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Abstract — This paper presents integral equa-
tion solvers to calculate the electromagnetic field
scattered from objects embedded in a multilayered
medium. First, the electric field surface integral
equation (SIE) is solved using method of moments
for homogeneous objects. Then, this SIE is used
as an exact radiation boundary condition to trun-
cate the computational domain in the finite-element
method (FEM) to form a hybrid SIE-FEM, which is
applicable to arbitrary inhomogeneous objects em-
bedded in a multilayered medium. The efficiency
and accuracy of the developed methods have been
demonstrated with numerical experiments both in
microwave and optical regimes.

1 INTRODUCTION

Recent developments in nano-fabrication, which al-
lows metals to be structured and characterized on
the nanometer scale, inspire a wide spectrum of en-
gineers and scientists to develop new types of pho-
tonic devices, sensors, and optical antennas. In this
direction, the fundamental understanding and con-
trol over the properties of surface plasmons (SPs),
which are simply electromagnetic waves that prop-
agate along the surface of a conductor, is crucial
for the current and future SP applications such
as surface or tip enhanced Raman scattering and
nonlinear frequency generation. In these applica-
tions, researchers aim to tune up the properties
of SPs and their interaction with light depending
on the problem of interest by changing the shape,
size, and material composition of the nanoparticles.
Frequently, researchers support their experimental
observations with the simulation results obtained
using time-domain methods. However, it is very
well known that time-domain methods might not
be able to provide very accurate results for high-Q
structures. One way to overcome this problem is
using a frequency domain method.

This work deals first with developing a surface
integral equation (SIE) frequency domain solver
based on Method of Moments to calculate electro-
magnetic (EM) scattered field from homogeneous
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objects embedded in a layered medium. Then,
this SIE solver is adopted as a radiation bound-
ary, where the volume enclosed by that boundary
is meshed and solved with a finite element method
(FEM) frequency domain solver. For the imple-
mentation of 3D radiation boundary condition, an
artificial boundary, Γ, is applied to truncate the
arbitrarily 3D shaped inhomogenous scatterer(s)
from the layered medium. The FEM is applied in
the interior region to calculate the field, while the
method of moments is applied on the outer bound-
ary, Γ, to relate the field and the induced current.
Due to the form of the chosen basis functions and
meshing, the fields and currents on the boundary
for the FEM are obtained from the solution of the
final matrix equation without using any interpola-
tion. This algorithm stores the sparse and symmet-
ric FEM matrix by using a row-indexed scheme to
reach its the non-zero elements quickly for the sake
of computational efficiency; and it solves for the
coupled SIE-FEM matrix by using the biconjugate-
gradient method. In addition, the CPU time for the
evaluation of layered medium Green’s functions is
reduced by a simple interpolation technique.

These numerical algorithms can handle disper-
sive materials in the optical regime, which is cru-
cial for the design and analysis of plasmonic struc-
tures and optical antennas. The accuracy of the
implementation is validated by several numerical
examples demonstrating the optical near field en-
hancement and surface plasmon resonance of metal
nanoparticles periodically aligned in a multilayered
medium.

2 FORMULATION

In this section, we briefly describe the theory be-
hind MoM, FEM, and hybrid SIE-FEM solvers.

2.1 Method of Moments

Assume that there is an arbitrarily shaped homoge-
neous object with surface S, electrical permittivity
εs, and permeability μs. The object is located in
a multilayered background. Layer-i is described by
its own permittivity, permeability, and height (εi,
μs, and hi), where i = 1, 2, · · · , NL and NL is the
number of layers. In order to calculate the EM field
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scattered from an object, one can solve for the elec-
tric field integral equations (EFIE) for the exterior
and interior problems. The former can be written
as follows

E = −jωμi〈K̄ J ;J〉
+ 1

jωεi
∇〈GEJ

Φ ,∇′ · J〉 + 〈ḠEM ;M〉 (1)

where J and M are induced electric and magnetic
currents, respectively, due to incident fields; ω is
the angular frequency; K̄J , GEJ

Φ , ḠEM are differ-
ent types of layered medium Green’s functions [1].
For the numerical solution, the unknown currents,
J and M, are expanded in terms of the basis func-
tions, fn and bn, as

J(r) =
∑Nb

n=1
jnfn(r),

M(r) =
∑Nb

n=1
mnbn(r),

(2)

where Nb is the number of interior edges on the
surface of the object, jn and mn are the unknown
coefficients for electric and magnetic current den-
sities, respectively. When we apply the Galerkin
type MoM, with the same type of functions for the
testing fm and bm, we obtain

Sm =
Nb∑

n=1

jn

[
Z(1)

mn + Z(2)
mn

]
+

Ns∑
n=1

mnZ(3)
mn (3)

where

Sm =
∫

s

fm · Eincds, (4)

Z(1)
mn = jkiηi

∫
s

∫
s′

fm · KJ fnds′ds, (5)

Z(2)
mn =

jηi

ki

∫
s

∫
s′
∇ · fm · GEJ

Φ ∇′ · fnds′ds, (6)

Z
(3)
mn = P .V .

∫
s

∫
s′ fm · ∇′GEM × fnds′ds

− 1

2

∫
s
fm · fnds,

(7)

where ki and ηi wavenumber and intrinsic
impedance of layer-i, respectively. EFIE for the
interior problem is not provided for the sake of
brevity.

The surface of the object is modeled using planar
triangular patches and RWG (Rao, Wilton, Glis-
son) basis functions [2] are used to approximate
the surface currents. For the numerical integration,
Gaussian quadrature rules are followed and Duffy
transformation is used for the self interaction terms.
In order to reduce the CPU time for the evaluation
of layered medium Green’s functions, a simple in-
terpolation technique is implemented.

2.2 Finite Element Method

Assume that a finite domain is discretized with
tetrahedral elements and volume basis functions
Φn(r) to expand the unknown electric field along
the whole volume. The numbers of inner and
boundary edges are Ni and Nb, respectively, where
N = Ni + Nb. Then, we can expand the unknown
electric field and current as

E =
∑N

n=1
EnΦn(r)

=
∑Ni

n=1
Ei

nΦn(r) +
∑Nb

n=1
Eb

nΦn(r),
(8)

n̂ × H =
Nb∑

n=1

jnfn(r) (9)

Then, the weak form volume electric field integral
equation can be written as

[A′ + B′]E + GJ = Si (10)

where En, Jn are unknown coefficients, Si are
source and A′,B′,G are stiffness matrices defined
as,

Si = −jk0η0

∫
v

Φi(r) · Sdv

A′
i,n =

∫
v

(μ−1
r ∇× Φn(r)) · (∇× Φi(r))dv

B′
i,n = −ε̄rk

2
0

∫
v

Φn(r) · Φi(r)dv

Gi,n = jwμ0

∮
s

fn(r) × Φi(r)ds (11)

Furthermore, the matrix form can be written as,

AEi + BEb = Si (12)
BTEi + CEb + GJ = 0 (13)

where matrices A,B,C are sub-matrices of the
stiffness matrix {A′ + B′}.

2.3 Coupling FEM and MoM Matrices

By using M(r) = −n̂ × E|s, we can couple FEM
and MoM equations as
⎡
⎣ A B

BT C G
Z(3) D

⎤
⎦
⎡
⎣ Ei

Eb

J

⎤
⎦ =

⎡
⎣ Si

0
Se

⎤
⎦ , (14)

where D = Z(1)+Z(2). However, it should be noted
that the above formulation is only valid if the FEM
mesh matches the MoM mesh on the boundary. In
order to couple arbitrary meshes, some additional
interpolation functions are required.

The matrix Eq. 14 is a straight-forward solution
but not the most efficient one. In order to take
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advantage of having a sparse and symmetric FEM
matrix, the matrix equations 3 and 14 are reformu-
lated as follows

D J + F Eb = Se, (15)

and[
A B
BT C

] [
Ei

Eb

]
=
[

0 0
0 G

] [
0
J

]
+
[

Si

0

]
,

(16)
respectively, where F = Z(3). In Eq. 15, we can
leave the electric current alone on the left hand side
and substitute it into Eq. 16
[

A B
BT C − GD−1F

] [
Ei

Eb

]
=
[

Si

D−1Se

]
,

(17)
which is more compact than Eq. 14.

Since the FEM matrix is symmetric, the Her-
mitian of this matrix is simply its complex conju-
gate. Moreover, the FEM matrix is sparse. By
using a row-indexed scheme [3], we can easily and
efficiently reach the non-zero elements of the FEM
matrix, which is a very important property for
the solvers constructed based on the biconjugate-
gradient (BCG) method . As a result, it is more
efficient to store the FEM and MoM matrices seper-
ately as follows,

([
A B
BT C

]
+
[

0 0
0 −GD−1F

])

×
[

Ei

Eb

]
=
[

Si

D−1Se

] . (18)

It should be noted that once we calculate the
layered-medium Greens function for the radiation
boundary, we can use it several times for any type
of object inside that boundary.

3 NUMERICAL RESULTS

A systematic study of metal nanoparticles (NPs) is
conducted to understand the effect of the number
of NPs on the optical cross section. The number of
of gold nanorods is increased from 1 to 16 step by
step. The gold nanorods, which are 50 nm height,
60 nm wide and 140 nm long, are aligned on top
of a thick silica substrate. Figure 1 depicts a sin-
gle nanorod. The experimental values for the op-
tical constants of gold are used [4] rather than the
Drude model, to avoid the concerns regarding the
selection of the appropriate plasmon and relaxation
frequency values.

The background is assumed to be a 2-layer
medium, where the air-silica interface occurs at
z = 0 nm. The refractive indices of air and silica

Figure 1: 50 nm height, 60 nm wide and 140 nm
long nanorod.

are assumed to be 1 and 1.53, respectively. Inci-
dent field is a plane wave traveling along the +z
direction and the electric field is polarized in the
+x direction.

The average power (Ey ∗ Hx/2) is calculated at
z = 200 nm over a range of wavelengths (fre-
quencies) using MoM/FEM and WNT (a pseudo-
spectral domain solver, [5]). For both solvers, the
sampling density is 20 points per wavelength. Fig-
ure 2 shows the good match between MoM/FEM
and WNT solutions for 3 nanorods, which are 180
nm apart from each other along the y-axis. Both
solutions state that the minimum transmission oc-
curs around λ = 718 nm.
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Figure 2: The average power on top of 3 nanorods
over a range of wavelengths.

The same procedure is followed for different N
values, where N is number of nanorods. For each
setup, the inter particle spacing along the y axis
is 180 nm. Figure 3 shows the wavelength val-
ues, which give the minimum transmission, for
N = 1, 2, · · · , 16. Clearly, as N increases, the reso-
nance wavelengths decrease. More importantly, the
slope of this function goes to zero which means that
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the longitudinal surface plasmon resonance mode of
an optical waveguide -that consists of 50 nm height,
60 nm wide and 140 nm long gold nanorods fabri-
cated on a silica slide- should be around 690 nm.

0 2 4 6 8 10 12 14 16
680

690

700

710

720

730

740

750

N (number of nanorods)

w
av

el
en

gt
h 

(n
m

)

Figure 3: Number of nanorods vs. wavelength value
which gives the minimum transmission.

4 CONCLUSION

Method of moments and finite element methods are
implemented in numerically efficient integral equa-
tion solvers to calculate the electromagnetic field
scattered from objects embedded in a multilayered
medium. MoM and hybrid MoM/FEM solvers can
deal with homogeneous and inhomogeneous scat-
terers, respectively, embedded in a multilayered
medium. The use of SIE as a radiation bound-
ary and layered medium Green’s functions create a
substantial saving in terms of memory and CPU
time requirements. Since both solvers can work
with complex permittivity and permeability, they
serve as excellent tools for both microwave and op-
tical region problems.
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