grounded
graphene layer on a substrate of SiO2 and Si will be used

as the example device. Voltage is applied across the Si and
graphene layers creating what may be viewed as a simple
parallel plate capacitor. In such a structure, the capacitance
per unit area is equal to Cg = dSiO2/εSiO2 , where dSiO2

and εSiO2 are thickness and permittivity of SiO2. The Fermi
energy (EF ) - gate voltage (V ) relationship is calculated
using EF = h̄vF

√
CgV/e, where vF is the Fermi velocity

of graphene. This approach works very well as long as the
thickness of the dielectric material (e.g. SiO2) is very small
compared to the wavelength and the geometries are simple.

For photonic and plasmonic applications, numerical
Maxwell equations solvers have been used to mimic the
wave propagation through and scattering from such structures
[5], [6]. There are many commercial software packages (e.g.
HFSS, CST, RSoft, Comsol, Feko, Wavenology, Lumerical
etc.) that can be used for such analyses. These solvers use
different methods and all of them have some advantages and
disadvantages depending on the problem under examination.
However, none of these solvers have been developed specifi-
cally for ATLM devices and this creates a big efficiency prob-
lem. For example, consider an electro-optic modulator which
is fabricated on top of a graphene coated SiO2-Si substrate.
Assume the modulator operates at the telecom wavelength
(λ = 1550 nm). Typical thickness values for graphene, SiO2,
and Si layers are 0.34 nm (λ/4500), 300 nm (λ/5.17), 1 mm
(645 λ), respectively. Such geometry has two issues from the
computational point of view: (i) some layers are extremely
thick compared to the wavelength, and (ii) there is a huge
variation in the layer thicknesses. The former issue requires
millions of unknowns in order to take each layer into account,
whereas the latter requires either domain decomposition or a
denser mesh compared to a case where the thicknesses are
close to each other. This is why ATLM device modeling is a
very challenging task and requires its own solvers.

Another issue is the absence of a model for extremely thin
surfaces. Due to the nature of their formulation, it is not
possible to define a dispersive surface in time domain methods.
This is why ATLM analysis should be done in the frequency
domain. However, most of the frequency domain software
packages do not allow us to define ATLMs (It could be that
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developers believed 2D materials were not realistic or perhaps
they just wanted to avoid additional computational complexity
in their algorithms). Some (e.g. HFSS and CST) allow us to
define ATLMs as long as we know that material’s surface
resistance. This puts additional computational and materialistic
burden on the user, who does not have to know how to
calculate the surface resistance. Special boundary conditions
might be applied in FEM based frequency domain solvers (e.g.
in COMSOL), however this approach is not efficient from
the computational point of view due to FEM’s requirement
to include the whole device in the computation domain.

Another problem with commercial electromagnetic software
packages is an inability to calculate the gate voltage required
to change the Fermi energy (EF ) of the ATLM to the desired
level. For complex structures, we cannot determine what will
happen if we apply 5 volts of gate voltage or how much voltage
we need to apply to change EF to 0.5 eV.

II. A HYBRID SCHRÖDINGER-POISSON AND MAXWELL’S
EQUATIONS SOLVER

In order to overcome these problems, we propose to hy-
bridize Schrödinger-Poisson and Maxwell’s Equations solvers
as follows. Assume we would like to analyze a plasmonic
waveguide placed on top of an ATLM coated substrate, as
shown in Fig. 1.

Fig. 1. (a) A plasmonic waveguide placed on top of an ATLM coated
substrate and (b) meshed volume to be used in a hybrid volume-surface
integral equation solver

In order to take quantum effects into account, we first use
Quantum3D, which is a commercial Schrödinger-Poisson (SP)
equation solver by assuming a trial gate potential and solve
for SP equation to calculate carrier density and currents from
the obtained wave-functions and their corresponding eigen-
energies. Then, the obtained carrier density and currents are
input to a hybrid volume-surface integral equation solver and
calculate fields and potentials. If the final potential is bigger
(smaller) than the initial guess, we go back to the first step
with a bigger (smaller) trial gate potential. We iterate until
we satisfy |Vinitial − Vfinal| < δVfinal, where δ is a very
small number (e.g. δ = 10−4). By solving both Schrödinger-
Poisson and Maxwell equations simultaneously, it is expected
to understand gate voltage - Fermi level energy relationship
of the ATLM under examination.

We have two different hybrid Maxwell Equation solvers.
One of them is a hybrid MoM/FEM solver [11]–[13], which
assumes a homogeneous background. Other one is imple-
mented with layered medium Green’s functions to handle

multi-layered structures [7]–[11]. However, in order to couple
these SP and Maxwell’s equations solvers, the hybrid volume-
surface integral equations matrix should be modified. For
example, all the edges taken on the ATLM, a special boundary
condition (∆(n̂ ·H) + 4πσATLM (n̂ × E)/c = 0) has to be
enforced, where σATLM is the two-dimensional conductivity
of the ATLM. It should be noted that σATLM changes when
the applied voltage changes. Gate voltage - conductivity re-
lation for graphene can be found in [14]. Our preliminary
studies show that using a two-dimensional conductivity for
the modeling of an ATLM increases computational efficiency
compared to the case where the ATLM is modeled with an
effective complex electrical permittivity and a finite thickness
[15]. At the conference, we will discuss our preliminary results
and the advantages of formulating the Maxwell solver with
layered medium Green’s functions.
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