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Abstract— Formation stress magnitudes provide useful 
input to design decisions in wellbore planning, wellbore 
stability, and reservoir management in the oil and gas 
industry. It has been known for the past 50 years that 
elastic wave velocities in rocks change as a function of 
applied stress.  Yet reliable inversion techniques are not 
available for estimating formation stresses from measured 
changes in sonic velocities.  Borehole wave propagation in 
such formations can be described by equations of motion 
for small dynamic fields superposed on a bias. These 
equations are derived from the rotationally invariant 
equations of nonlinear elasticity by making a Taylor 
expansion of the quantities for the dynamic state about 
their values in the biasing (or intermediate) state. The 
effective elastic constants in these equations become 
position-dependent in the presence of inhomogeneous 
stresses. These equations can be solved either by a finite-
difference or perturbation techniques. A finite-difference 
formulation of equations of motion in the presence of such 
stresses yields a complete wave solution produced by either 
a monopole or dipole band-limited source placed in a fluid-
filled borehole. Processing of synthetic waveforms by a 
modified matrix pencil algorithm isolates various 
dispersive and non-dispersive arrivals. While a 
perturbation method is an expedient way of solving 
equations of motion with spatially varying coefficients, 
results from this method is limited to changes in modal 
dispersions caused by the presence of such near-wellbore 
stresses. Results provide changes in both the Stoneley and 
flexural dispersions caused by an increases in borehole 
overpressure, effective overburden, maximum and 
minimum horizontal stresses. The increase in formation 
shear velocity caused by a given increase in the 
overburden stress is the same as that caused by the 
horizontal stress of  the same magnitude and parallel to the 
radial polarization. In contrast, changes in flexural 
velocities at high frequencies caused by an increase in the 
overburden stress are similar to that caused by the 
horizontal stress of the same magnitude and perpendicular 
to the radial polarization.    
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I.  INTRODUCTION  
Sedimentary rocks are highly porous and permeable. They 
exhibit a high degree of non-linearity in measured strain when 
subjected to an external stress. Elastic wave velocities in such 
pre-stressed materials can change by a significantly larger 
amount than those in non-porous crystalline materials, such as 
aluminum, steel, or crystalline quartz. 
 
Elastic waves propagating in such materials can be described 
by equations of motion for small dynamic field superposed on 
a large static bias. While static strains in a material subject to 
externally applied load is on the order of milli-strain, dynamic 
strains introduced by small amplitude elastic waves are 
substantially smaller on the order of tens of micro-strain. 
Effective elastic stiffnesses in these equations of motion are 
functions of static displacement gradients that can be 
expressed in terms of static stresses and strains in the 
propagating medium. The presence of a fluid-filled borehole 
in a pre-stressed formation causes both radially and 
azimuthally varying stresses in the near-wellbore region. Such 
heterogeneity in the near-wellbore stress distributions results 
in spatially varying elastic stiffnesses in the equations of 
motion for small amplitude elastic waves.  Consequently, it is 
necessary to use either a finite-difference, time-domain 
(FDTD) formulation of such equations of motion or a 
perturbation method for studying the influence of such static 
stresses on the velocity of plane waves and velocity 
dispersions of borehole guided modes. The lowest-order axi-
symmetric Stoneley and flexural modes are easily excited in a 
fluid-filled borehole. Analyses of these modal dispersions are 
extensively used in the estimation of formation mechanical 
properties. 
 
This paper describes results from the FDTD formulation of 
equations of motion for small amplitude waves in the presence 
of near-wellbore static stress distributions [1]. The FDTD 
method accounts for the sonic tool effects on measured 
dispersions in terms of a simple heavy-fluid column with 
calibrated parameters that replaces a complex sonic tool 
structure.  Synthetic waveforms from the FDTD formulation 
are processed by a Slowness-Time-Coherence (STC) 
algorithm to determine the compressional velocity or slowness 
in the formation surrounding a fluid-filled borehole [2]. In 
addition, we use a modified matrix pencil algorithm that helps 
in isolating both non-dispersive compressional head-waves 
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and dispersive borehole guided modes [3]. We compare results 
for the borehole flexural mode dispersions obtained from the 
FDTD formulation with those from a perturbation method.   
 

II. WAVE PROPAGATION IN A PRESTRESSED FORMATION 
The propagation of small amplitude waves in homogeneous 
and anisotropic materials is described by the linear equations 
of motion. However, when the material is pre-stressed, the 
propagation of such waves is then described by equations of 
motion for small dynamic fields superposed on a static bias. A 
static bias represents any statically deformed state of the 
propagating medium caused by an externally applied load 
above and beyond that exist in a chosen reference state. 
Equations of motion for small dynamic fields superposed on a 
static bias are derived from the rotationally invariant equations 
of nonlinear elasticity. The presence of a fluid-filled borehole 
in a tectonically stressed formation causes both radial and 
azimuthal heterogeneities in rock stresses.  Under these 
circumstances, the effective elastic coefficients become 
position dependent and it becomes necessary to use a 
perturbation model or a finite-difference formulation of 
equations of motion for obtaining changes in velocities caused 
by such stress distributions. This perturbation model relates 
fractional changes in the modal velocities caused by given 
changes in the static stress distributions as a function of 
frequency [4, 5].  A perturbation integral equation serves as a 
basis for the inversion model that has been used for estimating 
formation stress magnitudes using measured sonic velocities 
in a formation subject to tectonic stresses.   

II. COMPUTATIONAL RESULTS 
The formation stress state is characterized by the magnitude 
and direction of three principal stresses. Figure 1 shows a 
schematic diagram of a vertical borehole in a formation 
subject to the three principal stresses. Generally, the 
overburden stress (SV) is reliably obtained by integrating the 
formation mass density from the surface to the depth of 
interest. Consequently, estimating the other two principal 
stresses (SHmax and Shmin) in the horizontal plane is the 
remaining task necessary to fully characterize the formation 
stress state.  
Near-wellbore stress distributions in the borehole cross-section 
can be expressed in terms of far-field formation stresses [1].  
Figure 2 displays radial and azimuthal variations of the radial, 
hoop, axial, and shear stresses surrounding a borehole of 
radius ‘a’.  Large hoop stress sqq (see Figure 2b) occurs at an 
azimuth perpendicular to the maximum horizontal stress 
direction. Effects of these cylindrical stresses on elastic wave 
propagation in a fluid-filled borehole can be studied by a 
finite-difference formulation of equations of motion for small 
dynamic fields superposed on a bias [1]. 

Sonic measurements in a borehole are carried out with the help 
of a monopole or dipole transmitter and an array of 
hydrophone receivers mounted on a complex tool structure. 
We replace this tool structure by an equivalent heavy-fluid 

column concentrically placed on the borehole axis that 
adequately accounts for the tool effects on the acquired sonic 
data.   

 

Figure 1: Schematic of a borehole in the presence of formation principal 
stresses with the borehole axis parallel to the overburden stress. 

 

Figure 2:  (a) Radial, (b) hoop, (c) axial, and (d) shear stresses in the borehole 
cross-sectional plane for a given wellbore pressure, overburden, maximum, 
and minimum horizontal stresses. 
 

Synthetic waveforms have been obtained at an array of 
receivers generated by a monopole or dipole transmitters 
placed on the borehole axis. Table 1 contains the formation 
material parameters used in this study. The borehole fluid 
compressional velocity is 1600 m/s, and its mass density is 
1050 kg/m3. The circular borehole diameter is 20 cm. 

TABLE 1. Formation material parameters 

ρf 
kg/m3 

VP 
m/s 

VS 
m/s 

C111 
TPa 

C112 
TPa 

C123 
TPa 

2062 2320 1500 -21.2 -3.04 2.36 
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Monopole waves in formations with pre-stress 

 We follow the convention that the overburden stress S11 is 
parallel to the borehole axis; S22 and S33 correspond the 
maximum and minimum horizontal stress directions, 
respectively. Figure 3 shows monopole waveforms at a 
subarray of 10th through 17th receivers. The receiver distance is 
measured from the transmitter location along the borehole 
axis. The red and blue curves denote waveforms obtained in a 
formation in the absence and presence of far-field stresses (S11 
= - 5 MPa).   

 

Figure 3: Monopole waveforms in the absence (red) and presence (blue) of the 
overburden stress. 
 

These synthetic waveforms are then processed by a STC 
algorithm to estimate the compressional headwave slowness. 
In addition, we also process these waveforms by a modified 
matrix pencil algorithm that separates both the dispersive and 
non-dispersive arrivals in the wavetrain.  While small 
amplitude compressional headwave signals are reliably 
processed by the STC algorithm, the matrix pencil algorithm 
fails to extract the compressional slowness when the signal 
amplitude is substantially smaller than the dominant Stoneley 
or flexural arrivals.  Figure 4 displays the Stoneley dispersions 
obtained for the cases of (a) No formation stress; (b) Wellbore 
pressure Pw = - 5 MPa; (c) Overburden S11 = -5 MPa; (d) 
Horizontal stress S22 = -5 MPa; (e) Horizontal stress S33 = -5 
MPa; and (f) All of these stress components S11 = S22 = S33 = - 
5 MPa.  Computational results indicate that the Stoneley 
dispersion at high frequencies is affected more by the near-
wellbore stresses caused by the wellbore pressure.  In contrast, 
the Stoneley dispersions remains essentially non-dispersive in 
the presence of near-wellbore stress distributions caused by 
the far-field formation stresses, because the sum of the hoop 
and radial stresses is nearly the same. We also observe that 
results for the case of all stress components are approximately 
linear superposition of results for the individual stress 
components.   

 

Figure 4: Monopole Stoneley dispersions in the presence of different stress 
components. 
 

Dipole waves in formations with pre-stress 

Figure 5 shows dipole waveforms at a subarray of 10th through 
17th receivers with receiver distance measured from the 
transmitter location. The red and blue curves represent 
waveforms obtained in a formation in the absence and 
presence of far-field stress (S11 = - 5 MPa). 

 
Figure 5:  Dipole waveforms in the absence (red) and presence (blue) of the 
overburden stress. 
 
STC processing of synthetic dipole waveforms yields 
compressional and shear headwave slownesses identified by 
semblance peaks as shown in Figure 6c (lower-left subplot). 
We compare in the lower-right subplot, flexural dispersions 
for dipole transmitter oriented parallel to the maximum 
horizontal stress S22 direction in green with that obtained for 
the transmitter oriented parallel to the S33 direction in blue. 
These two dipole dispersions show a characteristic crossover 
even in the presence of a heavy-fluid column used to 
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compensate for the influence of a complex tool structure on 
the recorded dipole waveforms.  

 
Figure 6: (a) Dipole waveforms; (b) Signal vs. fitting error; (c) Semblance 
peak from STC; (d) Dipole dispersions. No stress (red), S22= -5 MPa (green), 
S33= -5 MPa (blue). 
 
Comparison of FDTD and perturbation results 

We use a perturbation method for calculating changes in the 
Stoneley and dipole dispersions caused by the presence of 
different stress components in the surrounding formation. The 
reference state in the perturbation integral is defined by an 
eigensolution obtained in the presence of a heavy-fluid column 
that accounts for the tool effects on sonic waveforms. Figure 7 
compares results for the Stoneley dispersion obtained after 
processing the FDTD waveforms by a modified matrix pencil 
algorithm with those from a perturbation method.  Good 
agreement is obtained from these two techniques for 
calculating stress-induced effects on Stoneley dispersions. 

 
Figure 7:  Comparison of the Stoneley dispersions obtained from FDTD 
waveforms (blue) and a perturbation method (red). (a) Pw = - 5 MPa; (b) S11 = 
-5 MPa; (c) S22 = -5 MPa; (d) S33 = -5 MPa. 

 

Similarly, Figure 8 shows comparison of dipole dispersions 
obtained from the FDTD waveforms and those from a 
perturbation method that includes the presence of a heavy-
fluid column. 

 
Figure 8:  Comparison of the dipole dispersions obtained from FDTD 
waveforms (blue) and a perturbation method (red). (a) Pw = - 5 MPa; (b) S11 = 
-5 MPa; (c) S22 = -5 MPa; (d) S33 = -5 MPa.  

III. CONCLUSIONS 
Computational results have been obtained for changes in the 
lowest-order axi-symmetric and flexural mode dispersions 
caused by the presence of formation tectonic stresses. Sonic 
tool effects are accounted for by introducing an equivalent 
heavy-fluid column with calibrated parameters. Good 
agreement is observed for borehole dispersions in the presence 
of formation stresses obtained from the processing of synthetic 
waveforms using a 3D-cylindrical finite-difference 
formulation as well as a perturbation model.    
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