
Special Session: On the Reliability of Conventional and Quantum
Neural Network Hardware

Mehdi Sadi
Dept. of Electrical & Computer Engineering,

Auburn University, Auburn, AL, USA
mehdi.sadi@auburn.edu

Mahabubul Alam, Satwik Kundu, Swaroop Ghosh
Dept. of Electrical & Computer Engineering,

The Pennsylvania State University,
University Park, PA, USA

{mxa890, satwik, szg212}@psu.edu

Yi He, Yanjing Li
Department of Computer Science

University of Chicago, Chicago, IL, USA
{yiizy, yanjingl}@uchicago.edu

Javad Bahrami, Naghmeh Karimi
Dept. of Electrical & Computer Engineering,

University of Maryland Baltimore County (UMBC),
Baltimore, MD, USA

{jbahram1, nkarimi}@umbc.edu

ABSTRACT

Neural Networks (NNs) are being extensively used in critical
applications such as aerospace, healthcare, autonomous driving,
and military, to name a few. Limited precision of the underlying
hardware platforms, permanent and transient faults injected
unintentionally as well as maliciously, and voltage/temperature
fluctuations can potentially result in malfunctions in NNs with
consequences ranging from substantial reduction in the network
accuracy to jeopardizing the correct prediction of the network
in worst cases. To alleviate such reliability concerns, this paper
discusses the state-of-the-art reliability enhancement schemes
that can be tailored for deep learning accelerators. We will
discuss the errors associated with the hardware implementation
of Deep-Learning (DL) algorithms along with their correspond-
ing countermeasures. An in-field self-test methodology with
a high test coverage is introduced, and an accurate high-level
framework, so-called FIdelity, is proposed that enables the
designers to evaluate DL accelerators in presence of such
errors. Then, a state-of-the-art robustness-preserving training
algorithm based on the Hessian Regularization is introduced.
This algorithm alleviates the perturbations during inference
time with negligible degradation in the accuracy of the network.
Finally, Quantum Neural Networks (QNNs) and the methods
to make them resilient against a variety of vulnerabilities such
as fault injection, spatial and temporal variations in Qubits,
and noise in QNNs are discussed.

I. INTRODUCTION

Thanks to their outstanding accuracy, Deep Neural Net-
works (DNNs) have received the lion’s share of attention in
recent years, and accordingly have been deployed in a wide
range of safety-critical applications such as biometric security,
autonomous vehicle, healthcare, financial planning, and so
on [1]–[4]. Due to the computational power greediness of Deep
Neural Networks, and the resource constraints of the CPU-
and GPU-based platforms used for running DNN algorithms,

substantial effort has been put into efficient implementations
of DNN hardware accelerators in recent years to improve their
performance and power consumption [5]–[8].

Considering the application of DNN accelerators in safety-
critical applications, preserving their integrity against the faults
that are unintentionally or maliciously injected is of utmost
importance. In practice, such faults may affect the operation
of DNNs and result in a different outcome, e.g., the input can
be classified incorrectly. Theoretically, DNNs are supposed to
be highly error-tolerant due to the existing redundancy in their
network structure [9], [10]. However, their accuracy starts to
degrade when errors exceed their inherent tolerable threshold.
As discussed in [11]–[14], the fault-induced accuracy decline
of DNNs can cause major problems in critical applications.
Accordingly, detection and possibly recovery of such errors
need to be taken into account to be able to use DNNs in critical
applications. For example, to preserve road safety, based on
the ISO26262 [15] standard, at least 99% of faults should be
detected.

Information redundancy (e.g. error correction codes) is
widely used for protecting memory cells in critical applications,
yet not suitable for the execution paths. Area redundancy (e.g.,
Triple Modular Redundancy), and timing redundancy schemes
(where each operation is repeated in time) have been tradition-
ally used to recover Single Event Upsets (SEUs). However,
they impose high area and delay overhead respectively; thus not
applicable to DNNs. On the other hand, the imprecise nature of
NN computations introduces the possibility of approximate fault
tolerance [10]. Thereby, it is essential to understand the impact
of faults injected in different parts of DNN hardware to be able
to tailor efficient and low overhead fault tolerance techniques
for these architectures. Accordingly, this paper focuses on the
efficient state-of-the-art reliability enhancement schemes for
deep learning accelerators.

The rest of this paper is organized as follows. Sec. II dis-
cusses a functional in-filed self-test method to detect the DNN
failures during its run-time. Then, it introduces a framework
to analyze the resiliency of DNN hardware. In Sec. III the978-1-6654-1060-1/22/$31.00 ©2022 IEEE

effects of hardware hazards on the inference accuracy of DNN
accelerators are discussed. Sec. IV presents a robustness-aware
training algorithm that takes into account hardware associated
uncertainties throughout the learning phase. Then in Sec. V
Quantum Neural Networks (QNNs) are discussed and the
schemes to address robustness concerns in these structures
are presented. Finally, Sec. VI concludes the paper.

II. RESILIENCE TECHNIQUES FOR DEEP LEARNING
ACCELERATORS

Hardware error resilience is a top priority for deep learning
(DL) accelerators, as hardware errors can generate various
unexpected outcomes such as system crashes, silent data cor-
ruptions (SDC), INF/NaN values, and more. These unexpected
outcomes can compromise the output quality of DL workloads,
and can even lead to life-critical threats (e.g., in self-driving car
applications). Although there exist a few studies on hardware
errors in DL accelerators [16], [17], [17]–[20], they are largely
limited to memory errors only. This is insufficient, because logic
components (i.e., sequential elements and combinational logic)
can also have a significant impact on the overall reliability.
For example, based on our analysis, for a DL accelerator
without any resilience support, the FIT (failure in time) rate
of flip-flops (FFs) (e.g., >9.5 in Nvidia’s open-sourced DL
accelerator called NVDLA) is significantly higher than the
automotive safety requirement (<0.2), even just as a result of
random transient errors that occur infrequently [21]. Permanent
hardware failures in the logic portion of an accelerator will
further exacerbate the overall FIT rate.

It is essential to understand and mitigate both permanent and
transient errors in the logic portions of DL accelerators. This is
the focus of our work, which uniquely combines the knowledge
of testing, hardware error resilience, computer architecture, and
machine learning to enable resilient DL accelerators.

A. Functional In-Field Self-Test for DL Accelerators to Mitigate
Permanent Hardware Failures

For permanent hardware failures (such as early-life failures,
circuit aging, and manufacturing defects) which are a major
reliability concern [22], we present an efficient in-field self-test
approach, which allows a DL accelerators to periodically test
itself in the field to detect (or even predict) these failures [23].
Our technique generates high-quality functional in-field self-
tests specifically targeting DL accelerators, which is crucial to
ensure that the safety and/or reliability requirements are met
for any given application.

Compared to structural tests, the main advantage of func-
tional tests is that they do not require structural test support (e.g.,
CASP [24], [25] or Logic BIST [26]) in the hardware. On the
other hand, a well-known challenge of functional tests is that
the test coverage is typically much lower than that of structural
tests, due to both observability and controllability constraints.
Fortunately, for in-field self-tests that are applied for the
purpose of detecting permanent hardware failures, it is sufficient
to target only the faults that can affect application correctness
to achieve high functional test coverage. However, this is still

Figure 1. Our functional in-field self-test generation technique for DL
accelerators, demonstrated using the Multiply-Accumulate (MAC) units in
NVDLA as an example.

a significant challenge because high quality functional tests
must be applied to complex DL accelerators under and various
system-level constraints (e.g. test time and power, etc.).

Our technique achieves high functional test coverage by
taking advantage of special architectural characteristics and
application properties of DL accelerators. For the compute
units (i.e., hardware modules that perform computations to
transform data, such as the multiply-accumulate unit), we first
use combinational ATPG (automatic test pattern generation) to
generate test patterns with high test coverage, and then map the
ATPG patterns to one or more equivalent deep neural networks
(DNNs) that can be directly executed on the accelerator (an
example of how the mapping is done is shown in Fig 1). This
is possible because: (1) these units generally do not contain
complex sequential logic, so combinational ATPG yields high
test coverage; (2) given that the dataflow/reuse algorithms of
a DL accelerator are well defined, the inputs of individual
compute units can be mapped to the primary inputs of the
accelerator through reverse-engineering of the dataflow.

For the control units (i.e., hardware modules that are solely
responsible for data movement, such as the input/weight
sequencing units), we leverage the property that typically only
one or a few fixed DNNs are deployed at a time in many
application domains. Thus, it is sufficient to target only the
faults that can directly affect the correctness of the DNNs that
are currently deployed. We are able to mathematically prove
that, by executing different layers of a given DNN using input
and weight tensors with linearly-independent columns, 100%
test coverage is achieved for all single-variable-type control
fault models (i.e., single or multiple faults that only affect the
control logic associated with a single variable type, such as
inputs or weight), out of all control faults that can affect the

correctness of the given DNN.
We apply our technique using NVDLA as a case study to

demonstrate its efficacy. Our results show that:
(1) For compute units, 99.9% single stuck-at functional test

coverage is achieved. For the control units, 100% functional
test coverage can be achieved for all single-variable-type fault
models.

(2) The in-field functional self-test time ranges from
1.13-16.84 ms for various representative DNNs (including
GoogleNet, Yolo, DenseNet and EfficientNet), and the test
storage is <600MB.

With such high test coverage and low costs, our approach is
effective and practical in various use scenarios to achieve high
levels of reliability/safety requirements. These functional tests
can be applied during boot-up, reset, and even concurrently
with normal operation by executing DNN test programs directly
on a DL accelerator, without requiring any test support in the
hardware.

B. FIdelity: Efficient Resilience Analysis framework for DL
Accelerators

To understand and mitigate the effects of transient errors
(such as soft errors and dynamic variations) in the logic portions
of a DL accelerator, we present a resilience analysis framework
called FIdelity [21]. FIdelity enables efficient resilience analysis
for all single-cycle, single FF bit-flip errors (or multiple single-
cycle bit-flips in a single register), which are the most prominent
abstraction for transient errors including soft errors [27] and
voltage variations [28].

A well-known resilience analysis approach is to perform
large-scale fault injection experiments. However, existing fault
injection techniques suffer from the following limitations: (1)
RTL-Level fault injection techniques can achieve accurate
results, but they require access to RTL to perform time-
consuming RTL simulations, which is costly and may not
even be feasible; (2) software-level techniques can produce
results quickly, but they are highly inaccurate.

Our FIdelity framework overcomes the limitations of ex-
isting fault injection techniques. An overview of our FIdelity
framework is shown in Fig. 2 (a), which models hardware
transient errors in software with high fidelity, while requiring
only a few important pieces of architecture/microarchitecture
information that is pertinent to resilience analysis (e.g., re-
use/scheduling algorithms, pipeline configurations, etc.). This
accurate mapping is possible because we identify and leverage
the following architectural properties that are commonly shared
by a wide range of DL accelerators:

(1) A hardware error can only directly affect the results of
the current DNN layer, then propagate to other layers. Thus, to
capture the effects of an error on the final output, it is equivalent
to first obtaining the effects of the error in the current DNN
layer, and then determining how the faulty layer affects the
final output through software simulation.

(2) The next question is: how to determine the effects of an
error in the current DNN layer? It turns out that, due to the
regular structure and precisely-defined dataflow architecture,

Figure 2. The FIdelity framework and the Reuse Factor Analysis algorithm.

the value stored in a datapath FF only affects a deterministic
set of output neurons in the current DNN layer in each cycle.
Leveraging this property, we develop an algorithm called Reuse
Factor Analysis, demonstrated in Fig. 2 (b). Given a target FF
and high-level hardware information shown in Fig. 2 (b), the
Reuse Factor Analysis algorithm takes into account both spatial
and temporal reuse of the FF value to return the following
information: (1) the maximum number of faulty neurons that
can be generated if this FF experiences a single cycle bit-flip;
(2) the relative location(s) of all possible faulty neuron(s); and
(3) the order in which these faulty neurons are calculated.

(3) After obtaining information about the positions of
faulty neurons, the faulty values of these neurons need to
be determined as well. Here, we leverage the third property of
DL accelerators: datapath FFs closely match software variables.
Therefore, one bit-flip in any datapath FF can always be mapped
to an equivalent set of bit-flips in software so we can model
the hardware error effects precisely in software fault injection.

(4) Datapath hardware errors occurring in the same pipeline
stage and belonging to the same variable type (weight, input
feature, output activation, and bias) exhibit the same error
effects, which makes our resilience analysis approach a tractable
problem.

(5) The effects of an error occurring in the control logic
can also be determined, depending on the type of the control
error. On the one hand, a global control error (e.g., one that
causes the accelerator to incorrectly perform int16 operations
even though the data precision should be FP16) almost always
results in incorrect final results, crashes, or hangs. On the other
hand, a local control error affects only the datapaths directly

connected to the corresponding control signal, so its effects
are the union of all error effects from the connected datapaths.

We thoroughly validate our framework by applying it to
NVDLA. We first obtain the complete set of accurate software
fault models to capture the effects of hardware transient errors
in this design. Next, we perform 60K RTL fault injection
experiments using various representative DNN workloads. By
manually analyzing all RTL fault injection cases that lead to
non-masked outcomes, we confirm that, for the datapath, the
software fault models derived using FIdelity capture the exact
fault behaviors obtained from RTL simulations. For the control
portion, FIdelity’s software fault models closely match RTL
results.

Using the validated FIdelity framework, we perform a large-
scale resilience study on NVDLA, which consists of 46M fault
injection experiments running various representative DNNs.
The key results reveal many important insights. For example,
we are able to quantitatively demonstrate the crucial need for
resilience analysis and protection solutions for DL accelerators.
Although DL workloads exhibit certain tolerance to errors,
such tolerance alone cannot guarantee that a DL accelerator
will meet the resilience requirement of a target application.
Moreover, based on the fault injection experiments, we perform
detailed analysis to understand how error magnitude, hardware
design choices, data precision, and correctness metrics affect
the overall resilience of the design. This knowledge can be
leveraged to guide DL accelerator design decisions as well as
the development of new resilience techniques.

III. IMPACT OF HARDWARE AND CIRCUIT HAZARDS ON
THE RELIABILITY OF DEEP LEARNING/AI ACCELERATORS

The major types of circuit and transistor-level runtime
hazards that can impact the performance of Deep Learning
accelerator hardware are, (i) dynamic power supply voltage
noise and droop, (ii) circuit aging with time, and (iv) radiation-
induced soft errors as shown in Fig. 3(a). Voltage noise is
caused by simultaneous switching events inside the chip [29].
Since the accelerator chips will perform billions of MAC
operations to correctly classify camera images or input patterns,
the extensive switching inside the MAC circuits and memory
units from this can cause voltage noise. The corresponding
transient voltage droop can cause timing violations or bit-flips
inside the accelerator. Since safety is of utmost importance,
accelerators used in Autonomous Vehicles (AV) must consider
such events and incorporate built-in robustness into the models
against such hardware hazards. Circuit aging is a critical
reliability problem in modern VLSI chips [30], [31]. Since
aging is use-case dependent and cannot be accurately estimated
at time 0, it is a major concern for safety-critical automotive
applications. Aging can impact the weight storage SRAM
modules by altering their read/write stability with time, and thus
cause bit-flip errors. Although for AVs, operating at sea-level
altitude, it may seem they are immune to soft errors caused by
high-energy neutrons from cosmic radiation. However, as shown
in detail in [32], because of weight reuse in Deep Learning,
soft-errors can indeed impact the accuracy of accelerators.

Hence, it is essential to embed resiliency and robustness at
the training algorithm level against random bit-flips [33]–[35].
For safety-critical applications, chips with permanent stuck-
at faults are generally discarded according to defective parts
per million/billion (DPPM/DPPB) [36] guidelines of FuSa
standards [15]. However, aging-induced in-field stuck-at faults
can be a concern for applications of deep learning for navigation
in safety-critical AV.

Unlike other areas, a one-size-fits-all training method for
(Deep Neural Network) DNNs may not be suitable for Deep
Learning used in safety-critical applications such as AVs. The
DNN training algorithm needs to be revisited to incorporate
resiliency and robustness in the trained model against weight
perturbations that might occur in the memory and MAC
modules at runtime.

AI

Inference Hardware in the
Training Loop

Pooling Convolution + ReLU

Kernel and filters Feature maps Fully connected Neural Network

Repeat:
Convolution + ReLU
+ Pooling Outputs

Class 1 (pedestrian)

 Class N (Stop sign)

Class 2 (Speed limit)

Camera and
LiDAR Sensor

Hardware hazards
·Circuit and Memory Faults
·Variability in Circuits
·Circuit Aging
·Soft Error
·Memory Bit-flips
·Power Supply Noise

Deep Learning/AI
Accelerator Hardware

(i) Steering Angle, (ii) Brake, and (iii) Speed are controlled by Deep Learning/AI Hardware

 Class 3 (another vehicle)

 Memory

PE PE PE PE

PE PE PE PE

PE PE PE PE

AI/Deep Learning in Autonomous Vehicles

Modified Loss/Cost Function to
ensure robustness
 Sensitivity-based Weight and Error
Smoothing

Robustness
-aware

Weight &
Neuron

Inference
hardware

in-the-
loop

Software: NVIDIA DRIVE SDK
Hardware: NVIDIA Xavier with

Software: Apollo 6.0 SDK
Hardware: NVIDIA GPU

Open source software used with deep leaning accelerator hardware

OR

Desired output Actual
output

Training Input
images/patterns

Forward Pass Calculate Loss or Error

Error Backpropagation
and Weight Update

Trained
weights

Robustness-aware Modified Loss/Cost
Function
 Sensitivity-based Weight and Error Smoothing
 Hessian Regularization

(a)

(b)

Figure 3. (a) Various circuit-level hazards can impact DNN accelerators.
Unlike other domains, AI chips used in safety-critical Autonomous Vehicles
must have additional resiliency. (b) Robustness-aware regularization technique
can be incorporated into the conventional DNN training algorithm to enhance
inference-time resiliency against hardware hazards.

IV. ROBUSTNESS-AWARE TRAINING OF DEEP NEURAL
NETWORKS

In conventional backpropagation, the Stochastic Gradient
Descent (SGD) or ADAM algorithm converges to the local
minima of the error surface with respect to the weight space
[37]. As a result of this optimization objective, the error surface
might be relatively steep as SGD method prefers sharp descent
to the optimum solution point [38]. Hence, any perturbations
in the trained weights from the optimum point might cause the
prediction error to increase substantially (Fig. 4). A technique
to increase the robustness of the trained Deep Learning model
against weight perturbations would be to smooth the error
surface with respect to the weight fluctuations across the
optimum solution point in the weight space. In other words,
if the plane on the hyper-surface around the trained weight
space is relatively flat, then a small change in the weights or
equivalent activations from MAC output will not cause large
degradation in the prediction error. To increase the robustness

of Deep Learning algorithms used in the safety-critical domain
against hardware hazards, the error vs. weight space must be
flattened across the optimum solution point. This will ensure
that the inference accuracy is not compromised if the hardware-
level hazards are within a certain extent. However, conventional
backpropagation and SGD cannot directly achieve this goal
[37], [38].

Because of the mathematical form of the loss or cost function
used in the classical backpropagation algorithm, the SGD
converges to the weight solution space that minimizes loss
in prediction accuracy oblivious of any hardware perturbations
or hazards that might occur during inference. A resilient
approach would be to select the weight configuration that
not only minimizes loss but also accounts for any hardware
hazards (within a certain range) as the solution or trained
weights. This targeted smoothing of the solution locus and
democratization of the collective importance of the weights
are essential for safety-critical AI applications. This resilience-
enhancing training method can be interpreted as a statistical
sensitivity reduction technique where the learning of the model
is distributed among the different weights and neurons, rather
than a particular set of weights and neurons. Because of this
training approach, the tolerance of the trained Deep Learning
model against perturbations in weights and MAC outputs will
be increased.

A. Regularized Training to Smoothen the Curvature of Loss
Surface

Weight Space (arbitrary unit)

with smoothing
without smoothing

With Hessian

regularization

Without

regularization

Figure 4. Visualization of the loss surface in 1-D [39]. Hessian regularization
can reduce the curvature of loss surface, thus enhance the resilience of the
trained model against perturbations.

The concept of regularization is well known in the machine
learning community [37]. To avoid overfitting in training,
the L1 and L2 regularizers are widely used to limit the
magnitudes of the trained weight parameters. Using a similar
concept, in this research the conventional backpropagation
method of training Deep Learning models has been augmented
with robustness-enhancing regularizers. This penalty-based
regularization technique enforces smoothness or flatness of
the solution (i.e., trained weights) surface. In essence, the
regularizers act as a penalty term against hardware hazards
(e.g., stuck-at faults in LSBs, bit-flips from circuit aging, soft-
error, voltage noise, etc.), and when augmented with the regular
cost function in the backpropagation equation, the training
procedure jointly minimizes the original loss term as well

as the extra loss/penalty caused by hardware imperfections.
This method of regularization can significantly enhance the
resiliency of Deep Learning models used in the safety-critical
AV domain.

Because of the use of robustness-enhancing regularization
techniques in the augmented backpropagation equation, the
training loss can be slightly degraded compared to the
conventional backpropagation method. However, this slight
imperfection of the modified backpropagation approach is
acceptable because in AVs Deep Learning models are deployed
for identification of humans, road signs, speed limits, other
vehicles, etc., hence detection details similar to biometrics (e.g.,
face recognition) are not required. For example, it is enough to
perceive the presence of a human ahead in the road rather than
identifying the exact identity of the person from a detailed
analysis of the facial features. Moreover, the slight increase
in training loss caused by this approach can be recovered
by increasing the training epochs. As the robustness-aware
augmented backpropagation algorithm can place the optimum
solution at a flatter region of the loss surface, the trained Deep
Learning model exhibits better resiliency to hardware hazards
during deployment in the safety-critical AVs.

The theoretical basis of the proposed robustness-aware
training methodology for safety-critical applications can be
explained by the Taylor series expansion of the original loss
function (e.g., Mean Squared Error, Maximum likelihood, etc.)
used in the backpropagation algorithm. The loss function under
perturbation L(w+∆w) can be expanded in Taylor series across
w as shown in Equation 1, where w is the weight vector, ∆w
is the weight perturbation, Nw is number of weights.

L(w,∆w) = L(w)+
i=Nw

∑
i=1

∆wi
∂L(w)

∂wi
+ 1

2

i, j=Nw

∑
i, j=1

∆wi∆w j
∂2L(w)

∂wi ∂w j

(1)
Equation 1 can be interpreted as, Lwith_perturbation = Loriginal +

S(∆w). The term S(∆w) represents the accuracy error caused by
weight fluctuations (i.e., memory bit flips caused by, soft-error,
circuit aging, voltage noise, stuck-at,etc.). The perturbations
caused by MAC hardware can also be modeled into equivalent
weight perturbations and incorporated in this term. Since in
this robustness-aware loss function the perturbation term is
included, during training this term is jointly minimized with the
regular loss function Loriginal . S(∆w) contains the Jacobian of
the weights and the second derivative or Hessian matrix of the
loss function with respect to the weight values. During training,
this Hessian term can be calculated with classical methods such
as those proposed in [40]. However, Hessian (i.e., the second-
order derivative) computation per mini-batch iteration during
training is computationally expensive and requires large GPU
memory. In Equation 2, the optimum solution weight vector is
w∗ that minimizes both the regular prediction loss as well as
errors caused by hardware hazard induced perturbations. The
modified backpropagation-based weight update equations are
shown in Equation 3, where α is the learning rate, β momentum
factor, ∇w is the error gradient, and n is iteration step.

w∗ = argmin
w

L(w,∆w) (2)

(3)(w∗)(n+1) = (w∗)(n) − α∇wL((w∗)(n))

+ β((w∗)(n) − (w∗)(n−1))− γ∇wS((w∗)(n))

B. Hessian Regularized Training at Reduced Computational
Complexity

Evaluating the Hessian term of Equation 1 at backpropa-
gation is computationally very expensive, moreover, it also
requires large GPU memory. To circumvent these challenges,
in this research we adopt the vector-based Hessian estimation
approach proposed in [41]. Additionally, to save computation
overhead, we activate Hessian regularization only after the
model has been trained for several epochs as shown in
Algorithm 1.

Algorithm 1 Training with Hessian Regularization in PyTorch
1: procedure PRE-TRAINING AND HESSIAN REGULARIZED TRAINING
2: Input: Training Data
3: Input: The Deep Learning architecture, Model
4: Input: Training Hyperparameters
5: Input: Epoch after which Hessian regularization starts, NReg
6: Output: Trained and regularized Model
7:
8: for epoch = 1 to Total_Epoch do
9: for minibatch_id = 1 to Total_minibatch do

10: minibatch_output = Model(minibatch_input)
11: Reset stored gradients: optimizer.zero_grad()
12: loss = criterion(minibatch_out put, target)
13: Backpropagate: loss.backward(retain_graph,create_graph)
14: if (epoch > NReg) AND ((minibatch_id mod 2) == 0) then
15: Hessian_Trace = calculate_Hessian_trace(Model)
16: α = 0.1∗|loss|

|Hessian_Trace|
17: loss_Hessian = α*Hessian_Trace
18: Backpropagate: loss_Hessian.backward()
19: end if
20: Update weights: optimizer.step()
21: end for
22: end for
23: end procedure
24:
25: procedure CALCULATE_HESSIAN_TRACE
26: Input: The Deep Learning model, Model
27: Input: Total iteration, Niter
28: Output: Hessian_Trace
29:
30: Lgw= list of (gradient,weight) tuples for all layers of Model
31: for k = 1 to Niter do
32: for n =1 to length of Lgw do
33: v(n) = random vector of size Lgw(n) with Rademacher distribution
34: Hv(n) = create Hessian vector product with torch.autograd.grad()
35: Trace(k) += v(n)*Hv(n)
36: end for
37: end for
38: Hessian_Trace =

∑
Niter
k=1 Trace(k)

Niter
39: end procedure

The algorithm and pseudo code of the Hessian regularized
training flow for robust AI are shown in Algorithm 1. The
inputs to the Algorithm are the training data set, the model
architecture and hyperparameters, and the epoch after which
the Hessian Regularization will be initiated. The output will
be a trained model with its loss surface desensitized against
weight fluctuations. The training steps are shown in Lines 8
to 23. The total training epochs are divided into two parts,
the model is trained with conventional backpropagation in the

first part for the majority of the epochs. In the second part,
for the last few epochs (controlled by the parameter NReg in
Line 14), the computationally complex Hessian regularization
is activated. In Line 13, the loss function is backpropagated
and the gradients of all the weights are calculated. To ensure
the calculation of the second derivative (i.e., Hessian) of the
loss function, the computational graph is retained in Line 13.
After training the model with normal backpropagation for up to
epoch Nreg, the Hessian regularization is activated in Line 14.
To reduce computational complexity the Hessian regularization
is performed on every other minibatch iteration per epoch
in Line 14. To calculate the Hessian trace (i.e., the sum of
diagonal elements of the Hessian matrix) of the loss function
with respect to the weights, the Hutchinson trace estimator
method [41] is utilized in Line 15. The calculated sum of the
Hessian trace of all layers is large and for joint minimization
with regular loss term it is scaled by the factor α in Line 17.
α is chosen such that the Hessian loss term in Equation 1 is
within 10% of the original loss term. From our experiments,
we observed that this 10% scaling yielded the best results. The
formula to estimate α is shown in Line 16. This scaling is
required to ensure that the original loss term is not degraded
while backpropagation attempts to reduce the Hessian loss term.
The gradients of Hessian loss, loss_Hessian are calculated in
Line 18. Finally, in Line 20, weights are updated considering
both the gradients of the main loss function and the Hessian
loss function (when activated as in Line 14).

The Hutchinson trace estimator method [41] is described in
Lines 26 to 38. In Line 30 a list, Lgw, containing the (gradients,
weights) pairs of all layers are created. The gradients are already
generated when the main backpropagation occurred in Line
13, hence no extra computational cost is necessary for this
step. For each element of the tuple list, Lgw, the Rademacher
random vector v(n) is generated in Line 33. Using PyTorch‘s
autograd function, the Hessian vector product is calculated
in Line 34, followed by multiplication with v(n) in Line 35.
Finally, the trace is averaged over all iterations, to calculate
the final Hessian trace in Line 38.

The key challenges of computational complexity arise from,
(i) additional memory requirement to retain the computation
graph for second backpropagation (Line 13). (ii) increased
floating-point operations to calculate the gradients of the
Hessian loss (i.e., loss_Hessian in Lines 17-18). However, since
the Hessian regularization is activated in the last few epochs
of training, these additional costs are acceptable, especially for
safety-critical applications of AI/Deep Learning.

C. Experimental Results of Hessian Regularization

In our experiment, we used the CIFAR-10 data set for
training and inference. The results of Hessian regularization
(following Algorithm 1) are shown in Fig. 5. The weights
were perturbed by 10% of their original value. Fault rate
in Fig. 5 indicates what percentage of all the weights were
perturbed by this amount. Results of Fig. 5 indicate that Hessian
regularization enhances resilience and fault-tolerance of DNNs.

N
or

m
al

iz
ed

 H
es

si
an

 T
ra

ce
 o

f L
os

s
N

or
m

al
iz

ed
 H

es
si

an
 T

ra
ce

 o
f L

os
s

N
or

m
al

iz
ed

 H
es

si
an

Tr

ac
e

of
 L

os
s

(a)

(b)

(c)

Figure 5. Hessian regularization during training enhances the robustness of
DNN models at inference. Initially the DNN models are trained in conventional
methods, and during the last several epochs the Hessian regularization is turned
on. Hessian trace of the weight matrix decreases for regularized training, thereby
increasing the robustness and resiliency of the model against hardware faults.
Results for CIFAR-10 dataset on, (a) ResNet-18. (b) AlexNet. (c) ShuffleNet.

V. RESILIENCE OF QUANTUM NEURAL NETWORK

Quantum machine learning (QML) is an emerging field that
aims to develop quantum algorithms to perform conventional
generative/discriminative machine learning tasks (e.g., classifi-
cation, regression, etc.) [42]–[45]. One of the most promising
QML models available is the Quantum Neural Network (QNN)
[43], [46]–[49].

The major building block of a QNN is a Parameterized
Quantum Circuit (PQC) which is a quantum circuit with tunable
parameterized gates as shown in Fig. 6(a). It is often composed
of successive layers of single-qubit rotations (for the purpose
of exploring the search space) and multi-qubit operations (to
create entanglement). The parameters of PQC can be tuned to
attain desired outputs for given inputs (e.g., classifying data
samples). QNN models are claimed to be more expressive
compared to the classical neural networks [49], [50]. In other
words, QNN models have higher capability to approximate a
desired functionality compared to the classical models of similar
scale (e.g., with same number of tunable parameters/weights).
They also learn faster, which means that QNN models may be

trained with less epochs. These encouraging theoretical studies
have piqued the curiosity of a large number of application
researchers. QNNs have been used in recent studies for image
classification, protein classification, and drug-like molecule
predictions, to name a few.

When a quantum program is executed on a quantum
computer, it encounters noisy inputs and a slew of quantum-
physical noise effects that combine and compound, resulting
in the output of the quantum program being erroneous, varied,
unstable, and, in some situations, stochastic. To assess the true
potential of QNNs, we must first ask (i) how resilient they are to
adversarial noise and quantum noise, and (ii) how reliable their
results are when we run them on actual hardware. The work
in [51] revealed that the training landscape in parameterized
quantum circuits might have vanishing gradients. These loca-
tions of vanishing gradients are referred to as barren plateaus
in the literature. Once stuck in a barren plateau, gradient-
based optimization methods (e.g., stochastic gradient descent)
may not be able to move further to train the network. In
[52], the authors showed that quantum-noise could also induce
barren plateaus in the PQC training landscape, making deep
QNN training on actual hardware challenging. When tested
on actual hardware, a trained QNN that performs well in a
noiseless simulator performs poorly. The higher the level of
noise on the hardware, the worse the performance. Because
of manufacturing variations, not all qubits are created equal,
and some have less noise than others [53]. As a result, when
a trained QNN is run on different qubit segments of the same
hardware, its performance may vary. On top of that, the quality
of a qubit can vary over time. Therefore, performance of
a trained QNN may vary over time on the same piece of
hardware [54]. In [55], the authors demonstrated that a small
amount of perturbation in the input data is enough to induce
misclassification in a trained quantum classifier. An adversary
can exploit these vulnerabilities to attack QML applications.
Several attacks have been demonstrated already in recent
academic studies [56], [57].

In this Section, we provide current developments and
perspectives on robustness of QNNs against (a) adversarial
input variations, (b) spatial and, (ii) temporal variations in
qubits. We also discuss recent advances in noise mitigation
techniques for QNN.

A. Quantum Computing Basics

Qubits, Quantum Gates, Measurements & Quantum Cir-
cuit: Unlike a classical bit, a qubit can be in a superposition
state i.e., a combination of |0⟩ and |1⟩ at the same time.
A variety of technologies exist to realize qubits such as,
superconducting qubits, trapped-ions, to name a few. Quantum
gates (e.g., single qubit Pauli-X gate or 2-qubit CNOT gate)
modulate the state of qubits and thus perform computations.
These gates can perform a fixed computation (e.g., an X gate
flips a qubit state) or a computation based on a supplied
parameter (e.g. the RY(θ) gate rotates the qubit along the
Y-axis by θ). A two-qubit gate changes the state of one qubit
(target qubit) based on the current state of the other qubit

(control qubit). For example, the CNOT gate flips the target
qubit if the control qubit is in |1⟩ state. A quantum circuit
contains many gate operations. Qubits are measured to retrieve
the final state of a quantum program.
Quantum Noise: Errors in quantum computing can be broadly
classified into, (i) Coherence errors: a qubit can retain its state
for a short period (coherence time). The computation needs to
be done well within this limit. (ii) Gate errors: quantum gates
are realized using microwave/laser pulses. It is impossible to
generate and apply these pulses precisely in actual hardware
making gate operations erroneous. (iii) Measurement errors:
a |0⟩ state qubit can be measured as |1⟩ (or vice versa) due
to imprecise measurement apparatus. Execution of multiple
gates in parallel can lead to crosstalk errors. Since a large/deep
quantum circuit accumulates more errors, a smaller circuit is
always preferred for noise-resilience and reliability.
Quantum Circuit Compilation: A practical quantum computer
generally supports a limited number of single and multi-qubit
gates known as basis gates or native gates of the hardware. For
instance, the current generation of IBM quantum computers
have the following basis gates: ID, RZ, SX, X (single-qubit),
CNOT (two-qubit). However, the quantum circuit may contain
gates that are not native to the target hardware. Hence, the
gates in a quantum circuit need to be decomposed into the basis
gates before execution. Besides, the native two-qubit operation
may or may not be permitted between all the two-qubit pairs.
These limitations in two-qubit operations are also known as
coupling constraints. Conventional compilers add necessary
SWAP gates to meet the coupling constraints. Thus, a compiled
circuit depth and gate counts can be significantly higher than
the original.
Quantum Neural Network: QNN involves parameter opti-
mization of a PQC to obtain a desired input-output relationship.
QNN generally consists of three segments: (i) a classical to
quantum data encoding or embedding circuit, (ii) a parameter-
ized circuit (PQC), and (iii) measurement operations. A variety
of encoding methods are available in the literature [47]. For
continuous variables, the most widely used encoding scheme is
angle encoding [47]–[49] where a continuous variable classical
feature is encoded as a rotation of a qubit along a desired axis
(X/Y/Z). For ‘n’ classical features, we require ‘n’ qubits. For
example, RZ(f1) on a qubit in superposition (the Hadamard
- H gate is used to put the qubit in superposition) is used
to encode a classical feature ‘f1’ in Fig. 6(c). We can also
encode multiple continuous variables in a single qubit using
sequential rotations (Fig. 6(d)). States produced by a qubit
rotation along any axis will repeat in 2π intervals (Fig. 6(b)).
Therefore, features are generally scaled within 0 to 2π in a data
pre-processing step. One can restrict the values between -π
to π to accommodate features with both negative and positive
values.

The PQC consists of multiple layers of entangling operations
and parameterized single-qubit rotations. The entanglement
operations are a set of multi-qubit operations between the qubits
to generate correlated states [48]. The following parametric
single-qubit operations search through the solution space. This

combination of entangling and rotation operations is referred
to as a parametric layer (PL). The optimal number of PL
for any given ML task is generally unknown. The problem
is similar to choosing the number of hidden layers/neurons
in a classical DNN. In practice, one needs to go through
multiple training iterations with different number of PL’s to
come up with a compact network. A compact network can
offer better noise-resilience/reliability, and lower latency/faster
execution during inference. There is a wide variety of choices
available for PL. The work in [58] analyzed 19 widely used
PL architectures from literature. A widely used PL is shown
in Fig. 6(a). Here, CNOT gates between neighboring qubits
create the entanglement, and rotations along X & Z-axis using
RX(θ) & RZ(θ) operations define the search space.

B. Robustness of QNN against Adversarial Input Variations

High-dimensional quantum systems are required to demon-
strate a practical quantum advantage. Dimensionality expands
exponentially with the number of qubits. Therefore, large
number of entangled qubits contribute to the potential power of
quantum devices over classical resources. Liu et al. [55] show
that quantum classifiers are vulnerable to adversarial input
perturbations. The amount of perturbation required to cause a
misclassification scales inversely with dimension. This results
in a trade-off between the classification algorithm’s security
against adversarial attacks and the quantum advantages we
expect for high-dimensional problems. In [57], the authors
demonstrate methods to generate adversarial samples for a
quantum classifier (noisy inputs that are miss-classified by the
classifier) in both white-box and black-box attack scenarios.
The additional noise acts as a unitary that modifies the input
state to the classifier.

C. Robustness of QNN against Adversarial Fault Injection

Multiple users can run their quantum programs at the same
time (called multi-programming) if a quantum device has
enough qubits. In such cases, each program will introduce
some crosstalk errors in the other programs. An adversary
can deliberately introduce crosstalk errors in a victim program
in a multi-programming environment [59]. The accuracy of
the classifier degrades significantly under attack. A simulation
result in the ideal scenario (no errors) shows that the ratio of
the correct outcome and the total number of shots (8192) per
sample (rµ) is close to 0.88 (on average) for the two-qubit Iris
classifier. However, in experiment on ibmq_16_melbourne’s
Q0 and Q1 with all other qubits idle, a ratio close to 0.76 is
noted given the noisy hardware.

Later, the same experiment is executed on the hardware while
attacking two other qubit pairs with repeated CNOT operations
(Figure 7(a)). When only pair-1 or pair-2 is attacked, the ratios
are found to be 0.715 and 0.709, respectively (Figure 7(b)).
The ratio further degrades to 0.69 when both pairs are attacked.
The classifier misclassifies (i.e., the ratio < 0.5) 1 time in the
attack-free case. It misclassifies 4 times when either pair-1 or
pair-2 is attacked and 11 times when both pairs are attacked
(Figure 7(b)).

40:

𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅

Q
uantum

D

ata
Encoding

M
easure

Repeat

Quantum Neural Network (QNN)

RZ(𝑓𝑓1)H

RZ(𝑓𝑓2)H

RZ(𝑓𝑓3)H

RZ(𝑓𝑓𝑛𝑛)H

0

1

2𝜋𝜋

(b) (c)

RZ(𝑓𝑓1)H

RZ(𝑓𝑓3)H

RZ(𝑓𝑓𝑛𝑛−1)H

(d)

RX(𝑓𝑓2)

RX(𝑓𝑓4)

RX(𝑓𝑓𝑛𝑛)

(a)

Figure 6. A toy Quantum Neural Network (QNN) is shown in (a). An encoder encodes classical data as quantum state. A Parametric Quantum Circuit (PQC)
transforms the state. The output state is retrieved through measurements. Bloch sphere representation of a qubit is shown in (b). A qubit can be rotated along
the X, Y, or Z axis. The states repeat in 2π intervals. In (c) and (d), we show angle encoding 1:1 (i.e., one continuous variable encoded in a single qubit state),
and angle encoding 2:1 (i.e., two continuous variables encoded in a single qubit state), respectively.

(a)

�� �(b)

Figure 7. Impact of crosstalk on a 2-qubit quantum classifier. The experimental results show that crosstalk can lead to a higher number of misclassification.

Such crosstalk-induced fault injection attacks can be mit-
igated by introducing isolation/ buffer qubits between user
programs [59]. If the user–1 program is allocated to {Q0,Q1}
(Fig. 7), then another user program will not be allowed to
use the neighboring qubits (i.e., {Q2, Q12, Q13, Q14}) of the
user–1 program.

D. Robustness of QNN against Spatial Variations in Qubits

Error rates may vary among qubits in the same piece of
hardware. This complicates optimal qubit selection for both
training and inference of QNN models on hardware. Selecting
a sub-optimal set of qubits can result in inefficient training
and poor inference performance due to higher accumulation
of error in the QNN circuits. The impact of qubit-to-qubit
variations has been studied extensively [60]–[62]. Numerous
generic strategies exist for exploiting variation-awareness in
order to boost the performance of quantum programs running
on hardware. The key idea is to assign the bulk of gates to
less erroneous qubits. Many of these methods can be applied
to QNN circuits directly.

In [60], the authors first proposed leveraging qubit-to-qubit
variation to improve the program success rate. They proposed
variation-aware qubit allocation (VQA) and variation-aware
qubit movement (VQM) policies. In VQA, a set of physical
qubits are picked to maximize their cumulative connectivity
strength. The cumulative coupling strength is defined as the
sum of success probabilities of all coupling links between the
qubit and its neighbors. Coupling strength reflects two things:

(i) a qubit is connected to more neighbors which is beneficial
for optimal routing (less SWAP), and (b) the 2-qubit operations
between the qubit and its neighbors will be less erroneous.
Additionally, the VQM policy ensures that the compiler choose
a routing path with fewer erroneous links. VQA can be used
to determine the ideal set of qubits for hardware-based QNN
training. VQM can help reducing error accumulation in QNN
circuits caused by additional SWAP operations.

In [61], the authors started with a depth optimal NN-
compliant version of the circuit using an algorithms as in [63]
and searched for an isomorphic sub-graph from the device
coupling graph with best program fidelity (QURE). The method
contained the depth of the circuit (beneficial to counteract qubit
lifetime issue) while finding better qubits and links to run the
program. QURE is capable of determining an ideal set of qubits
for hardware-based QNN inference.

In [62], the authors used satisfiability-modulo-theorem
(SMT) to make qubit allocation and movement decisions while
keeping error rate variations in mind. They also included
readout error in their allocation decision besides gate error.
The goal is to keep the circuit’s overall error accumulation to
a minimum. At the penalty of increased runtime, the reported
performance improvement is substantially higher than the above
heuristics. Identical circuit layers make up QNN circuits. One
layer can be optimized and then used for the other layers.
As a result, compared to other generic quantum programs,
employing SMT to optimize QNN circuits is both appealing
and effective, as well as less time consuming.

Figure 8. Inference performance of a 4-bit parity classifier (trained with three
different approaches) on IBMQX4 [64].

E. Robustness of QNN against Temporal Variations in Qubits

The quality of qubits in terms of coherence times, gate error
rates, measurement error rates, etc. may vary over time [54].
When the same quantum circuit is run on the same hardware
at different times, it may produce variable results. This is
especially concerning for QML models, as temporal changes
can jeopardize their reliability.

The training of the quantum classifier leverages a quantum-
classical hybrid loop where a PQC generates an output
distribution, and a classical optimizer updates the parameters
of the PQC based on the output to minimize a cost function
(minimize loss during the training phase). In [64], we noted
that if the training is performed including noise in the PQC,
the quantum classifier shows more resilient performance. The
classification accuracy for a quantum parity classifier from [64]
is shown in Fig. 8. Here, “pure” is noiseless training, and
“noisy” is noisy training with noise values of the respective
day. The plot clearly shows training with noise has better
accuracy compared to training without noise. However, noise
values change over time. Therefore, the same trained classifier
performs worse on a different day (“noisyDD”). As training a
classifier every day is expensive, a reasonable trade-off is to
use an average value for noise data collected over some time
(“noisyAVG”).

The work in [65] propose just-in-time compilation of
quantum circuits to address temporal variability. The hardware
quality can be assessed with standard calibration protocols
before target program execution. The calibration data can
be used by the circuit compiler to map the program to the
best available qubits at the current hardware noise levels.
Experiments indicate that the accuracy of circuit results
improves by 3-304% with on-the-fly circuit mappings based on
error measurements just prior to application execution. Just-in-
time compilation can boost the performance of QNN models
during inference on actual hardware.

F. Noise Mitigation Techniques for QNN

The possibility of QNN to attain quantum advantage on near-
term Noisy Intermediate Scale Quantum (NISQ) computers
is piquing researchers’ interest. However, the performance of

QNN models on real quantum devices suffers greatly due to
high quantum noise. Techniques are proposed to mitigate these
noises/errors e.g., multiple measurements of a quantum circuit
are performed at different error rates and the ideal measurement
results are extrapolated for noiseless case [66]. However, these
techniques are generic, fail to take the unique characteristics
of QNN into account and can only be applied to the QNN
inference stage.

The work in [67] proposes a noise mitigation framework
which optimizes QNN robustness in both training and inference
stages. They use three main techniques to accomplish the same:
(a) Post-measurement normalization, in which they match the
distribution of measurement of the noise-free simulation with
the real hardware, (b) Quantum noise injection, in which they
insert error gates (in PQC and after measurement) based on a
realistic noise model into the training process to increase the
classification margin between classes. and (c) Post-measurement
quantization, in which they quantize the measurement output to
discrete values in order to further reduce noise. This framework
leads to a significant increase in classification accuracy by up
to 43% when measured on real quantum machines. As a result,
this work significantly reduces the impact of quantum noise
on QNN, opening the door to further QML applications.

In [68], the authors propose a methodology for efficient
and scalable QNN training and inference on real quantum
hardwares. First they employ the parameter shift rule, which
states that the gradient of each parameter can be computed
simply by shifting the parameter twice and calculating the
difference between the two outputs to compute the quantum
gradient directly on real quantum devices. Following gradient
computation, they probabilistically prune the gradients with
small magnitudes based on their distribution because noise
would easily overwhelm these signals. Thus, removing the
unreliable gradients improves both the model’s reliability and
performance, as it helps training converge faster by skipping the
evaluation of those gradients. This method achieved accuracies
roughly equivalent to noise-free simulations performed on
classical computers while providing better training scalability.

VI. CONCLUSION

Considering the application of Deep Neural Networks
in safety-critical applications, enhancing their dependability
against unintentional faults as well as malicious fault attacks
is essential. Accordingly, in this paper, we discuss the state-
of-the-art schemes that can be deployed for improving the
reliability of Deep Learning (DL) accelerators.

This paper presented a low-cost self-test scheme for DNN
hardware along with a framework that enables the designers
to assess the reliability of these architectures. Moreover, a
training algorithm to diminish perturbations during inference
time without highly scarifying the accuracy was proposed.
In addition, we presented the schemes that can be used in
Quantum Neural Networks to enhance their reliability against
fault injections and spatial and temporal variations in Qubits.

REFERENCES

[1] L. M. Zhang, “Genetic deep neural networks using different activation
functions for financial data mining,” in 2015 IEEE International
Conference on Big Data (Big Data), 2015, pp. 2849–2851.

[2] S. S. Sengar, U. Hariharan, and K. Rajkumar, “Multimodal biometric
authentication system using deep learning method,” in 2020 International
Conference on Emerging Smart Computing and Informatics (ESCI), 2020,
pp. 309–312.

[3] J. Shi, X. Fan, J. Wu, J. Chen, and W. Chen, “Deepdiagnosis: Dnn-based
diagnosis prediction from pediatric big healthcare data,” in 2018 Sixth
International Conference on Advanced Cloud and Big Data (CBD), 2018,
pp. 287–292.

[4] F. Yu, Z. Qin, C. Liu, D. Wang, and X. Chen, “Rein the robuts: Robust
dnn-based image recognition in autonomous driving systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 40, no. 6, pp. 1258–1271, 2021.

[5] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and scalability
of gpu-based convolutional neural networks,” in 2010 18th Euromicro
Conference on Parallel, Distributed and Network-based Processing, 2010,
pp. 317–324.

[6] X. Li, G. Zhang, H. H. Huang, Z. Wang, and W. Zheng, “Performance
analysis of gpu-based convolutional neural networks,” in 2016 45th
International Conference on Parallel Processing (ICPP), 2016, pp. 67–
76.

[7] H. Jang, A. Park, and K. Jung, “Neural network implementation using
cuda and openmp,” in 2008 Digital Image Computing: Techniques and
Applications, 2008, pp. 155–161.

[8] D. A. Padilla, R. A. I. Pajes, and J. T. De Guzman, “Detection of
corn leaf diseases using convolutional neural network with openmp
implementation,” in 2020 IEEE 12th International Conference on
Humanoid, Nanotechnology, Information Technology, Communication
and Control, Environment, and Management (HNICEM), 2020, pp. 1–6.

[9] E. Ozen and A. Orailoglu, “Sanity-check: Boosting the reliability of
safety-critical deep neural network applications,” in 2019 IEEE 28th
Asian Test Symposium (ATS), 2019, pp. 7–75.

[10] ——, “Just say zero: Containing critical bit-error propagation in deep
neural networks with anomalous feature suppression,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), 2020,
pp. 1–9.

[11] M. A. Neggaz, I. Alouani, P. R. Lorenzo, and S. Niar, “A reliability study
on cnns for critical embedded systems,” in 2018 IEEE 36th International
Conference on Computer Design (ICCD), 2018, pp. 476–479.

[12] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
J. Kepner, “Survey of machine learning accelerators,” in 2020 IEEE
High Performance Extreme Computing Conference (HPEC), 2020, pp.
1–12.

[13] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “Thundervolt: Enabling
aggressive voltage underscaling and timing error resilience for energy
efficient deep learning accelerators,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), 2018, pp. 1–6.

[14] W. Choi, D. Shin, J. Park, and S. Ghosh, “Sensitivity based error resilient
techniques for energy efficient deep neural network accelerators,” in 2019
56th ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–6.

[15] I. 26262, “Road vehicles-Functional safety.” ISO, 2018, Accessed: 11-
Oct-2020. [Online]. Available: https://www.iso.org/standard/68383.html

[16] B. Reagen et al., “Minerva: Enabling low-power, highly-accurate
deep neural network accelerators,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), June 2016,
pp. 267–278.

[17] G. Li et al., “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’17, 2017, pp. 8:1–8:12.

[18] B. Reagen et al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), June 2018, pp. 1–6.

[19] N. Chandramoorthy et al., “Resilient low voltage accelerators for high
energy efficiency,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2019, pp. 147–158.

[20] P. N. Whatmough et al., “14.3 a 28nm soc with a 1.2ghz 568nj/prediction
sparse deep-neural-network engine with >0.1 timing error rate tolerance
for iot applications,” in 2017 IEEE International Solid-State Circuits
Conference (ISSCC), Feb 2017, pp. 242–243.

[21] Y. He, P. Balaprakash, and Y. Li, “Fidelity: Efficient resilience anal-
ysis framework for deep learning accelerators,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2020, pp. 270–281.

[22] S. Mitra, P. Bose, E. Cheng, C.-Y. Cher, H. Cho, R. Joshi, Y. M. Kim,
C. R. Lefurgy, Y. Li, K. P. Rodbell, K. Skadron, J. Stathis, and L. Szafaryn,
“The resilience wall: Cross-layer solution strategies,” in Proceedings of
Technical Program - 2014 International Symposium on VLSI Technology,
Systems and Application (VLSI-TSA), 2014, pp. 1–11.

[23] Y. He, T. Uezono, and Y. Li, “Efficient functional in-field self-test for
deep learning accelerators,” in 2021 IEEE International Test Conference
(ITC), 2021, pp. 93–102.

[24] Y. Li, S. Makar, and S. Mitra, “Casp: Concurrent autonomous chip
self-test using stored test patterns,” in 2008 Design, Automation and Test
in Europe, 2008, pp. 885–890.

[25] Y. Li, O. Mutlu, D. S. Gardner, and S. Mitra, “Concurrent autonomous
self-test for uncore components in system-on-chips,” in 2010 28th VLSI
Test Symposium (VTS), 2010, pp. 232–237.

[26] P. Bardell, W. McAnney, and J. Savir, Built In Test for VLSI: Pseudo-
random Techniques. Wiley, 1987.

[27] H. Cho et al., “Quantitative evaluation of soft error injection techniques
for robust system design,” in Proceedings of the 50th Annual Design
Automation Conference, 2013, pp. 1–10.

[28] E. Cheng, S. Mirkhani, L. G. Szafaryn, C.-Y. Cher, H. Cho, K. Skadron,
M. R. Stan, K. Lilja, J. A. Abraham, P. Bose, and S. Mitra, “Clear:
Cross-layer exploration for architecting resilience - combining hardware
and software techniques to tolerate soft errors in processor cores,” in
Proceedings of the 53rd Annual Design Automation Conference, ser.
DAC ’16. New York, NY, USA: Association for Computing Machinery,
2016. [Online]. Available: https://doi.org/10.1145/2897937.2897996

[29] M. Sadi and M. Tehranipoor, “Design of a network of digital sensor
macros for extracting power supply noise profile in socs,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24,
no. 5, pp. 1702–1714, 2016.

[30] M. Sadi, G. K. Contreras, J. Chen, L. Winemberg, and M. Tehranipoor,
“Design of reliable socs with bist hardware and machine learning,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 11, pp. 3237–3250, 2017.

[31] M. Sadi, G. K. Contreras, J. Chen, L. Winemberg, and M. Tehranipoor,
“Design of Reliable SoCs With BIST Hardware and Machine Learning,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 11, pp. 3237–3250, 2017.

[32] G. L. et al., “Understanding Error Propagation in Deep Learning Neural
Network (DNN) Accelerators and Applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’17, New York, NY, USA, 2017.

[33] S. Kundu, K. Basu, M. Sadi, T. Titirsha, S. Song, A. Das, and U. Guin,
“Special session: Reliability analysis for ai/ml hardware,” in 2021 IEEE
39th VLSI Test Symposium (VTS), 2021, pp. 1–10.

[34] M. Sadi and U. Guin, “Test and yield loss reduction of ai and deep
learning accelerators,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 1, pp. 104–115, 2022.

[35] K. Mishty and M. Sadi, “Designing efficient and high-performance ai
accelerators with customized stt-mram,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 29, no. 10, pp. 1730–1742,
2021.

[36] G. Tshagharyan, G. Harutyunyan, and Y. Zorian, “An effective func-
tional safety solution for automotive systems-on-chip,” in 2017 IEEE
International Test Conference (ITC), 2017, pp. 1–10.

[37] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient Processing of Deep
Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, 2017.

[38] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson,
“Averaging Weights Leads to Wider Optima and Better Generalization,”
2019.

[39] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the
loss landscape of neural nets,” in Neural Information Processing Systems,
2018.

[40] B. A. Pearlmutter, “Fast Exact Multiplication by the Hessian,” Neural
Computation, vol. 6, no. 1, pp. 147–160, 1994.

[41] Z. Yao, A. Gholami, S. Shen, K. Keutzer, and M. W. Mahoney,
“Adahessian: An adaptive second order optimizer for machine learning,”
Association for the Advancement of Artificial Intelligence (AAAI), 2021.

[42] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
“Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202,
2017.

[43] N. Killoran et al., “Continuous-variable quantum neural networks,”
Physical Review Research, vol. 1, no. 3, p. 033063, 2019.

[44] P.-L. Dallaire-Demers and N. Killoran, “Quantum generative adversarial
networks,” Physical Review A, vol. 98, no. 1, p. 012324, 2018.

[45] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-centric
quantum classifiers,” Physical Review A, vol. 101, no. 3, p. 032308,
2020.

[46] E. Farhi and H. Neven, “Classification with quantum neural networks
on near term processors,” arXiv preprint arXiv:1802.06002, 2018.

[47] M. Schuld et al., “Effect of data encoding on the expressive power of
variational quantum-machine-learning models,” Physical Review A, 2021.

[48] S. Lloyd et al., “Quantum embeddings for machine learning,” arXiv
preprint arXiv:2001.03622, 2020.

[49] A. Abbas et al., “The power of quantum neural networks,” Nature
Computational Science, vol. 1, no. 6, pp. 403–409, 2021.

[50] Y. Du et al., “Expressive power of parametrized quantum circuits,”
Physical Review Research, vol. 2, no. 3, p. 033125, 2020.

[51] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven,
“Barren plateaus in quantum neural network training landscapes,” Nature
communications, vol. 9, no. 1, pp. 1–6, 2018.

[52] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J.
Coles, “Noise-induced barren plateaus in variational quantum algorithms,”
arXiv preprint arXiv:2007.14384, 2020.

[53] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: a case
for variability-aware policies for nisq-era quantum computers,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2019, pp.
987–999.

[54] M. Alam et al., “Addressing temporal variations in qubit quality metrics
for parameterized quantum circuits,” in 2019 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED). IEEE,
2019, pp. 1–6.

[55] N. Liu and P. Wittek, “Vulnerability of quantum classification to
adversarial perturbations,” Physical Review A, vol. 101, no. 6, p. 062331,
2020.

[56] A. A. Saki, M. Alam, and S. Ghosh, “Analysis of crosstalk in NISQ
devices and security implications in multi-programming regime,” in 2020
IEEE/ACM ISLPED. IEEE, 2020, pp. 1–6.

[57] S. Lu, L.-M. Duan, and D.-L. Deng, “Quantum adversarial machine
learning,” Physical Review Research, vol. 2, no. 3, p. 033212, 2020.

[58] S. Sim et al., “Expressibility and entangling capability of parameterized
quantum circuits for hybrid quantum-classical algorithms,” Advanced
Quantum Technologies, vol. 2, no. 12, p. 1900070, 2019.

[59] A. Ash-Saki, M. Alam, and S. Ghosh, “Analysis of crosstalk in NISQ
devices and security implications in multi-programming regime,” in
Proceedings of the ACM/IEEE International Symposium on Low Power
Electronics and Design, 2020, pp. 25–30.

[60] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: a case
for variability-aware policies for NISQ-era quantum computers,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2019, pp.
987–999.

[61] A. Ash-Saki, M. Alam, and S. Ghosh, “QURE: Qubit re-allocation in
noisy intermediate-scale quantum computers,” in Proceedings of the 56th
Annual Design Automation Conference 2019, 2019, pp. 1–6.

[62] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quan-
tum computers,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 1015–1029.

[63] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for map-
ping quantum circuits to the IBM QX architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 7, pp. 1226–1236, 2018.

[64] M. Alam, A. Ash-Saki, and S. Ghosh, “Addressing Temporal Variations
in Qubit Quality Metrics for Parameterized Quantum Circuits,” in 2019
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), 2019, pp. 1–6.

[65] E. Wilson, S. Singh, and F. Mueller, “Just-in-time quantum circuit
transpilation reduces noise,” in 2020 IEEE International Conference

on Quantum Computing and Engineering (QCE). IEEE, 2020, pp.
345–355.

[66] K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for
short-depth quantum circuits,” Phys. Rev. Lett., vol. 119, p. 180509, Nov
2017. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.
119.180509

[67] H. Wang, J. Gu, Y. Ding, Z. Li, F. T. Chong, D. Z. Pan, and S. Han,
“Roqnn: Noise-aware training for robust quantum neural networks,” arXiv
preprint arXiv:2110.11331, 2021.

[68] H. Wang, Z. Li, J. Gu, Y. Ding, D. Z. Pan, and S. Han, “On-chip qnn:
Towards efficient on-chip training of quantum neural networks,” arXiv
preprint arXiv:2202.13239, 2022.

View publication statsView publication stats

