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Abstract—As mobile begins to overtake the fixed Internet
access, ad networks have aggressively sought methods to track
users on their mobile devices. While existing countermeasures
and regulation focus on thwarting cookies and various device
IDs, this paper submits a hypothesis that smartphone/tablet
accelerometers possess unique fingerprints, which can be ex-
ploited for tracking users. We believe that the fingerprints arise
from hardware imperfections during the sensor manufacturing
process, causing every sensor chip to respond differently to the
same motion stimulus. The differences in responses are subtle
enough that they do not affect most of the higher level func-
tions computed on them. Nonetheless, upon close inspection,
these fingerprints emerge with consistency, and can even be
somewhat independent of the stimulus that generates them.
Measurements and classification on 80 standalone accelerom-
eter chips, 25 Android phones, and 2 tablets, show precision
and recall upward of 96%, along with good robustness to real-
world conditions. Utilizing accelerometer fingerprints, a crowd-
sourcing application running in the cloud could segregate
sensor data for each device, making it easy to track a user
over space and time. Such attacks are almost trivial to launch,
while simple solutions may not be adequate to counteract them.

I. INTRODUCTION

With more than 700, 000 apps available in the
Google Play and App Store [6], [52], smartphones and
tablets have emerged as the most popular platforms to assist
our daily activities and to exchange information over the
Internet. Most apps are offered as free with ads, which
allows ad networks to collect data for tracking users and

their online habits. While such tracking can be lucrative for
advertising companies [47], it raises major privacy concerns
for users.

Cookies were one of the most widely used mechanisms
to track users. To address the privacy concern of tracking
users, a “cookie law” has been enforced in the US and
Europe [18], which requires apps to obtain user-permission
before uploading cookies or any other identifiers to the
cloud. Nevertheless, research [28] shows that stealing of
various IDs, such as the IMEI (device ID), IMSI (subscriber
ID), or ICC-ID (SIM card serial number), is still rampant
in apps. Some recent proposals [27], [69] have designed
solutions to thwart ID-theft. Nevertheless, we have to be
vigilant since the unavailability of cookies and various IDs
is likely to motivate advertisers to find new ways of linking
users to their app usage habits or browsing histories, if
past experience is an indication. Commercial advertising
companies, such as BlueCava and Iovation, have already
started to identify devices and link users based on browser
configuration, screen resolution [47], etc.

In this paper, we explore cookieless methods to identify
devices. Inspired by past work on device fingerprinting [37],
[57], [64], where WiFi chipsets were shown to exhibit
unique clock skews and frequency offsets, we ask the
question: could sensors in today’s smartphones also have
unique fingerprints? Hardware imperfections are likely to
arise during the manufacturing process of sensors, suggest-
ing the existence of fingerprints. However, sensors, such as
accelerometers, are known for generating noisy readings.
Therefore, can sensors’ fingerprints be consistently measured
for device identification? In the pursuit of this question,
we gathered, over time, around 80 standalone accelerometer
chips used in popular smartphones, subjected each of them to
vibrations from a single vibration motor (common in today’s
phones), and analyzed the large volume of data received
from each of them. We found that while high level operations
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Fig. 1: Example threat: Bob uses traffic and health apps,
supported by the same cloud backend. Even when device
IDs are blocked, exporting a slice of sensor data enables the
cloud to infer that it is the same user.

on the accelerometer signals yielded similar results, e.g.,
all the chips were comparable in counting the number of
walking steps, an appropriately designed high dimensional
feature-vector exhibited strong diversity, a fingerprint.

Our initial skepticism that this fingerprint is an outcome
of non-identical vibrations was dispelled when a given
accelerometer repeatedly exhibited the same distinct pattern.
Moreover, we found that the fingerprints persist even if the
vibrations are subjected in less controlled settings, e.g., when
the user is naturally holding an accelerometer-equipped
phone. Even different phone cases made of rubber or plastic
did not affect much, so long as the system was trained
on those casings. We have also conducted experiments
subjecting smartphones to rotational motion instead of vi-
bration, which too affirmed accelerometer diversity. Finally,
our attempts to scrub off the fingerprint (without affecting
the high level functions such as step-count) did not meet
immediate success. Inducing small amounts of noise in the
accelerometer signal still preserved the fingerprint; adding
too much noise affected the activity and gesture recognition
applications. This paper reports our effort to verify the
existence of accelerometer fingerprints, and draws attention
to new kinds of threats that may arise as a consequence.

Figure 1 illustrates one possible threat. Consider a com-
mon scenario where multiple motion-sensing apps, such as
a road traffic estimator, a calorie counter, a gesture-based
gaming app, etc., all implanted with third-party ads. While
the cookie law and some recent proposals [27], [69] may
thwart attackers from conveying cookies or various IDs, we
observe that sensor data is not subjected to scrutiny since it
is legitimately required by apps. Thus, if the sensor data can
be used to identify devices, the advertising companies can
easily bypass the cookie law, and track the users by sensor
fingerprints. Put differently, an accelerometer fingerprint can

serve as an electronic cookie, empowering an adversary
to consolidate data per user, and track them over space
and time. Alarmingly, such a cookie is hard to erase,
unless the accelerometer wears out to the degree that its
fingerprint becomes inconsistent. We have not noticed any
evidence of this in the 9 months of experimentation with
107 accelerometers.

The notion that sensors can offer side-channel informa-
tion is not new. Past work has demonstrated how accelerome-
ters can leak information in smartphones – for instance, from
accelerometer data gathered during typing, authors in [15],
[16], [43] have shown that the typed characters, such as
PIN numbers, can be inferred. Even swiping motion patterns
can be estimated [10]. While disabling the accelerometer
during a sensitive operation (e.g., typing PINs) is a plausible
solution, the same does not apply in our case because even
a small slice of the sensor reading is adequate to extract
the fingerprint. Another alternative could be to perform the
computations locally on the phone and only send the higher
level results to the cloud. However, some operations are
far too CPU-heavy to be performed on-phone, while others
require matching against large databases that are expensive
to download to the phone. Pre-processing the readings and
scrubbing off the fingerprint is probably the appropriate
approach, however, as we find later, this requires deeper in-
vestigation in the future. Scrubbing without an understanding
of the app is risky – an app that needs high fidelity readings
could easily be affected upon over-scrubbing.

A natural question on sensor fingerprints pertains to
scalability, i.e., is the fingerprint unique against millions
of sensors? We admittedly have no proof of such large
scale, neither a theoretical basis to justify our claim. We
have only attempted to lease/gather as many devices as
possible, amounting to: (1) 80 stand-alone accelerometer
chips of three types (used in the latest smartphones and
tablets, including the Samsung Galaxy S III and Kindle Fire).
(2) 25 Android phones composed of a mix of Samsung
S3, Galaxy Nexus, and Nexus S. (3) 2 Samsung tablets.
Each of the standalone chips were plugged into the same
customized circuit board connected to an external vibration
motor to provide the motion stimulus. As a result, the
recorded accelerometer readings are free of any potential
effects caused by the OS version and the middleware of
smartphones. The Android phones and tablets were used
as is; the stimulus induced by programming its on-board
vibration motor.

The sensor fingerprint is designed as a vector of 36
features drawn from the time and frequency domain of
accelerometer signals. A Bagged Decision Tree [20] is used
for ensemble learning and classification. Results show that
among these sensors, classification precision and recall reach
upwards of 96%. Moreover, the fingerprints proved to be
robust, visible even through natural hand-held positions,
and even for various casings, including one of soft rubber.
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Fig. 2: The internal architecture of MEMS accelerometer
chip used in smartphones.

While more extensive evaluation is warranted to verify the
hypothesis (perhaps in an actual manufacturing pipeline), we
believe that our results are still valuable. To the best of our
knowledge, this is the earliest work that suggests and verifies
(in a lab setting) that accelerometers in modern smartphones
are identifiable. We call the overall system, AccelPrint.

II. ACCELEROMETERS: A CLOSER LOOK

This section presents a brief background on accelerome-
ters to qualitatively reason about the source of fingerprints.
Then, we describe our experiment framework and present
early evidence of accelerometer fingerprints. Detailed results
and associated issues are presented in the evaluation section.

A. Hardware Imperfections

Accelerometers in smartphones are based on Micro
Electro Mechanical Systems (MEMS) that emulate the
mechanical parts through micro-machining technology [8].
Figure 2 shows the basic structure of an accelerometer chip,
composed of several pairs of fixed electrodes and a movable
seismic mass. The distances d1 and d2 represent the small
gaps that vary due to acceleration and form a differential
capacitor pair. The chip measures the acceleration according
to the values of these differential capacitor pairs. It is the
lack of precision in this electro-mechanical structure that
introduces subtle idiosyncrasies in different accelerometer
chips. Even slight gaps between the structural parts (intro-
duced during the manufacturing process) can change the
capacitance [8]. Moreover accelerometer chips use Quad Flat
Non-leaded (QFN) or Land Grid Array (LGA) packaging,
another potential source of imperfections [22].

According to the official data sheets, the target applica-
tions for smartphone accelerometers are gesture recognition,
display rotation, motion-enabled games, fitness monitoring,
etc. These applications primarily depend on the relative

change in the accelerometer readings as opposed to their
absolute values. Therefore, while subtle imperfections in the
accelerometer chips can lead to different acceleration values,
they may not affect the rated performance of the target
applications. However, these discrepancies may be sufficient
to discriminate between them.

B. Evidence of Fingerprints

To gain early evidence on the existence of fingerprints,
we conducted an experiment using 6 stand-alone accelerom-
eter chips of 3 types: (i) MPU-6050; (ii) ADXL-345; and
(iii) MMA-8452q. MPU-6050 is a MEMS chip [5] used in
many mobile devices, including the Galaxy S III and Kindle
Fire. The ADXL-345 is a small, thin, ultra-low power 3-
axis accelerometer [1] with a high resolution of 13 bits and
scaling up to ± 16g (where g is acceleration due to gravity).
This is mainly used for tap/swipe sensing and activity recog-
nition. MMA-8452q is a 12 bit digital 3-axis low-power
capacitive accelerometer [4], available in QFN packaging,
and configurable to ±2g/±4g/±8g through high-pass filters.
The mix of chips included in the experiment are 2 MPU-
6050 from two different vendors (SparkFun and Amazon),
3 ADXL-345, and 1 MMA-8452q. We setup the Arduino
Uno R3 boards [2] to collect accelerometer readings from
the chips. We use an external vibration motor – the model
used in most smartphones – to stimulate the accelerometer
with a specific vibration duty-cycle, controlled through the
Arduino board. Fig. 3 shows the experimental setup.

Fig. 3: Experimental setup with the Arduino board on the
left, the red accelerometer chip on the breadboard, and the
vibration motor connected over the wire.

Each of the six stand-alone chips are stimulated with an
identical vibration sequence and their accelerometer readings
are recorded. Figure 4a shows the root sum square (RSS)
of the three axes values against time. The plots on each
column are distinct but the elements in the top two rows look
similar (i.e., tagged “A” and “B”, “C” and “D”). To separate
them out, Figure 4b plots the mean RSS values against their
standard deviations (i.e., in a 2-dimensional plane). Each
experiment on a chip yields a data point on the graph and the
points from multiple experiments on the same chip exhibits
a cluster. The top two rows that appear similar in Figure 4a
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begin to separate out on this 2-dimensional plane, although
some overlap still remains. Of course, other features might
be more effective in reducing the overlap.

To further distinguish the 6 chips from each other, we
considered a feature called skewness, which measures the
asymmetry of a probability distribution. Figure 4c shows the
skewness of the accelerometer readings of the two similar
MPU-6050 chips (tagged “C” and “D”). Evidently, one
consistently shows a higher skewness over the other even
though they are the of same make and model. This suggests
that chips that appear indistinguishable on one dimension
may be well separated on others. However, these three
features, RSS mean, std. deviation, and skewness, alone are
not sufficient to discriminate all accelerometers. Therefore,
recruiting an appropriate set of feature vectors and projecting
the accelerometer signals on them may demonstrate that
accelerometers could indeed be unique.

An accelerometer fingerprint (under controlled vibration
sequences) may not necessarily translate to a smartphone
fingerprint in the real world. First, the OS running on the
phone, application API, and CPU load, can all influence the
sensor readings. Second, considering that fingerprinting is
based on subtle features in response to brief vibrations, the
surface on which the device is placed, or its casing, may
also matter. While these make fingerprinting a naturally-
used smartphone more challenging compared to a standalone
accelerometer, we observe that additional sensors on the
phone could be harnessed as well. A gyroscope, barometer,
and accelerometer may together exhibit a fingerprint robust
to OS versions, CPU-load, and surfaces. While we leave
this exploration to future work, in this paper we show that
accelerometers alone can achieve reasonable smartphone
fingerprinting under uncontrolled conditions. Naturally, this
makes the threats imminent.

III. APPLICATION SCENARIOS

A. Threat Model

We consider an adversary that aims at identifying smart-
phones but cannot gain access to unique device IDs (e.g.,
IMEI or ICC-ID). This can be because these IDs are
protected by monitoring strategies [27], [28]. Thus, the
adversary tries to obtain the fingerprint of the built-in sensors
(e.g., accelerometers). We assume that the adversary is able
to interact with apps on the smartphone, has access to
accelerometer data, and can communicate over networks.

Smartphone Access. We assume that an adversary can
access apps that are either installed legitimately by a user
or affected by malware. In either case, the adversary can
interact with the smartphone through the apps over the
communication networks. For instance, an adversary could
be an advertiser (e.g., ad networks) that wants to obtain
users’ personal data for supplying targeted ads to boost the
likelihood of purchase. The current practice of free apps

with ads is the following. Advertisers provide prepackaged
developer kits (e.g., iApp) which allows app-developers to
get revenue by including a few lines of code into their apps.
The code not only displays ads in the app, but also allows to
collect data from the device and share it with ad networks.

Sensor Access. We assume that an adversary is able to
collect raw sensor readings directly. Such an assumption is
easy to satisfy, because among all smartphone sensors, only
the location sensor requires explicit user access permission
on both Android and the iPhone platforms and other sensors
(e.g., accelerometers and gyroscope) can be accessed without
notifying users. Even if in the future, explicit permission is
required to access sensors, the apps could be legitimately
granted permission to sensors and the adversary may inherit
such a permission for accessing sensors.

Packaged Sensors. Since it is difficult to replace the
sensors inside a smartphone, we assume that throughout
the operational lifetime of a smartphone, the sensors on the
smartphone remain unchanged.

B. Attack Scenarios

Once an adversary gains access to a smartphone, she can
use the official APIs to acquire sensor readings and upload
a short segment of raw readings to the cloud for fingerprint
extraction. Alternatively, with the increasing computational
capability of smartphones, the fingerprint of sensors can be
extracted locally on the phone and only the sensor finger-
prints are uploaded to the cloud. Given that sensors inside a
smartphone are rarely replaced, their innate imperfections
can create, to some extent, a permanent fingerprint of a
smartphone. One major consequence is that such a built-
in and consistent fingerprint can act as a trackable identifier
of the smartphone’s owner.

For instance, a health-conscious and commuting user
(hereafter Bob) may install apps for monitoring his daily
activities and for traffic condition. All these apps rely on
inertial sensors (e.g., accelerometer, gyroscope) and could
be loaded with ads supplied by the same ad networks. As
a result, the ad networks can collect detailed data of Bob
along with Bob’s sensor readings/fingerprints. When the ad
networks observe Bob’s sensor fingerprints for the first time,
they create a profile for Bob, which will be expanded with
new data from Bob. Even after Bob uninstalls all these apps,
the fingerprints and Bob’s profile remain in the digital world.
The data collection of Bob may be paused briefly, until Bob
installs a new app with ads. Then, the ad networks extract
the sensor fingerprint and index through the profile database
to find Bob, and resume the data collection.

IV. ACCELPRINT DESIGN

This section describes the 3 sub-modules of the overall
system: (1) Accelerometer data collection; (2) Fingerprint
generation; (3) Fingerprint matching.
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Fig. 4: Accelerometer responses of 6 chips for the same stimulation: (a) Using Root Sum Square (RSS) of the three axes
over time offers some differentiation among chips; (b) Clustering on 2 dimensions – RSS mean and deviation – improves
separation; (c) Clusters that overlap with mean/deviation, separate out further using a Skewness feature.

A. Accelerometer Data Collection

We define the accelerometer fingerprint as the response it
yields to any predefined motion stimulus. We found that the
vibration motor internal to a smartphone – mainly used to
“buzz” the device – generates consistent motion stimuli, and
can be programmed to ON/OFF states at fine time scales.
Hence, we collect accelerometer data during time windows
when the vibration motor is ON, and call this raw data a
trace. Of course, the vibration motor need not to be explicitly
turned on for trace collection (or else a malware may raise
the user’s suspicion due to frequent vibrations). Instead, the
malware could opportunistically collect the accelerometer
data whenever the vibration motor is active, perhaps due to
an incoming email, SMS, phone-rings, or other alerts and
push notifications.

A natural question is how can one detect when the
vibration motor is active, given that no standard Android
API is available to check its ON/OFF status? AccelPrint
uses the accelerometer data itself to identify portions during
which the vibration motor was ON. This is feasible mainly
due to 2 factors: First, the to-and-fro motion generated by
a vibration motor is faster than any normal human activity.
Second, based on our analysis on 6 types of Android devices
(4 smartphones and 2 tablets), the effect of a vibration motor
is significantly higher on the Z-axis irrespective of the device
orientation. This is because a motor is typically mounted
on the phone such that it has greater movement freedom
along the Z-axis. Leveraging this observation, our detection
algorithm calculates the derivatives of the acceleration in
all 3 axes and compares them against empirically designed
thresholds. We tested our scheme by turning on the vibration
motor at random duty cycles (we used the “fastest” sampling
mode in Android). Figure 5 shows the results – the detection
is reliable across various user activities, including when
driving a car, placed on a table top, walking, running, etc.

B. Fingerprint Generation

Trace Pre-processing. Instead of extracting features
from a raw trace, AccelPrint pre-processes the trace

Accl. Z axis
Actual Duty Cycle

Algo output

Still On Car

Walk  Run 

Fig. 5: Identifying when the vibration motor is ON from the
accelerometer readings directly.

to obtain two sets of intermediate data: one represents
how often an accelerometer reading was recorded and one
represents the absolute value of accelerometer readings. Let
{sx(k), sy(k), sz(k)} be the kth acceleration along x, y,
and z axes, and T (k) be the timestamps. AccelPrint
calculates sampling intervals I(k) and the root sum square
(RSS) of accelerometer readings S(k) as follows.{

I(k) = T (k + 1)− T (k)

S(k) =
√

s2x(k) + s2y(k) + s2z(k)

Since {sx(k), sy(k), sz(k)} are not sampled at a fixed
interval, the derived values {T (k), S(k)} are not equally-
spaced. This makes the frequency domain characteristics
difficult to compute. Hence, AccelPrint employs a cubic
spline interpolation [44] to construct new data points such
that {T (k), S(k)} are now equally-spaced.

Feature Selection. We extract 40 scalar features in both
time and frequency domains using LibXtract [3], a popular
feature extraction library. The time domain features are
calculated using {T (k), S(k)} prior to interpolation, and the
frequency domain features are drawn from the interpolated
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version. Since we consider features for both S(k) and I(k)
(where I(k) is the interval between samples), a total of
80 features are available for use. To select features, we
ranked features using the FEAST toolbox [7] and utilized
the joint mutual information criterion for ranking (known to
be effective for small training data [14]). From the results,
we select the top 8 time domain features (see Table I) and
top 10 frequency domain features (see Table II). In total, 36
features are used to construct the fingerprint.

TABLE I: List of Time Domain Features. Vector x is the
time domain representation of the data. N is the number of
elements in x.

Feature Name Description

Mean x̄ = 1
N

N∑
i=1

x(i)

Std-Dev σ =

√
1

N−1

N∑
i=1

(x(i)− x̄)2

Average Deviation Dx̄ = 1
N

N∑
i=1
|x(i)− x̄|

Skewness γ = 1
N

N∑
i=1

(
(x(i)−x̄)

σ

)3

Kurtosis β = 1
N

N∑
i=1

(
(x(i)−x̄)

σ

)4
− 3

RMS Amplitude A =

√
1
N

N∑
i=1

(x(i))2

Lowest Value L = (Min(x(i))|i=1 to N )

Highest Value H = (Max(x(i))|i=1 to N )

TABLE II: List of Frequency Domain Features. Vector y is
the frequency domain representation of the data. Vectors ym
and yf hold the magnitude coefficients and bin frequencies
respectively. N is the number of elements in ym and yf .

Feature Name Description

Spec. Std Dev σs =

√(
N∑
i=1

(yf (i))2 ∗ ym(i)

)/( N∑
i=1

ym(i)

)
Spec. Centroid Cs =

(
N∑
i=1

yf (i)ym(i)

)/( N∑
i=1

ym(i)

)
Spec. Skewness γs =

(
N∑
i=1

(ym(i)− Cs)3 ∗ ym(i)

)
/σ3
s

Spec. Kurtosis βs =

(
N∑
i=1

(ym(i)− Cs)4 ∗ ym(i)

)
/σ4
s − 3

Spectral Crest CRs = (Max(ym(i))|i=1 to N ) /Cs

Irregularity-K IKs =
N−1∑
i=2

∣∣∣ym(i)− ym(i−1)+ym(i)+ym(i+1)
3

∣∣∣
Irregularity-J IJs =

N−1∑
i=1

(ym(i)−ym(i+1))2

N−1∑
i=1

(ym(i))2

Smoothness Ss =
N−1∑
i=2

∣∣∣20.log(ym(i))−(
20.log(ym(i−1))+20.log(ym(i))+20.log(ym(i+1))

)
3

∣∣∣
Flatness Fs =

(
N∏
i=1

ym(i)

) 1
N /(( N∑

i=1
ym(i)

)
/N

)
Roll Off Rs = SampleRate

N ∗ n
∣∣∣ n∑
i=1

ym<Threshold

Formally, for a trace i, we denote F(I)i and F(S)i
as the set of selected features of I(k) and S(k), respec-
tively. The fingerprint of this trace is then represented by
< F(I)i,F(S)i > .

C. Fingerprint Matching

AccelPrint uses supervised learning to classify
smartphone accelerometers, beginning with a training phase
followed by testing (or classification). During training, n
traces from a smartphone are collected for extracting finger-
prints, and the n sets of features < F(I)i,F(S)i >i∈[1,n]

are used to train the classifier. For m smartphones, n×m sets
of features can be used to train the classifier all together. In
addition, given n set of features that constitute the fingerprint
of a new smartphone, the classifier database can be updated
to incorporate the new smartphone. We employ an ensemble
classification approach for training mainly to achieve robust-
ness over any single classification approach [12], [21], [42],
[54]. Among various ensemble techniques possible, we use
Bagged Decision Trees [13] for ensemble learning.

During the testing phase, AccelPrint collects a trace,
extracts a set of features < F(I),F(S) >, and inputs to
the classifier. The classifier either outputs a positive match
with one of the phones that it has been trained with, or
indicates an “alien”, implying that this accelerometer is not
from any of the phones used for training. In such a case,
AccelPrint initiates a training request that collects n
traces from the alien smartphone, inserts a new entry to the
classifier database, and re-trains the system. Although false
negatives could occur, additional side-information could be
leveraged to exercise caution before re-training. For instance,
enforcing the rule that the classifier can be re-trained only
when the trace is the first one collected by an app since
installation, could improve the confidence in re-training.

To distinguish an alien device from the known devices,
we apply a threshold on the classification score – if the
classification score is less than the threshold, then the trace
is declared “alien”. Figure 6 plots the classification scores
for both alien and pre-registered phones (the first half of
the X-axis are traces drawn from alien devices, and the vice
versa). Observe that the alien phones generally present a
relatively low score and a threshold for reliable segregation
is not hard to find. In AccelPrint, we have picked the
threshold to be 0.6.

V. PERFORMANCE EVALUATION

We have evaluated the performance of AccelPrint
using 80 stand-alone accelerometer chips, 25 smartphones
and 2 tablets. The key questions we investigated and the
corresponding findings are summarized below.

• How much training is needed to learn the finger-
print? We find that 30 seconds of accelerometer
trace is sufficient to model a device’s fingerprint.

• Does the fingerprint manifest only at the fastest
sampling rate? No, even at slower sampling rates,
devices exhibit distinguishing features. However, the
performance is slightly better at faster rates.
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Fig. 6: The threshold for segregating alien phones can be
chosen from a wide range, indicating robustness.

• Does the system need to be aware of the surface on
which a device is placed? No. Whereas training on
a variety of surfaces improves the performance, the
system itself is surface-agnostic.

• Can we mask the fingerprint of a device with a
case? The fingerprints of a device with and without
a case are different. However, similar to surfaces,
by training with and without a case, a device can
be classified with high precision.

• Is the system sensitive to CPU load? Somewhat. If
the difference in CPU load at the time of training
and testing is less than 40%, it does not significantly
affect the performance of AccelPrint.

• Can we fingerprint a device without vibration?
Yes. Even when the devices are kept still, their
accelerometers yield somewhat distinct readings al-
lowing them to be fingerprinted, albiet with lower
precision. However, a device can be fingerprinted
with rotational motion as well as that with vibration.

We now begin by describing the experimental setup and
the performance metrics used for evaluation.

A. Experimental Setup

We have conducted experiments with 80 accelerometer
chips of 3 types, 25 Android phones of 5 different models,
and 2 tablets. We collect 50 accelerometer traces for each of
the 80 chips and 27 phones/tablets, a total of 5350 traces. 1

The stand-alone accelerometer chip setup is described below.

1) Stand-alone Accelerometer Chip Setup: We have con-
ducted experiments with 3 types of accelerometer chips,
60 MPU-6050, 10 ADXL-345, and 10 MMA-8425q. We
prepare a setup to collect data from all stand-alone ac-
celerometer chips under the same environment. The setup

1The raw data and the source code for this paper can be found at http:
//web.engr.illinois.edu/~sdey4/AccelPrintDataSourceCode.html.

has three main components: 1) the breadboard that holds the
accelerometer chips and the vibrator motor, 2) the Arduino
that is connected to various components on the breadboard
with wires and 3) the server that stores the collected data
and it is connected to the Arduino with a USB cable.

Arduino has an 8-bit RISC-based microcontroller [9]
as its main component and provides 14 input/output pins
to connect to the external circuits. We control the on-
board vibration motor with Arduino so that it will be turned
on and off periodically. In addition, the Arduino can connect
to a server with a USB interface, and communicate with the
stand-alone chips via serial communication. Thus, Arduino
helps transfer data from the stand-alone chips to the server.

We used a breadboard to arrange the accelerometer chip
and the vibrator motor as an evaluation unit. The connections
between various components on the breadboard and the
Arduino are made with jump wires. We also attached a
small piece of acrylic board under the breadboard to make
the weight of this evaluation unit comparable to that of a
smartphone. The on-board vibrator motor generated stim-
ulation to the accelerometer chip. We chose a lightweight
vibrator motor similar to the model used in a majority
of our experimental smartphones. This motor was firmly
soldered to the breadboard and connected to one of the
digital pins of the Arduino board. The only removable
component in this setup was the accelerometer chip. Because
the accelerometer is tiny and difficult to operate, we procured
the chips mounted on breakout boards [25] so that we can
access the pins of the chip through the header pins soldered
with the breakout board. This setup is shown in Fig. 3.

2) Smartphone Setup: We have experimented with 25
Android phones of five different models and 2 tablets: i)
8 Nexus One; ii) 7 Samsung Galaxy Nexus; iii) 6 Samsung
Galaxy S3 iv) 2 Nexus S; v) 1 HTC Incredible Two; and vi) 1
HTC MyTouch vii) 2 Samsung Galaxy Tab 2. The sampling
mode is set to “Fastest”, and to stimulate the accelerometer,
we use internal vibration motor of the devices.

3) Data Collection Setup: Using each of the chips and
devices, we have conducted experiments in our lab to gather
sensor readings. Either the internal vibration motors or the
stand-alone motor is used to stimulate the accelerometer for
2 seconds and the accelerometer readings are recorded with
the sampling mode set to “Fastest” by default. We refer to
this 2 seconds of accelerometer data as trace.

To exclude any possibility that the fingerprints may be an
outcome of a unique physical arrangement of the motor and
stand-alone chips, we collect traces in a round robin manner.
In the first round, we collect 10 traces from each chip and
smartphone. Once 10 traces from each device are collected,
then we move to the next round and similarly collect 10
traces from each device. Thus, in total, it takes 5 rounds to
collect 50 traces from each and every device.
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To obtain statistically significant results, we evaluate our
system under each setting 10 times. Unless specified, each
time we randomly chose 15 traces out of 50 traces as our
training sample set, and used the rest as the testing sample
set. Thus, in total 3745 randomly chosen traces were used
for testing and 1605 traces were used for training each time.

B. Performance Metrics

Let k be the total number of devices or classes. Given an
accelerometer trace, AccelPrint classifies it as belonging
to one of these classes. Then, based on the ground truth, for
each class i, we define TPi as the true positives for class i,
i.e., the number of traces that are correctly classified as i.
Similarly, FNi, and FPi, respectively refer to the number
of traces that are wrongly rejected, and wrongly classified as
i. Now, we can define the standard multi-class classification
metrics, precision, and recall, as follows.

precisioni =
(TPi)

(TPi + FPi)

recalli =
(TPi)

(TPi + FNi)

Then, we can compute the average precision and recall.

average precision =

∑k
i=1 precisioni

k

average recall =
∑k
i=1 recalli

k

To evaluate the overall performance of the multi-class
classification in the presence of alien devices (untrained
devices), we use accuracy as the metric. Given that a multi-
class classifier is trained by n classes and is tested by n
classes and m aliens, we define accuracy as below.

accuracy =
(
∑n
i=1 TPi +

∑m
j=1 TNj)

N

where N is the total number of testing traces, TPi is the true
positive for class i and TNj as the true negative for alien
class j, i.e., alien class j being rejected by the classifier.

C. Overall Performance

In the first set of experiments, we trained the system
with 15 traces and tested it with the rest 35 traces from
each of the 107 chips/phones/tablets. The resulting average
classification score for each device is shown on a heat map
(aka. a confusion matrix) in Figure 7. In the confusion matrix
plot, the darker the shade, the higher the classification score.
Evidently, the diagonal cells are the darkest, implying that
the traces from device i were indeed classified as class
i. While there are a few gray cells appearing outside the
diagonal cells, instances of misclassification are rare. This
is because the classifier picks the device with the maximum
score, as long as the score is greater than a predefined
threshold (used for segregating alien phones).
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Fig. 7: Overall performance: confusion matrix.

The confusion matrix contains some clusters, e.g, a clus-
ter of devices numbered from 0 to 49. Note that the device
numbers 0 to 79 represent the standalone chips whereas the
device numbers 80 to 104 map to the 25 smartphones, and
the last two devices correspond to the two tablets used in this
experiment. In particular, the devices numbered from 0 to 49
represent the standalone chips of the same brand, the same
model, and the same manufacturing company (i.e., MPU
6050). Therefore, they are more likely to be confused with
each other than another device. Still, the following results
show that a device can be identified with high precision.

Zooming into the results, we compute the precisioni
and recalli for each class i, and plot the CDF of their
distributions in Figures 8a, 8b, 9a and 9b for chips and
smartphones. Even with 5 training traces (amounting to
10 seconds of training) for both chips and smartphones,
both precision and recall are above 75% for all classes.
The tail for both precision and recall gets shortened as the
training size increases to 10, with none of the classes having
precision below 85%. This is true for the smartphones as
well as the MEMS chips. With training size 15, the worst
case precision improves to 87%, while the average precision
and recall are both above 99%. Since 30 seconds of training
traces are not unreasonable (a malware in a phone could
silently collect data from time to time and accumulate up to
30 second traces when an incoming call rings the phone),
we set the number of training traces to 15 in the rest of the
evaluation.

Next, we consider several factors that could affect our
ability to model fingerprints and classify devices. The rate at
which an app samples the accelerometer readings depends on
the configured mode as well as the CPU load. The surface on
which the phone is placed may influence the vibration sensed
by the accelerometer. In view of operations in uncontrolled
environments, we study the impact of these factors on the
fingerprint classification performance.
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Fig. 8: Overall performance for chips: (a) precision; (b)
recall.

D. Significance of Sampling Rate

The Android OS allows four different sampling rates for
the accelerometer. These with decreasing rates are: i) Fastest;
ii) Game; iii) UI; and iv) Normal. The sampling rate of the
Fastest mode on our devices varies from around 100 Hz to
20 Hz, depending upon the hardware/software specification
and the activity level. However, the rate of the Normal mode
remains the same for all the devices (around 4 Hz).

To study the effect of sampling rates on fingerprinting,
we conduct experiments with each of the four modes. The
results of these experiments are shown in Fig. 10, from
which we observed that the faster the sampling rate is, the
higher the precision and recall are. Nevertheless, even at the
slowest rate (i.e., the Normal mode at 4 Hz), precision and
recall are both above 80%. This indicates that with only
4 accelerometer samples per second, different devices can
be distinguished with reasonable amount of precision. Of
course, a faster sampling rate does improve the likelihood
to distinguish devices, and subtle differences between ac-
celerometers can be discerned with a higher precision.

E. Impact of CPU Load

To understand the impact of CPU load on the fingerprints
of devices, we create a background process using Android
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Fig. 9: Overall performance for smartphones: (a) precision;
(b) recall.
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IntentService class to control the CPU load and measure its
effect on AccelPrint. The background process works in
a duty cycle and alternates between awaken and sleeping
status. For the ease of discussion, we define the percentage
of time that the background service remains awake as “load
level”. To measure the impact of load, we first train our
system with 0 load level. Then we test it with traces collected
at four different load levels (0%, 20%, 40% and 60%). Sim-
ilarly, we trained the classifier with traces collected at 20%,
40% and 60% load levels, respectively, and tested on the rest
of load levels. We depicted the precision of AccelPrint
in all training-testing scenarios as a heat diagram (shown
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in Figure 11). In the heat diagram, the darker the region
is, the higher the precision is. We observed that when we
trained and tested the system with the traces collected at
the same CPU load (diagonal region), we achieve a high
precision, whereas as we increased the load level difference
between train and test cases, the precision reduced. This is
because at higher loads, some of the accelerometer readings
get skipped, yielding different set of features. Nevertheless,
the precision is above 80% when the load difference is within
40%. Overall, these results show that when the difference
of load levels at the time of training and testing is similar,
AccelPrint can distinguish devices with a high precision.
That is, modest load difference does not significantly affect
the performance of AccelPrint.
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Fig. 11: Precision with varying CPU loads

F. Impact of Smartphone Casing

People typically use cases for phones and hence it is
pertinent to understand how a smartphone’s case affects its
accelerometer’s response to vibration. Commonly used cases
include two types: the hard covers made of plastic and the
soft covers made of rubber/leather. We conducted experi-
ments using both types of covers and collected accelerometer
readings of phones with and without those covers. The
results of the experiments are shown in Figure 12.
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Fig. 12: Performance with and without phone cases

When the training is done using the traces of the phones

without cases and then the testing is done with the phones
with cases, and vice versa, the precision and recall is below
80%. Thus, a phone’s case does influence its accelerometer’s
response to vibration and change the fingerprints of the
phone. However, when the system is trained and tested
on traces that were collected on the phones with a case,
AccelPrint’s performance is not affected, which means
having the case itself did not affect the classification of a
phone. Furthermore, when the system is trained on a mix
of traces that were collected on phones with and without
cases, AccelPrint can classified all phones with high
precision and recall. Considering that people do not change
their phone’s case often, the fingerprint of its accelerometer
remains the same and can be utilized to identify the phone.

G. Impact of Surface

The amount of stimulation generated by a smartphone’s
vibration motor may depend upon the surface on which it is
placed. To measure the impact of surface on device finger-
prints, we collected accelerometer readings while keeping
smartphones on four types of surfaces: a wooden table, a
carpeted floor, a sofa cushion and on top of a palm. We
trained AccelPrint with traces from one surface and
tested with traces from all surfaces. We repeated this process
for all four types of surfaces. We have also trained the system
with a mix of traces that were collected on all four surfaces
(we kept the number of training traces for each surface the
same), and tested upon traces collected on all surface traces.
The results of these experiment are shown in Figure 13.

 0

 0.2

 0.4

 0.6

 0.8

 1

Table Floor Hand Cushion All

A
v
e
ra

g
e
 P

re
c
is

io
n
/R

e
c
a
ll

Training Surface

Precision
Recall

Fig. 13: Performance with different surfaces

When AccelPrint is trained by placing the phones on
a table and then tested by placing them also on the carpet,
on the cushion, and in a hand, it classifies all phones with
an average precision of around 80% and recall close to 60%.
The reduced precision and recall are caused by the different
hardness of the surfaces. Compared to a table, a cushion
is softer and can absorb a larger amount of vibration, and
hence accelerometer readings are affected accordingly. If the
training set includes enough diversity, e.g., when we train
the system with traces from each surface, AccelPrint
can classify each phone with 98% precision and recall,
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regardless of the surface types. This is encouraging, since
AccelPrint can achieve a high performance without
having to explicitly specify the surface while testing a trace.
In other words, AccelPrint is surface-agnostic.

H. Scalability of AccelPrint

In an academic lab setup, it is difficult to test a system
with a very large set of devices. However, to get a sense of
how well the system scales, we conduct an experiment where
we increase the number of devices considered gradually and
measure the performance of the system at each stage. In the
first stage, we consider only 20 randomly chosen devices,
train and evaluate the system with their traces. Next, we
increase this number to 40 devices and we again evaluate our
system. This way we keep increasing the number of devices
in each stage and measure the system’s performance.

Table III shows how accuracy changes with the increas-
ing number of devices. From this table, we can observe that
although the number of devices increases, the accuracy of
the system does not change significantly. Figure 14 shows
the precision and recall of the system for different number
of devices considered. This figure also shows that the system
performance does not change much for the larger set. These
results provide encouraging signs that AccelPrint is
likely scalable to a large number of devices.

TABLE III: Accuracy for increasing number of known
devices

Number of devices Accuracy
20 0.9917
40 0.9958
60 0.9956
80 0.9908

100 0.9883
107 0.9907
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Fig. 14: Precision/Recall for known devices

I. Impact of Alien Devices

In real life, it is very likely that AccelPrint needs
to classify the traces of the devices, i.e., alien devices,
for which it is not trained beforehand. To understand how
it performs for the traces collected from alien devices,
we conduct the following experiment. Out of 107 devices,
we randomly choose 20 devices for training and those 20
devices are never used for testing. Out of the rest 87 devices,
first we randomly choose 20 alien devices for testing, and
evaluate the performance of the system. In the next stage, we
choose total 40 alien devices and repeat the same process.
Thus, we include all the alien devices gradually and obtain
a measure of the scalability of AccelPrint.

Table IV show the overall accuracy with the increasing
number of alien devices, whereas figure 15 shows the
precision and recall for the same. These results indicate
that AccelPrint can successfully reject the alien devices
using the threshold value of the classification score. Further,
the overall performance of the system does not change much
with the increasing number of alien devices.

TABLE IV: Accuracy for increasing alien devices

Number of devices Accuracy
20 0.9917
40 0.9950
60 0.9983
80 0.9963
87 0.9883
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Fig. 15: Precision/Recall for alien devices

J. Impact of Stimulation

The experiments we described thus far employ vibration
to stimulate the accelerometer. So it is natural to raise three
questions. 1) Are we fingerprinting the accelerometer or the
combination of accelerometer and vibration motor? 2) Can
a device be fingerprinted with a different stimulation other
than vibration? 3) How about fingerprinting a device without
any stimulation? In this section, we attempt to answer these
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questions. First, we subject smartphones to rotational motion
and show that it works as well as vibration in fingerprinting
devices. This experiment, in addition to the experiments with
stand-alone accelerometer chips, confirm that accelerometer
can be fingerprinted (even if vibration motor contributes
to the fingerprint of a smartphone). Second, we perform
experiments keeping devices still and show that they can
be discriminated to some extent without any stimulation.

1) Fingerprinting with external rotational motor: In this
setup, we use an external DC motor and an Arduino con-
troller [2] to stimulate the smartphones through rotational
motion. The Arduino controller rotates the DC motor in the
same 2-sec pattern as above to maintain consistency. The
DC motor is attached to a platform that is used to hold the
smartphone. The entire setup is shown in Figure 16. In this
experiment we use only the smartphones as the size of the
platform was not suitable for the tablets. Here as we use only
one common motor for all the smartphones, the rotational
motor has no impact on the fingerprint of the smartphones.
However this is worth mentioning that we also collect traces
from this setup in a round robin fashion as stated previously.

Fig. 16: Smartphone with external motor for rotation.

The precision and recall of this setup is shown in Fig. 17.
We compute the precision and recall for all the smartphones
individually and then plot their CDF in Figures 17a and
17b. Here for 5 training traces (amounting to 10 seconds of
training), both precision and recall are above 84% for all
classes. As we increase the number of training traces, the
tail for both CDFs get shortened. If we consider 15 training
traces, then all the smartphones are above 90%. For training
size 15, the average precision and recall are both above 97%.

2) Fingerprinting without stimulation: To understand if
the fingerprint can be extracted without any stimulation, we
conduct an experiment where we put the smartphones still
on the table and collect the traces in this setup.

The precision and recall of this setup is shown in Fig. 18.
As done in the previous section, here also we compute the
precision and recall for all the smartphones individually to

plot the CDF of their distributions in Figures 18a and 18b.
Here for 5 training traces, both precision and recall are above
65% for all classes. Here even if we increase the number of
training traces, the tail for both CDFs do not get shortened
as fast as in Figure 9. We surmise this because accelerometer
chip has a mechanical part and an electronic part. Without
stimulation, the movable mechanical part does not play any
role in the fingerprint and we cannot capture the imperfection
of the movable part. That is why the system performs worse
compared to that with external stimulation.

To summarize, our evaluation using 107 different types
of stand-alone chips, smartphones, and tablets shows that
they can be identified robustly leveraging the fingerprints
of their accelerometers. While even larger study is needed
to confirm the scalability of our findings, to the best of
our knowledge, this is the first work to attempt device
identification based on fingerprints of accelerometers.

VI. RELATED WORK

A. Device Fingerprinting

Fingerprints are originally used as a biometrics tech-
nology to identify human beings [58], [62]. The concept
was applied to device identification as early as in 1960s,
when a “specific emitter identification” system that utilizes
externally observable characteristics of signals was devel-
oped to distinguish radars [61]. Later, the similar technology
was used to identify transmitters in cellular networks [26],
[39], [56]. Since then, much effort has been devoted to
identifying network devices by building a fingerprint out of
their software or hardware.

In terms of software-based fingerprint, MAC address
was exploited to detect the presence of multiple 802.11
devices [32], [66]. The combination of chipsets, firmware
and device drivers [30], timing interval of probe request
frames [19], or the patterns of wireless traffic [50] were
also used to identify devices. An open source toolkit for
network administrators [40] utilizes software configuration
for network discovery. The downside of these methods is that
fingerprints will be different once computer configuration or
traffic behavior changes.

Another approach of the software based fingerprinting is
to exploit the browser properties and plugins to figure out
unique identifiers [23]. Researches [48], [68] shows that the
log files of Bing and Hotmail and web browser history can
potentially reveal the identity of the client. The web viewing
time [31] or the benchmark execution time of the javascript
[46] can also help to fingerprint a device.

Hardware-based approaches rely on stable fingerprints.
Network devices have different clock oscillators that create
stable and constant clock skews [53], [60], which can be
estimated remotely using TCP and ICMP timestamps for de-
vice fingerprinting [37]. Radio frequency (RF) fingerprinting
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Fig. 17: Precision and recall of smartphones with external motor for rotation
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Fig. 18: Precision and recall of smartphones without any stimulation

has been extensively studied to identify wireless transmitters
and can be divided into two categories: channel-based and
device-based. Channel-based methods estimate the channel
impulse response that characterizes multipath effect [51] and
attenuation [29], [70] between a transmitter and a receiver
for RF fingerprinting. Device-based methods rely on the
distinct radiometrics of transmitters at the waveform [33]–
[35], [41], [57], [63] or modulation [64] levels. Wired
Ethernet NICs can also be identified by analyzing their
analog signals [55].

Our work is inspired by the aforementioned device
fingerprinting work. Instead of wireless or wired transmit-
ters, we focus on fingerprinting smartphones utilizing the
imperfections of on-board sensors.

B. Privacy and Side Channel

Sensor-rich smartphones and tablets are increasingly
becoming the target of attacks for harvesting sensitive
data [24]. Enck et al. [27], [28] showed the potential

misuse of users’ private information through third-party
applications, and Schlegel et al. [59] demonstrated that a
smartphone’s microphone can be used maliciously to retrieve
sensitive data.

Since Cai et al. pointed out that smartphones built-in
sensors (e.g., GPS, microphone and camera) can be used as
a side channel to record user actions by stealthily sniffing
on them [17], several systems (e.g., TouchLogger [15],
ACCessory [49], Taplogger [67]) have been built. They
have shown that collecting data from an accelerometer or a
gyroscope alone is enough to infer the sequences of touches
on a soft keyboard. Cai et al. [16] compared gyroscopes and
accelerometers as a side channel for inferring numeric and
soft-keyboard inputs. They found that inference based on the
gyroscope is more accurate than the accelerometer. Milluzo
et al. went one step ahead to develop TapPrint [45] that
uses gyroscopic and accelerometer reading in combination
to infer the location of tapping on tablet and smartphone
keyboards. In addition, it was shown that accelerometer
readings can be used to infer not only PINs but also
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Android’s graphical password patterns [11].

Inferring keystrokes on a regular keyboard has attracted
much attention. Electromagnetic waves [65], acoustic sig-
nals [71], timing events [38], and specialized software [36]
were exploited to intercept the keystrokes with high ac-
curacy. It is also possible to infer keystrokes using the
accelerometer readings from an iPhone placed two inches
away from the keyboard.

Instead of treating sensors as a side channel, we focus
on the built-in fingerprint of a smartphone for device iden-
tification.

VII. LIMITATIONS AND DISCUSSION

(1) Scalability. Accelerometer fingerprints may not need
to be globally unique to pose a threat. For instance, if a
smartphone accelerometer in the US proves to be identical
to another in Taiwan, the backend adversary may still be able
to disambiguate using the device’s cell tower location. Put
differently, broad location, device type, and other contextual
factors can relax the stringency on uniqueness. Moreover,
combining additional sensors within the fingerprint, such as
the gyroscope and the microphone, can further increase the
ability to discriminate. From crude measurements, we have
observed that the gyroscope also responds to stimuli from
the phone’s vibration motor. For the microphone, it may be
feasible to play a fixed audio file through the speakers, and
the recording processed for the fingerprint.

(2) Scrubbing the Fingerprint. In an attempt to scrub
the fingerprint, we first attempted to compute the resting
acceleration of each device, i.e., the acceleration value when
the phone is completely at rest on a pre-defined location.
Given that the resting values are different across phones, we
equalized the RSS values by suitably adding or subtracting
from the signal. Still, the fingerprinting accuracy did not
degrade since the uniqueness probably arose from a wide
range of features. Equalizing across all these features is cer-
tainly difficult. Alternatively, we added 0dB white Gaussian
noise to the signal, but observed only a marginal drop in
precision and recall (to 93%). Upon adding 5dB of noise,
the performance dropped sharply, but other higher level
operations were also affected severely. Finally, we used a
low pass filter to eliminate the high-frequency components
of the signal, but again was not able to remove the fingerprint
without affecting the application. We opine that fingerprint
scrubbing requires closer investigation, and will be a critical
next step to AccelPrint.

(3) Influence of the version of Operating Systems.
We have used the Android operating system (ice cream
sandwich and gingerbread) for all the smartphones. Between
all phones using the identical OS version, the fingerprints are
still discernible, implying that AccelPrint is not affected
by the OS versions.

VIII. CONCLUSION

This paper shows that accelerometers possess unique
fingerprints. As standard components inside smartphones
and tablets, accelerometers’ fingerprints create new threats
in mobile apps — tracking users without cookies or device
IDs. The fingerprints stem from the core of accelerometers:
an electro mechanical moving part holds the key to sensing.
The manufacturing of such moving parts are susceptible to
imperfections, bringing about diversity in the behavior of
accelerometers. This diversity is not conspicuous from a
higher level since various operations such as step-counts and
display rotations are tolerant to noise. However, when the
properties of these imperfections are deliberately extracted,
they lead to a sensor fingerprint, adequate to identify a
device, and even an user. Our results on 80 standalone
accelerometer chips, 25 Android phones, and 2 tablets offer
confidence that such fingerprints exist, and are visible even
in real, uncontrolled environments. While commercial-grade
measurements are necessary towards a conclusive result,
we believe that our lab findings are still an early and
important step for understanding sensor fingerprints and their
consequences at large.
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