.3 THE ASSOCIATED MIXED-RADIX SYSTEM

Magnitude comparison, sign detection, and overflow detection for the residue number system can be facilitated by converting the given residue representations into the associated mixed-radix number system. This is a weighted number system, with the representation for a number X given by

$$X = a_N \cdot (m_{N-1} \cdot m_{N-2} \cdots m_1) + \cdots + a_3 \cdot (m_2 \cdot m_1) + a_2 \cdot m_1 + a_1 \quad (11.10)$$

with the digits a_i satisfying

$$0 < a_i < m_i; \qquad i = 1, 2, \dots, N.$$
 (11.11)

Being a weighted number system implies that magnitude comparison is straightforward. For example, the values 0,1,2,3,4 and 5 in the mixed-radix system associated with the (3,2) residue system (see Table 11.1) are represented by (0,0), (0,1), (1,0), (1,1), (2,0), and (2,1), respectively. The value of a pair (a_2,a_1) in this mixed-radix system is $2 \cdot a_2 + a_1$.

Example 11.4

In the mixed-radix system associated with the $(m_4, m_3, m_2, m_1) = (7, 5, 3, 2)$ residue system, a number X is represented by (a_4, a_3, a_2, a_1) , where

$$X = 30 \cdot a_4 + 6 \cdot a_3 + 2 \cdot a_2 + a_1$$

and the digits a_i satisfy $0 \le a_4 < 7$, $0 \le a_3 < 5$, $0 \le a_2 < 3$ and $0 \le a_1 < 2$. The numbers 43 and 37 are represented by (1,3,1,1) and (2,2,1,1) in the given residue system, respectively. The corresponding representations in the associated mixed-radix system are (1,2,0,1) and (1,1,0,1), respectively. These last two representations can be compared indicating that 43 is greater than 37.

Any two numbers in a given residue system can be compared by converting them into the associated mixed-radix system. Converting a number represented by $(x_N, x_{N-1}, \dots, x_1)$ in the residue system to the associated mixed-radix representation $(a_N, a_{N-1}, \dots, a_1)$ is performed using the following equations [7]:

$$a_{1} = X \mod m_{1} = x_{1}$$

$$a_{2} = (X - a_{1}) \left| \frac{1}{m_{1}} \right| \mod m_{2}$$

$$a_{3} = \left((X - a_{1}) \left| \frac{1}{m_{1}} \right| - a_{2} \right) \left| \frac{1}{m_{2}} \right| \mod m_{3}$$

$$\vdots$$

$$(11.12)$$

This calculation can be done in residue arithmetic, as can be easily verified through the following representation of the procedure in Equation (11.12):

$$Y_{i+1} = (Y_i - a_i) \left| \frac{1}{m_i} \right| \quad \text{with} \quad Y_1 = X$$

$$a_i = Y_i \mod m_i \tag{11.13}$$

Example 11.5

To convert a number X represented by (x_4, x_3, x_2, x_1) in the residue system with the moduli $(m_4, m_3, m_2, m_1) = (7, 5, 3, 2)$ to the associated mixed-radix system, the following equations can be used:

$$a_1 = X \mod 2 = x_1,$$

$$a_2 = (X - a_1) \left| \frac{1}{2} \right| \mod 3,$$

$$a_3 = \left((X - a_1) \left| \frac{1}{2} \right| - a_2 \right) \left| \frac{1}{3} \right| \mod 5,$$

$$a_4 = \left(\left((X - a_1) \left| \frac{1}{2} \right| - a_2 \right) \left| \frac{1}{3} \right| - a_3 \right) \left| \frac{1}{5} \right| \mod 7.$$

It is more convenient to follow the algorithm in Equation (11.13) and execute the conversion in the residue system. For example, we convert the number 43 represented by (1,3,1,1) as follows:

$$Y_1 = (1, 3, 1, 1)$$
 and therefore, $a_1 = Y_1 \mod 2 = x_1 = 1$.

To obtain Y_2 we first subtract a_1 from Y_1 , yielding (0,2,0,-). Note that only the first three digits in Y_2 are of interest, since a_1 is already known. We then multiply by $|\frac{1}{2}|$, which equals (4,3,2,-), obtaining $Y_2 = (0,1,0,-)$. Thus, $a_2 = Y_2 \mod 3 = 0$. Subtracting $a_2 = 0$ yields (0,1,-,-). Next we multiply by $|\frac{1}{3}|$, which equals (5,2,-,-), yielding $Y_3 = (0,2,-,-)$. Therefore, $a_3 = Y_3 \mod 5 = 2$. Subtracting $a_3 = 2$ we get (5,-,-,-). We then multiply by $|\frac{1}{5}|_7 = 3$, yielding $Y_4 = (1,-,-,-)$. Thus, $a_4 = 1$ and the representation of 43 in the mixed-radix system is $(a_4,a_3,a_2,a_1) = (1,2,0,1)$.

The mixed-radix system is useful for overflow detection as well. For this purpose, we should add a redundant modulus m_{N+1} to the basic set of N moduli. Here, the term redundant modulus means that we use only the range determined by the original N moduli. For overflow detection we convert the given representation $(x_{N+1}, x_N, \dots, x_1)$ to the associated mixed-radix system. If $a_{N+1} \neq 0$ then an overflow has occurred.