Dot Product 000 Cross Product

Linear Algebra Review

CMSC 435/634

・ロット (四)・ (目)・ (日)・ (日)

.

Matrices 00000 Dot Product 000 Cross Product

Abstract Vectors

 $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$

Matrices 00000 Dot Product 000 Cross Product

Abstract Vectors

 $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$

• Addition: $\vec{u} + \vec{v}$ is a vector

Dot Product 000 Cross Product

Abstract Vectors

 $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$

- Addition: $\vec{u} + \vec{v}$ is a vector
- Scalar Multiplication: aū is a vector

Dot Product

Cross Product

Abstract Vectors

 $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$

- Addition: $\vec{u} + \vec{v}$ is a vector
- Scalar Multiplication: aū is a vector
- Commutitive: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$

Matrices 00000 Dot Product

Cross Product

Abstract Vectors

 $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$

- Addition: $\vec{u} + \vec{v}$ is a vector
- Scalar Multiplication: aū is a vector
- Commutitive: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- Distributive: $(a + b)\vec{u} = a\vec{u} + b\vec{u}$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 めんの

Matrices 00000 Dot Product

Cross Product

Abstract Vectors

 $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$

- Addition: $\vec{u} + \vec{v}$ is a vector
- Scalar Multiplication: aū is a vector
- Commutitive: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- Distributive: $(a + b)\vec{u} = a\vec{u} + b\vec{u}$
- Distributive: $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$

Matrices 00000 Dot Product

Cross Product

Abstract Vectors

 $(\vec{u}, \vec{v}, \vec{w} \text{ vectors}; a, b, c \text{ scalars})$

- Addition: $\vec{u} + \vec{v}$ is a vector
- Scalar Multiplication: aū is a vector
- Commutitive: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- Distributive: $(a + b)\vec{u} = a\vec{u} + b\vec{u}$
- Distributive: $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$
- Associative: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$

Matrices	
00000	

Dot Product 000 Cross Product

Basis Vectors

Vector as linear combination of basis vectors

•
$$\vec{v} = 2\hat{i} + 1\hat{j} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

・ロト・「「「・」」・ 「」・ 「」・ (「」・

Matrices	
00000	

Dot Product

Cross Product

Basis Vectors

Vector as linear combination of basis vectors

•
$$\vec{v} = 2\hat{i} + 1\hat{j} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

• $\vec{v} = 1\hat{m} + 2\hat{n} = \begin{bmatrix} 1\\2 \end{bmatrix}$

Matrices	
00000	

Dot Product

Cross Product

Basis Vectors

Vector as linear combination of basis vectors

•
$$\vec{v} = 2\hat{i} + 1\hat{j} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

• $\vec{v} = 1\hat{m} + 2\hat{n} = \begin{bmatrix} 1\\2 \end{bmatrix}$
• $\vec{v} = 1\hat{p} + 1\hat{q} = \begin{bmatrix} 1\\1 \end{bmatrix}$

・ロト・「「「・」」・ 「」・ 「」・ (「」・

Matrices 00000 Dot Product 000 Cross Product

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Notation

• Column:
$$\vec{v} = \begin{bmatrix} v_0 \\ v_1 \end{bmatrix}$$

• Some texts use columns for everything

Matrices ○●○○○ Dot Product 000 Cross Product

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○ ○ ○ ○

Notation

• Column:
$$\vec{v} = \begin{bmatrix} v_0 \\ v_1 \end{bmatrix}$$

- Some texts use columns for everything
- Row: $\vec{v} = \begin{bmatrix} v_0 & v_1 \end{bmatrix}$
 - Some texts use rows for everything
 - Results in transposes and swapped order from what we'll use

Matrices 00000 Dot Product 000 Cross Product

Notation

- Column: $\vec{v} = \begin{bmatrix} v_0 \\ v_1 \end{bmatrix}$
 - Some texts use columns for everything
- Row: $\vec{v} = \begin{bmatrix} v_0 & v_1 \end{bmatrix}$
 - Some texts use rows for everything
 - Results in transposes and swapped order from what we'll use
- I like columns for points/vectors, rows for normals

Matrices 00000 Dot Product

Cross Product

Matrices

• Matrix:
$$A = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} = [a_{i,j}] = [a_{row,column}]$$

Matrices 00000

Dot Product

Cross Product

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Matrices

• Matrix:
$$A = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} = [a_{i,j}] = [a_{row,column}]$$

• Transpose: $A^T = \begin{bmatrix} a_{0,0} & a_{1,0} \\ a_{0,1} & a_{1,1} \end{bmatrix} = [a_{j,i}]$

Matrices 00000

Dot Product

Cross Product

Matrices

• Matrix:
$$A = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} = [a_{i,j}] = [a_{row,column}]$$

• Transpose: $A^T = \begin{bmatrix} a_{0,0} & a_{1,0} \\ a_{0,1} & a_{1,1} \end{bmatrix} = [a_{j,i}]$
• Multiply: $AB = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} \begin{bmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{bmatrix}$

・ロト・「「「・」」・ 「」・ 「」・ (「」・

Matrices 00000

Dot Product

Cross Product

Matrices

• Matrix:
$$A = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} = [a_{i,j}] = [a_{row,column}]$$

• Transpose: $A^T = \begin{bmatrix} a_{0,0} & a_{1,0} \\ a_{0,1} & a_{1,1} \end{bmatrix} = [a_{j,i}]$
• Multiply:

$$AB = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} \begin{bmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{bmatrix} = \begin{bmatrix} a_{0,0}b_{0,0} \\ a_{0,0}b_{0,0} \end{bmatrix}$$

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 国 ▶ ◆ 回 ▶

Matrices

Dot Product

Cross Product

Matrices

• Matrix:
$$A = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} = [a_{i,j}] = [a_{row,column}]$$

• Transpose: $A^T = \begin{bmatrix} a_{0,0} & a_{1,0} \\ a_{0,1} & a_{1,1} \end{bmatrix} = [a_{j,i}]$
• Multiply:

• Multiply:

$$AB = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} \begin{bmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{bmatrix} = \begin{bmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} \\ b_{1,0} & b_{1,1} \end{bmatrix}$$

Matrices 00000

Dot Product

Cross Product

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Matrices

• Matrix:
$$A = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} = [a_{i,j}] = [a_{row,column}]$$

• Transpose: $A^T = \begin{bmatrix} a_{0,0} & a_{1,0} \\ a_{0,1} & a_{1,1} \end{bmatrix} = [a_{j,i}]$

• Multiply: $AB = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} \begin{bmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{bmatrix} = \begin{bmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} & a_{0,0}b_{0,1} + a_{0,1}b_{1,1} \\ b_{1,0} & b_{1,1} \end{bmatrix}$

Matrices

Dot Product

Cross Product

Matrices

• Matrix:
$$A = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} = [a_{i,j}] = [a_{row,column}]$$

• Transpose: $A^T = \begin{bmatrix} a_{0,0} & a_{1,0} \\ a_{0,1} & a_{1,1} \end{bmatrix} = [a_{j,i}]$

• Multiply:

$$AB = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} \begin{bmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{bmatrix} = \begin{bmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} & a_{0,0}b_{0,1} + a_{0,1}b_{1,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} \end{bmatrix}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Matrices 00000

Dot Product

Cross Product

Matrices

• Matrix:
$$A = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} = [a_{i,j}] = [a_{row,column}]$$

• Transpose: $A^T = \begin{bmatrix} a_{0,0} & a_{1,0} \\ a_{0,1} & a_{1,1} \end{bmatrix} = [a_{j,i}]$

• Multiply:

$$AB = \begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} \begin{bmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{bmatrix} = \begin{bmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} & a_{0,0}b_{0,1} + a_{0,1}b_{1,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} \end{bmatrix}$$

うせん 前 ふばやふばやふむやる

Matrices 000●0

Dot Product

Cross Product

Matrix Code

• Math: C = A B

• Components:
$$c_{i,j} = \sum_{lpha} a_{i,lpha} \ b_{lpha,j}$$

Code:

```
for(int i=0; i<N; ++i) {
    for(int j=0; j<M; ++j) {
        c[i][j] = 0;
        for(int α=0; α<K; α++) {
            c[i][j] = c[i][j] + a[i][α] * b[α][j];
        }
    }
}</pre>
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろく⊙

Matrices

Dot Product

Cross Product

Adjugate and Inverse

- Inverse: $A^{-1}A = AA^{-1} = I$
- Determinant: |A|

•
$$|a| = a$$

• $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a|d| - b|c|$
• $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$

- Adjugate: $A^* = cof(A)^T$ (matrix of cofactors cof(A))
 - Sometimes called Adjoint or Adjunct

•
$$A^{-1} = \frac{A^*}{|A|}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Matrices 00000 Dot Product

Cross Product

Dot Product

• Also called inner product

Matrices 00000 Dot Product •00 Cross Product

- Also called inner product
 - $\vec{u} \bullet \vec{v}$ is a scalar

Matrices 00000 Dot Product

Cross Product

- Also called inner product
 - $\vec{u} \bullet \vec{v}$ is a scalar
 - Commutitive: $\vec{u} \bullet \vec{v} = \vec{v} \bullet \vec{u}$

Matrices 00000 Dot Product

Cross Product

- Also called inner product
 - $\vec{u} \bullet \vec{v}$ is a scalar
 - Commutitive: $\vec{u} \bullet \vec{v} = \vec{v} \bullet \vec{u}$
 - Distributive: $(a\vec{u}) \bullet \vec{v} = \vec{u} \bullet (a\vec{v}) = a(\vec{u} \bullet \vec{v})$

Matrices 00000 Dot Product •00 Cross Product

- Also called inner product
 - $\vec{u} \bullet \vec{v}$ is a scalar
 - Commutitive: $\vec{u} \bullet \vec{v} = \vec{v} \bullet \vec{u}$
 - Distributive: $(a\vec{u}) \bullet \vec{v} = \vec{u} \bullet (a\vec{v}) = a(\vec{u} \bullet \vec{v})$
 - Associative: $(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$

Matrices 00000 Dot Product •00 Cross Product

- Also called inner product
 - $\vec{u} \bullet \vec{v}$ is a scalar
 - Commutitive: $\vec{u} \bullet \vec{v} = \vec{v} \bullet \vec{u}$
 - Distributive: $(a\vec{u}) \bullet \vec{v} = \vec{u} \bullet (a\vec{v}) = a(\vec{u} \bullet \vec{v})$
 - Associative: $(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$

•
$$\vec{v} \bullet \vec{v} \ge 0$$

Matrices 00000 Dot Product •00 Cross Product

Dot Product

- Also called inner product
 - $\vec{u} \bullet \vec{v}$ is a scalar
 - Commutitive: $\vec{u} \bullet \vec{v} = \vec{v} \bullet \vec{u}$
 - Distributive: $(a\vec{u}) \bullet \vec{v} = \vec{u} \bullet (a\vec{v}) = a(\vec{u} \bullet \vec{v})$
 - Associative: $(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$

•
$$\vec{v} \bullet \vec{v} \ge 0$$

•
$$\vec{v} \bullet \vec{v} = 0 \leftrightarrow \vec{v} = \vec{0}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

Matrices 00000 Dot Product •00 Cross Product

- Also called inner product
 - $\vec{u} \bullet \vec{v}$ is a scalar
 - Commutitive: $\vec{u} \bullet \vec{v} = \vec{v} \bullet \vec{u}$
 - Distributive: $(a\vec{u}) \bullet \vec{v} = \vec{u} \bullet (a\vec{v}) = a(\vec{u} \bullet \vec{v})$
 - Associative: $(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$
 - $\vec{v} \bullet \vec{v} \ge 0$
 - $\vec{v} \bullet \vec{v} = 0 \leftrightarrow \vec{v} = \vec{0}$
- Equivalent notations
 - Vector: $\vec{u} \bullet \vec{v}$
 - Matrix: $U^T V$
 - $\sum_{\alpha} u_{\alpha} v_{\alpha}$

Matrices 00000 Dot Product 000 Cross Product

Dot Defines Length and Angle

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Matrices 00000 Dot Product 000 Cross Product

Dot Defines Length and Angle

•
$$\vec{v} \bullet \vec{v} = |\vec{v}|^2$$

• $\vec{u} \bullet \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$

Dot Product

Cross Product

Dot Defines Length and Angle

- $\vec{v} \bullet \vec{v} = |\vec{v}|^2$
- $\vec{u} \bullet \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$
 - **Defines** angle θ !

θ,

Dot Product

Cross Product

Dot Defines Length and Angle

- $\vec{v} \bullet \vec{v} = |\vec{v}|^2$
- $\vec{u} \bullet \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$
 - Defines angle θ !
 - If $|\vec{v}| = 1$, gives projection of \vec{u} onto \vec{v}

Dot Product

Cross Product

Dot Defines Length and Angle

- $\vec{v} \bullet \vec{v} = |\vec{v}|^2$
- $\vec{u} \bullet \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$
 - Defines angle θ !
 - If $|\vec{v}| = 1$, gives projection of \vec{u} onto \vec{v}
 - If $|\vec{u}| = |\vec{v}| = 1$, gives just $\cos \theta$

Matrices 00000 Dot Product

Cross Product

Orthogonal & Normal

• Orthogonal = perpendicular: $\vec{u} \bullet \vec{v} = 0$

Matrices 00000 Dot Product

Cross Product

Orthogonal & Normal

- Orthogonal = perpendicular: $\vec{u} \bullet \vec{v} = 0$
- Normal (this usage) = unit-length: $\vec{u} \bullet \vec{u} = 1$

Matrices 00000 Dot Product

Cross Product

Orthogonal & Normal

- Orthogonal = perpendicular: $\vec{u} \bullet \vec{v} = 0$
- Normal (this usage) = unit-length: $\vec{u} \bullet \vec{u} = 1$
- Orthonormal: set of vectors both orthogonal and normal

Matrices 00000 Dot Product

Cross Product 00

Orthogonal & Normal

- Orthogonal = perpendicular: $\vec{u} \bullet \vec{v} = 0$
- Normal (this usage) = unit-length: $\vec{u} \bullet \vec{u} = 1$
- Orthonormal: set of vectors both orthogonal and normal
- Orthogonal matrix: rows (& columns) orthonormal
 - For orthogonal matrices, $A^{-1} = A^T$

Matrices 00000 Dot Product 000 Cross Product

3D Cross Product

 $\vec{u} \times \vec{v}$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Dot Product 000 Cross Product

3D Cross Product

 $\vec{u} \times \vec{v}$

• length = area of parallelogram = twice area of triangle

Dot Product 000 Cross Product

3D Cross Product

 $\vec{u} \times \vec{v}$

- length = area of parallelogram = twice area of triangle
 - $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin(\theta)$

Dot Product

Cross Product

3D Cross Product

 $\vec{u} \times \vec{v}$

- length = area of parallelogram = twice area of triangle
 - $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin(\theta)$
- direction = perpendicular to \vec{u} and \vec{v} (right hand rule)

Dot Product

Cross Product

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

3D Cross Product

$\vec{u} \times \vec{v}$ • length = area of parallelogram = twice area of triangle • $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin(\theta)$ • direction = perpendicular to \vec{u} and \vec{v} (right hand rule) • $\vec{w} = \vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{vmatrix} U V \end{vmatrix}$

Dot Product

Cross Product

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

3D Cross Product

$\vec{u} \times \vec{v}$ • length = area of parallelogram = twice area of triangle • $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin(\theta)$ • direction = perpendicular to \vec{u} and \vec{v} (right hand rule) • $\vec{w} = \vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{vmatrix} \quad V \mid$ • $\begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} u_1v_2 - u_2v_1 \\ u_2v_0 - u_0v_2 \\ u_0v_1 - u_1v_0 \end{bmatrix}$

Dot Product

Cross Product

3D Cross Product

$\vec{u} \times \vec{v}$ • length = area of parallelogram = twice area of triangle • $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin(\theta)$ • direction = perpendicular to \vec{u} and \vec{v} (right hand rule) • $\vec{w} = \vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} \\ \hat{j} \\ \hat{i} \end{vmatrix} V V$ • $\begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} u_1 v_2 - u_2 v_1 \\ u_2 v_0 - u_0 v_2 \\ u_0 v_1 - u_1 v_0 \end{bmatrix}$ Positive terms follow 012012 order / negative follow 210210 order

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Matrices 00000 Dot Product

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

Matrices 00000 Dot Product

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

• Gram-Schmidt (any number of dimensions)

Matrices 00000 Dot Product

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

• Gram-Schmidt (any number of dimensions)

•
$$\vec{u'} = \vec{u}$$

Matrices 00000 Dot Product

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

• Gram-Schmidt (any number of dimensions)

•
$$\vec{u'} = \vec{u}$$

• $\vec{v'} = \vec{v} - \hat{u'} (\vec{v} \bullet \hat{u'})$

Matrices 00000 Dot Produc

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

• Gram-Schmidt (any number of dimensions)

•
$$\vec{u'} = \vec{u}$$

• $\vec{v'} = \vec{v} - \frac{\vec{u'}}{|\vec{u'}|} \left(\vec{v} \bullet \frac{\vec{u'}}{|\vec{u'}|} \right)$

Dot Product

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

• Gram-Schmidt (any number of dimensions)

•
$$\vec{u'} = \vec{u}$$

• $\vec{v'} = \vec{v} - \vec{u'} \ \vec{v} \bullet \vec{u'} / |\vec{u'}|^2$

Dot Product

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

• Gram-Schmidt (any number of dimensions)

•
$$\vec{u'} = \vec{u}$$

• $\vec{v'} = \vec{v} - \vec{u'} \ \vec{v} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'}$

Dot Product

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

• Gram-Schmidt (any number of dimensions)

•
$$\vec{u'} = \vec{u}$$

• $\vec{v'} = \vec{v} - \vec{u'} \ \vec{v} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'}$
• $\vec{w'} = \vec{w} - \vec{u'} \ \vec{w} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'} - \vec{v'} \ \vec{w} \bullet \vec{v'} / \vec{v'} \bullet \vec{v'}$

Dot Product

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

• Gram-Schmidt (any number of dimensions)

•
$$\vec{u'} = \vec{u}$$

• $\vec{v'} = \vec{v} - \vec{u'} \ \vec{v} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'}$
• $\vec{w'} = \vec{w} - \vec{u'} \ \vec{w} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'} - \vec{v'} \ \vec{w} \bullet \vec{v'} / \vec{v'} \bullet \vec{v'}$

Dot Produc

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

- Gram-Schmidt (any number of dimensions)
 - $\vec{u'} = \vec{u}$ • $\vec{v'} = \vec{v} - \vec{u'} \ \vec{v} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'}$ • $\vec{w'} = \vec{w} - \vec{u'} \ \vec{w} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'} - \vec{v'} \ \vec{w} \bullet \vec{v'} / \vec{v'} \bullet \vec{v'}$
- Cross-product (3D only)

Dot Product

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

- Gram-Schmidt (any number of dimensions)
 - $\vec{u'} = \vec{u}$ • $\vec{v'} = \vec{v} - \vec{u'} \ \vec{v} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'}$ • $\vec{w'} = \vec{w} - \vec{u'} \ \vec{w} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'} - \vec{v'} \ \vec{w} \bullet \vec{v'} / \vec{v'} \bullet \vec{v'}$
- Cross-product (3D only)

•
$$\vec{u'} = \vec{u}$$

Dot Product

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

- Gram-Schmidt (any number of dimensions)
 - $\vec{u'} = \vec{u}$ • $\vec{v'} = \vec{v} - \vec{u'} \ \vec{v} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'}$ • $\vec{w'} = \vec{w} - \vec{u'} \ \vec{w} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'} - \vec{v'} \ \vec{w} \bullet \vec{v'} / \vec{v'} \bullet \vec{v'}$

• Cross-product (3D only)

•
$$\vec{u'} = \vec{u}$$

•
$$\vec{w'} = \vec{u'} \times \vec{v}$$

Dot Product

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

- Gram-Schmidt (any number of dimensions)
 - $\vec{u'} = \vec{u}$ • $\vec{v'} = \vec{v} - \vec{u'} \ \vec{v} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'}$ • $\vec{w'} = \vec{w} - \vec{u'} \ \vec{w} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'} - \vec{v'} \ \vec{w} \bullet \vec{v'} / \vec{v'} \bullet \vec{v'}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• Cross-product (3D only)

•
$$\vec{u'} = \vec{u}$$

•
$$\vec{w'} = \vec{u'} \times \vec{v}$$

•
$$\vec{v'} = \vec{w'} \times \vec{u'}$$

Dot Produc

Cross Product

Building an Orthogonal Basis

Vectors \vec{u} , \vec{v} , \vec{w}

- Gram-Schmidt (any number of dimensions)
 - $\vec{u'} = \vec{u}$ • $\vec{v'} = \vec{v} - \vec{u'} \ \vec{v} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'}$ • $\vec{w'} = \vec{w} - \vec{u'} \ \vec{w} \bullet \vec{u'} / \vec{u'} \bullet \vec{u'} - \vec{v'} \ \vec{w} \bullet \vec{v'} / \vec{v'} \bullet \vec{v'}$

 \square

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Cross-product (3D only)
 - $\vec{u'} = \vec{u}$
 - $\vec{w'} = \vec{u'} \times \vec{v}$
 - $\vec{v'} = \vec{w'} \times \vec{u'}$