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Summary 

 

 The presence of a large differential stress in the 

borehole cross-sectional plane can cause a circular borehole 

to deform into an elliptical cross-section.  If the borehole 

fluid pressure is below a safe threshold, a compressive 

shear failure of rock causes symmetric borehole breakouts.   

Both borehole ellipticity and breakouts cause flexural wave 

splitting in the intermediate frequency band where the 

flexural wavelength is comparable to the borehole 

diameter. This paper describes a technique for estimating 

the borehole ellipticity using the even and odd flexural 

dispersions. For both forward and inverse solvers, a 

boundary-integral method is used to generate even and odd 

flexural dispersions for an elliptical borehole cross-section. 

The underlying theory is based on sensitivity analyses of 

measured even and odd flexural dispersions to changes in 

the borehole ellipticity. The proposed technique has been 

validated using synthetic examples of borehole dispersions 

in the presence of elliptical boreholes.  

 

 

Introduction 

 

 The presence of a fluid-filled borehole in a 

prestressed formation causes near-wellbore stress 

concentrations. A vertical borehole with a circular cross-

section can deform into an elliptical borehole in compliant 

formations subject to the far-field horizontal stresses. While 

the borehole fluid pressure is designed to maintain static 

equilibrium with the surrounding formation, there are 

instances when the compressive hoop stress at the borehole 

surface exceeds the rock yield stress resulting in elliptical 

boreholes or borehole breakouts. Generally, breakouts 

occur during underbalance drilling or surge and swab 

operation performed by drillers. The major axis of an 

elliptical borehole and breakout azimuth coincide with the 

minimum horizontal stress direction and the distorted 

borehole cross-section can be used to estimate the 

maximum horizontal stress magnitude (Bell and Gough, 

1983; Zoback et al., 1985; Vernik and Zoback, 1992; 

Grandi and Toksöz, 2005). A detailed borehole cross-

sectional image is obtained by a four-arm dipmeter and an 

ultrasonic imaging tool that operates in a pulse-echo mode 

(Plumb and Hickman, 1985). 

 Borehole cross-section affects the propagation of 

guided modes, such as the lowest-order axi-symmetric 

Stoneley, flexural, and quadrupole modes. In a previous 

paper, Simsek et al. (2007) presented a study of the 

influence of borehole breakouts on the Stoneley, flexural, 

and quadrupole modes using the FDTD method with a 

PML to minimize reflections from the outer boundary. 

They also confirmed that flexural waves split in the 

intermediate frequency band where the flexural wavelength 

is comparable to the borehole diameter. Since changes in 

borehole cross-section can be identified by monitoring 

perturbations in the guided mode dispersions from a 

reference circular borehole case, Simsek and Sinha (2007) 

developed a perturbation model to analyze non-circular 

boreholes. In that work, they validated their perturbation 

model by comparing with a boundary-integral equation 

(BIE) method. One of the results of these previous studies 

is that for a fast formation, even modes and for a slow 

formation, odd modes are more sensitive to changes in the 

borehole elongation. Based on this observation, here we 

develop an efficient and robust algorithm to estimate major 

and minor radii of an elliptical borehole in fast formations 

using cross-dipole dispersions. 

 In this work, we continue to use BIE method 

(Randall, 1991) to invert measured borehole flexural 

dispersions. While non-symmetric distortion of boreholes 

are also known to occur, we plan to analyze in this paper 

elliptical boreholes  that lead to splitting of flexural waves 

into two canonical waves. We use a fast mode search 

algorithm to obtain monopole and dipole dispersions of a 

fluid-filled circular borehole where the solution is obtained 

by satisfying appropriate boundary condition at the liquid-

solid boundary (Sinha and Asvadurov, 2004). 

 

Theory 

 

 Figure 1 shows a schematic diagram of a fluid-filled 

elliptical borehole. rmajor and rminor are the two principal 

radii of the ellipse. In the field, a single caliper might 

measure either of these values or something between them. 

The aim of this work is to obtain rmajor and rminor values 

accurately for an arbitrary caliper reading, rcaliper ( rminor  

rcaliper  rmajor)
 using the even and odd flexural dispersions. 

 We use a mode search algorithm to obtain flexural 

dispersions for a circular borehole and a BIE method for 

non-circular boreholes. In BIE, displacement and stresses 

on the borehole wall are described by integrals over a 

surface distribution of effective sources, in the frequency-

axial wave number ( −kz) domain. The unknown sources 

are approximated by sums of finite basis functions, which 

are then determined by enforcing boundary conditions. The 

discretized equations form a homogeneous system whose 

determinant vanishes when ( −kz) correspond to a 

nontrivial solution for the mode of interest.  

 We assume that the physical properties (mass 

density, compressional and shear velocities) of formation 

and borehole liquid are known. The slowness dispersions 

for an even (Se, fe), and odd (So, fo) modes of an elliptical 

borehole, and rcaliper are assumed to be known.  Here we use 
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Borehole ellipticity using cross-dipole dispersions 2 

the notation that S and f denote slowness (inverse of 

velocity) and frequency, respectively. Ne and No denote the 

number of data samples for even and odd modes, 

respectively. 

 We first calculate the flexural dispersion, (Sc, fc), for 

a circular borehole of radius rcaliper, together with formation 

and fluid properties. We know that (Sc, fc) forms a discrete 

function: F(Sc)= fc. We need to construct new data points 

(frequencies) from Se and So, separately, to find 

corresponding frequencies of the circular case to these 

slownesses, such that F(Se)= fe,0 and F(So)= fo,0. To do that, 

we use a cubic spline interpolator (CSIEZ, from IMSL® 

numeric library). Averages of the interpolation results 

normalized by fe for even, and fo for (odd) mode yield 

regularization parameters 0 and 0 for a fast formation. 

However, since ellipticity has opposite effects in slow 

formations, we need to interpolate and average odd modes 

to obtain 0, and average even modes to obtain 0. 

 The second step is the iterative part of the algorithm. 

At jth step, we use BIE to generate flexural dispersions for 

an elliptical borehole with radii of rmajor,j and rminor,j, where 

rmajor,j= j-1  rmajor,j-1 and rminor,j= j-1  rminor,j-1. Note that for 

the first iteration rmajor,0= rminor,0=rcaliper. Then we again use 

an interpolator to find the corresponding fc values for the 

given Se and So, separately. New averages give us new 

regularization parameters j and j. As we iterate more, j 

and j both approach 1. Once the error criterion is satisfied, 

we can quit the “while loop”. We can formulate this 

algorithm as follows: 

Calculate circular borehole’s flexural dispersion: (Sc, fc) 

Interpolate(Sc, fc, Se) = fe,0 

Interpolate(Sc, fc, So) = fo,0 

rmajor,0 = rminor,0 = rcaliper 

i=0 

if “a fast formation” 

 

else 

 

end if 

while | i-1|> tol and  | i-1|> tol 

 j=i+1 

 rmajor,j = i  rmajor,i   and   rminor,j = i  rminor,i 

Use BIE for the elliptical case with (rmajor,j, rminor,j) 

and obtain ( , ) and ( , ) 

 Interpolate( , , Se) = fe,j 

 Interpolate( , , So) = fo,j 

Calculate j and j using either Eq. (1) or (2) 

depending on formation shear 

i=i+1 

end. 

 To speed up the BIE solution, mode-search results 

can be used to narrow the ( −kz) search region. In this 

case, mode search results should be updated for a circular 

borehole with a radius of rminor,i at each step for the lower 

boundary. For a slow formation, monopole dispersion can 

be used as an upper boundary as well.  

 The overall method can be seen as a Newton’s 

method (Tjalling, 1995), where the initial guess is a circular 

case with a radius of rcaliper, which guarantees a reasonably 

good guess.  

 

Computational results in a fast formation  

 

The formation compressional and shear velocities 

are 4848 and 2601 m/s, respectively, whereas the mass 

density is 2160 kg/m3. The borehole fluid compressional 

velocity is 1500 m/s, and its mass density is 1000 kg/m3. 

The minor and major radii of elliptical borehole are 10 and 

11 cm, respectively. Assume that even and odd flexural 

dispersions are given, see Figure 2, and the radius of the 

borehole measured by a caliper is 10.5 cm. 

We first calculate the flexural dispersion of a 

circular borehole with a radius of 10.5 cm for a given 

formation and fluid properties using a mode-search 

algorithm. Then we calculate first regularization parameters 

as described above, which results in 10.7868 and 9.87369 

cm for rmajor and rminor, respectively. Even at the end of first 

step, the overall error is less 2 %. Then iterative part of the 

algorithm starts. We set the error tolerance to 0.0005 (0.05 

%). Table 1 shows convergence of rmajor and rminor to the 

actual values of elliptical borehole’s radii as a function of 

iteration. Notice that the regularization parameters i and i 

converge to 1 as expected. As it can be seen from Table 1 

and Figure 3, we satisfy our error tolerance at the end of 5 

iterations. The final estimated values for rmajor and rminor are 

10.9994 and 10.00002 cm. Figure 2 shows the comparison 

of input dispersions and the ones obtained using these final 

estimates. 

 

Iteration 

Number 

rminor i rmajor i 

0 (Initial) 10.5 - 10.5 - 

1 9.87369 0.9404 10.7868 1.0273 

2 10.06936 1.0198 10.9879 1.0186 

3 9.99500 0.9926 10.9919 1.0004 

4 9.99966 1.0005 10.9982 1.0006 

5 10.00002 1.0000 10.9994 1.0001 

Table 1. Convergence of the algorithm for a fast formation. 

 

 In this example, the frequency range (bandwidth) of 

the data is between 3 and 10 kHz. Higher end of this 

bandwidth has smaller wavelength which means a better 

resolution. As a result, the high frequency part of the input 

data gives us more information about borehole elongations. 
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Borehole ellipticity using cross-dipole dispersions 3 

However, the measured field data might have a 

significantly shorter bandwidth. To study this situation, we 

generate another set of input data, which has 3 kHz 

bandwidth, from 4 to 7 kHz. Table 2 follows the notation 

presented in Table 1. In this case, we can meet our error 

criterion after 6 iterations, which clearly indicates the 

robustness and efficiency of the algorithm. 

 

Iteration 

Number 

rminor i rmajor i 

0 (Initial) 10.5 - 10.5 - 

1 9.93844 0.9465 10.7981 1.0284 

2 13.0645 1.3145 11.967 1.1083 

3 10.11596 0.7743 10.8797 0.9091 

4 9.99557 0.9881 10.966 1.0079 

5 9.9998 1.0004 10.9941 1.0026 

6 10.00001 1.00001 10.999 1.0004 

Table 2. Convergence of the algorithm for a fast formation using 

dispersions with a limited bandwidth. 

 

Computational results in a slow formation  

 We follow the same procedure for a slow formation 

that has a mass density of 2000 kg/m3 and 2545 and 1018 

m/s for compressional and shear velocities, respectively. 

The borehole fluid is same as previous case. The minor and 

major radii of elliptical borehole are 10 and 13 cm, 

respectively. Assume that even and odd flexural dispersions 

are given, see Figure 4, and the radius of the borehole 

measured by a caliper is 11 cm. 

 Table 2 shows convergence of rmajor and rminor to the 

actual values of elliptical borehole’s radii as a function of 

iteration for the slow formation. Again, regularization 

parameters i and i converge to 1 as expected. As it can 

been seen from Table 2 and Figure 5, it takes only 6 

iterations to meet our error criterion (0.05 %) and Figure 4 

shows accuracy of the estimation by comparing the input 

dispersions and the ones obtained using the 6th iteration’s 

estimates. 

 

Iteration 

Number 

rminor i  rmajor i 

0 (Initial) 11.0 - 11.0 - 

1 9.90123     0.90012 11.9291 1.0845 

2 10.12157     1.02225 12.9366 1.0845 

3 10.03020     0.99097 12.9754 1.0030 

4 10.00863     0.99784 12.9918 1.0013 

5 10.00315     0.99945 12.9963 1.0003 

6 10.00023     0.99970 12.9970 1.0001 

Table 3. Convergence of the algorithm for a slow formation. 

  

In this example, we have used flexural dispersions with a 

bandwidth from 1 to 6 kHz. To study the influence of  a 

shorter bandwidth, we show estimates of the major and 

minor radii of the ellipse using a bandwidth from 1.5 to 4 

kHz.  Table 4 shows that convergence to the final values is 

obtained after 10 iterations. 

 

Iteration 

Number 

rminor i  rmajor i 

0 (Initial) 11 - 11 - 

1 10.20866 0.9281 11.8859 1.0805 

2 10.21767 1.0009 12.6827 1.0670 

3 10.10117 0.9886 12.8703 1.0148 

4 10.04525 0.9945 12.9448 1.0058 

5 10.01907 0.9974 12.9748 1.0023 

6 10.00769 0.9989 12.9875 1.0010 

7 10.00327 0.9996 12.9924 1.0004 

8 10.00198 0.9999 12.9945 1.0002 

9 10.00087 0.9999 12.9959 1.0001 

10 10.00064 1.0000 12.9986 1.0002 

Table 4. Convergence of the algorithm for a slow formation using 

dispersions with a limited bandwidth. 

 

Summary and Conclusions 

 We have developed an inversion algorithm to 

estimate major and minor radii of a fluid-filled elliptical 

borehole using cross-dipole dispersions. Starting from a 

reference circular fluid-filled borehole with an arbitrary 

radius measured by a single-arm caliper, this algorithm 

minimizes differences between measured even and odd 

flexural dispersions, and that for the reference circular 

borehole to obtain the major and minor radii of an elliptical 

borehole. In fast formations, we use even and odd 

dispersions with an interpolator to calculate the 

regularization parameter giving rmajor and rminor, 

respectively. In contrast, we use odd and even dispersions 

in slow formations with an interpolator to calculate the 

regularization parameter giving rmajor and rminor, 

respectively. Numerical results show that accurate results 

(relative error < 1 %) can be obtained after a small number 

of iterations even for flexural dispersions with a limited 

bandwidth.  

 

 

Figure 1. Schematic of an elliptical fluid-filled borehole cross-

section surrounded by a formation. 
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Borehole ellipticity using cross-dipole dispersions 4 

 

Figure 2. Green circle and black cross markers show synthetically 

generated even and odd flexural dispersions, respectively, for an 

elliptical borehole (10 cm, 11 cm) surrounded by a fast formation. 
The dashed red and blue lines depict reconstructed dispersions for 

even and odd modes, respectively, after the major and minor radii 

have been estimated. 

 

Figure 3. Blue solid and green dashed lines show the relative error 

for minor and major radii, respectively, as a function of iteration 

number. The result depicted in Figure 2 is obtained using rminor and 

rmajor values after 6 iterations (Bandwidth 3 to 10 kHz). 

 

Figure 4. Blue solid and green dashed lines show the relative error 

for minor and major radii, respectively, as a function of iteration 

number (Bandwidth 4 to 7 kHz). 

 

Figure 5. Green circle and black cross markers show synthetically 

generated even and odd flexural dispersions, respectively, for an 

elliptical borehole (10 cm, 13 cm) surrounded by a slow formation. 

The dashed red and blue lines depict reconstructed dispersions for 
even and odd modes, respectively, after the major and minor radii 

have been estimated. 

 

Figure 6. Blue solid and green dashed lines show the relative error 

for minor and major radii, respectively, as a function of iteration 

number. The result depicted in Figure 4 is obtained using rminor and 
rmajor values from the 6th iteration (Bandwidth 1 to 6 kHz).  

 

Figure 7. Blue solid and green dashed lines show the relative error 

for minor and major radii, respectively, as a function of iteration 
number (Bandwidth 1.5 to 4 kHz).  
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