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Abstract

This work presents a spectrally accurate method for electromagnetic scattering from objects with complex
permittivity embedded in a layered medium. Two-dimensional (2D) layered medium Green’s functions are
computed adaptively by using Gaussian quadratures. The singular terms in the Green’s functions and
the non-smooth terms in their derivatives are handled appropriately to achieve exponential convergence.
Numerical results, compared with the ones obtained by using other methods, demonstrate the spectral
accuracy and high efficiency of the proposed method.

1 Introduction

Recently, metal and carbon nano wires (NWs) have received a serious amount of interest due to their
potential in confining light transversally to sub-wavelength dimensions and yet to be used as an optical
waveguide or an antenna in the visible [1]. Oulton et al. has shown that a hybrid optical waveguide,
which consists of a dielectric NW separated from a metal surface by a nano scale dielectric gap, can provide
extremely long propagation length (dozens of wavelengths) and strong mode confinement [2]. Experimental
and theoretical results reveal a huge potential for realistic nano scale semiconductor-based plasmonics and
photonics. This is why it is extremely important to develop efficient and robust algorithms for the analysis
and design of such structures, especially for the ones embedded in a layered medium.

In [3], Hochman and Leviatan developed a source model technique for the analysis of NW chains. They
calculated periodic Green’s functions analytically as a sum of Floquet harmonics and determined the complex
propagation constants of the NW chain modes directly and accurately. Their approach is mathematically
correct but requires at least 10 current filaments per wavelength in order to obtain accurate results. More
importantly, their approach assumes a homogeneous background, so cannot handle NWs embedded in a
multilayered medium, which is a more realistic scenario. This problem can be solved more efficiently using
a spectrally accurate algorithm, namely Spectral Integral Method (SIM). SIM is related to the fast method
originally developed by Bojarski [4] for sound-soft circular cylinders, and extended by Hu [5] to sound-
soft or sound-hard smooth cylinders. Liu et al. developed its surface integral equation solver version for
homogeneous background [6] and Simsek et al. brought similar approach for multilayered background for
microwave problems. The idea behind this method is the use of fast Fourier transform (FFT) algorithm
and the subtraction of singularities in Green’s functions to achieve a spectral accuracy in the integral. In
this work, we further improve SIM to handle 2D optical scattering problems with materials and/or layers of
negative permittivity. To describe the metals in the visible, Lorentz-Drude model is implemented.

2 Spectral Integration Method for Layered Media

Consider a general multilayered medium consisting of N layers separated by N − 1 interfaces parallel
to the x axis. Layer i (i = 1, · · · , N) exists between y = yi and yi−1 (y0 → −∞ and yN → ∞) and is
characterized by relative complex permittivity ǫ̃r,i and relative permeability µr,i; the wavenumber inside the
layer is given by ki = ω

√
ǫ̃iµi. Assume that the scatterer is a homogeneous object residing in several layers of
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the background. The boundary of the scatterer is described as r = r(θ), or equivalently [x = x(θ), y = y(θ)]
in terms of a parameter θ (in this case the azimuthal angle θ ∈ [0, 2π]). An incident TMz wave is assumed
and the time dependence of ejωt is implied.

For the TMz case, the 2D Helmholtz equation for the scalar field Ez is

∇ · µ−1
r,γ∇Ez + k20 ǫ̃r,γEz = −fγ (1)

where subscript γ indicates the region outside (γ = l) or inside (γ = d) the object, fγ is the source
excitation, kγ = ω

√

µγ ǫ̃γ , and k0 = ω
√
µ0ǫ0. For a smooth dielectric object embedded in a layered medium,

one boundary integral equation on the outside of surface of the scatterer D can be obtained as

Einc
z (r) +

∮

D

[

∂Ez(r
′)

∂n′
Gl(r, r

′)− Ez(r
′)
∂Gl(r, r

′)

∂n′

]

ds′ =
Ez(r)

2
(2)

for r ∈ D, where fd is assumed zero, Einc
z is the incident wave from outside the object (i.e., fl 6= 0, fd = 0),

n̂ is the outward unit normal, and Gl(r, r
′) is the layered-medium Green’s function given by

Gl(r, r
′) =

1

π

∫ ∞

0

G̃(kx, y|y′) cos kx(x− x′)dkx, (3)

where G̃ is the spectral domain counterpart. Gl(r, r
′) can be written as

Gl(r, r
′) =

1

π

∫ ∞

0

[

G̃(kx, y|y′)− G̃sub(kx, y|y′) +G̃sub(kx, y|y′)
]

cos kx(x − x′)dkx, (4)

where
G̃sub(kx, y|y′) =

µr,m

2jkx,m
e−jkx,m|y−y′|, (5)

and µr,m is the mth layer’s relative permeability where the field point is, and k2x,m = k2m − k2x. Finally, (3)
can be written as

Gl(r, r
′) =

1

π

∫ ∞

0

[

G̃(kx, y|y′)− G̃sub(kx, y|y′)
]

cos kx(x− x′)dkx +
µr,m

4j
H

(2)
0 (kρ), (6)

where ρ =
√

(x− x′2) + (y − y′)2, and H
(2)
0 is the zeroth order Hankel function of the second kind. This

formulation is the same as the primary field term subtraction when source and field points are in the same
layer [9],[10]-[8]. The important caution is that this subtraction procedure is used even if the source and
field points are in different layers. Hence, we can seperate the layered media Green’s function into two parts:
singular and nonsingular. As described in [5], we can define an infinitely smooth function to handle the
singular behavior in terms of θ as follows

Ĝl(θ, θ
′) ≡ Gl(θ, θ

′) +
1

2π
ln

∣

∣

∣

∣

2 sin

(

θ − θ′

2

)
∣

∣

∣

∣

J0(kl,mR). (7)

Similar procedure follows for the derivative of the Green’s function, ∂Gl(r, r
′)/∂n′, as described in [9] not

only for the primary field term but also for reflection terms.

The unknown field and its derivative can be approximated by truncated Fourier series in terms of θ along
the boundary of the scatterer. Then the two integrations in Eq. (2) can be calculated using FFT with high
accuracy. After collocation at {θm} points, Eq. (2) can be written in a compact form as follows

Lẽbz +M h̃
b
t = E

inc
z (8)

where ẽbzn and h̃b
tn are the Fourier’s coefficients of Ez(θ

′) and ∂Ez(θ
′)

∂n′
, respectively, Ns is the number of

discretized Fourier transform points; Lmn = ejnθm/2+ 2πhmn+ kbvmn and Mmn = −2πgmn+ umn in which
m,n = 1, 2, · · · , Ns, are the indices of basis and testing points on the discrete boundary; gmn and hmn are
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Fourier transforms of the smooth parts, and umn and vmn are Fourier transforms of the two non-smooth
terms of the Green’s function and its normal derivative (see [9] for the expressions). Because of the use of
singularity subtraction and FFT, the calculations of these terms are convergent, fast, and have high accuracy.
The second boundary integral equation for the interior problem can be discretized in the same way. The
final form of the equations can be solved for the scalar field (Ez) and its normal derivative (∂Ez/∂n

′) on the
boundary of the scatter. From the solution of these field variables on the boundary, the fields everywhere
can be obtained by the Green’s theorem.

3 Lorentz-Drude Model

In order to define metals in visible, Lorentz-Drude model is implemented. For gold, ǫ∞ is assumed to
be 1 and plasmon frequency, ωp, is taken as 9.03ζ, where ζ = e/~ = 1.51925 × 1015 Hz. Then, frequency
dependent complex permittivity of gold is calculated using

ǫ(ω) = ǫ∞ +
k=6
∑

k=1

akω
2
p

ω2
k − ω2 − ibkω

(9)

where

k 1 2 3 4 5 6
ak 0.760 0.024 0.010 0.071 0.601 4.384
bk/ζ 0.053 0.241 0.345 0.870 2.494 2.214
ωk/ζ 0.000 0.415 0.830 2.969 4.304 13.32

4 Numerical Results

To show the accuracy and efficiency of the method, a circular gold object in free space is chosen as the first
example as it has an analytical solution. An infinite gold circular cylinder with radius r = 300 nm is excited
with a TMz plane wave at λ = 600 nm impinging at an angle θinc = 0◦ along the x-direction. According
to Eqn. (9), complex relative permittivity of gold at given wavelength is equal to -7.9877 +i2.0623. The
receiver points are chosen along the −λ < x, y < λ. Figure 1 shows the comparison between the SIM result
and analytical solution for the scattered field. For this example, 64 points along the boundary of the object
are used, and excellent agreement has been observed. In the next step, we change the number of samples

0 2 4 6 8
10

−15

10
−10

10
−5

10
0

10
5

Points per wavelength

E
rr

or

Figure 1: Comparison of the analytical (left) and SIM (middle) results for a gold cylinder situated in vacuum.
Diameter of the cylinder is R = λ = 600 nm. ǫgold = −7.9877 + i2.0623 for the given wavelegnth. White
dashed line depict the location of the gold cylinder. (Right) Error versus the number of discretization points
per wavelength.

taken on the boundary in order to observe the proposed method’s overall accuracy. On the right of Figure
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1, we plot the error convergence curve versus the number of discretization points per wavelength (PPW)
on the object. The error decreases exponentially with the number of discretization points, confirming that
the SIM has a spectral accuracy. The result shows that even with a small discretization number (such as 3
PPW) on the boundary of the cylinder, the relative error is smaller than 1 %.

At the conference, we will also provide examples where the infinite cylinder embedded in a multilayered
medium, which are not provided here for the sake of brevity.

5 Conclusion

We further improved the spectral integral method for homogeneous objects with complex permittivity
and closed smooth boundary. The high accuracy and the efficiency of the method has been demonstrated.
1% accuracy can be obtained with about three points per wavelength sampling. Numerical results also
confirm that the SIM is applicable to concave objects. The method can be further extended to periodic
structures and to three dimensions, as well as to objects traversing layer interfaces.
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