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Abstract—In this paper, we introduce DFSSD, a novel logic
locking solution for sequential and FSM circuits with a re-
stricted (locked) access to the scan chain. DFSSD combines two
techniques for obfuscation: (1) Deep Faults, and (2) Shallow
State Duality. Both techniques are specifically designed to
resist against sequential SAT attacks based on bounded model
checking. The shallow state duality prevents a sequential SAT
attack from taking a shortcut for early termination without
running an exhaustive unbounded model checker to assess if
the attack could be terminated. The deep fault, on the other
hand, provides a designer with a technique for building deep, yet
key recoverable faults that could not be discovered by sequential
SAT (and bounded model checker based) attacks in a reasonable
time.

I. INTRODUCTION

To reduce the cost of semiconductor fabrication and shorten

the time to market of integrated circuits (IC), most of the

fabrication processes are pushed offshore [1]. This glob-

alization of supply chain has tremendously raised security

concerns such as the possibility of third-party intellectual

property (3PIP) theft, IC overproduction, Trojan insertion, and

adversarial reverse engineering. To overcome such threats,

various active and passive design-for-trust mechanisms have

been proposed in the literature, among which logic locking,

a.k.a. hardware obfuscation, has been manifested as proac-

tive protection against all these threats [2, 3]. The validity

and strength of the state-of-the-art logic locking solutions

to protect IPs/ICs against adversaries in the manufacturing

supply chain was seriously challenged in recent years after the

introduction of the Boolean satisfiability attack (SAT Attack)

[4–6]. After introduction of the SAT attacks, researchers

investigated a body of locking solutions with the objective

of resisting the SAT attack [7–12]. However, further research

revealed that increasing resistance against SAT attack makes

such solutions vulnerable against alternative (and even sim-

pler) attack solutions such as Signal Probability Skew (SPS)

and structural analysis-based attacks [13–15].

The original SAT attack was only applicable to combi-

national circuits. However, the existence of the scan chain,

allows an adversary to treat the FSM and sequential circuits

as a combinational circuit; using the scan chain, the attacker

to load desired input into scan registers, carry the attack for

one cycle, and readout the output through the scan chain [4].

Hence, to prevent the SAT attack on obfuscated sequential

and FSM solutions, various means for restricting access to the

scan chain [16, 17] was investigated. In this approach, which

is illustrated in Fig. 1, an obfuscation solution is constructed

using two key values: (1) a key for obfuscating the functional

logic, and (2) a key for obfuscating the scan chain.
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Fig. 1. An obfuscated IC with restricted access to scan chain.

Restricting access to (or locking of) the scan chain, how-

ever, did not stop the researchers from developing variants

of SAT attack solution capable of attacking an obfuscated

circuit. Lack of access to the scan chain was addressed

in [18] by changing the attack model to find a sequence of

inputs (rather than a single input) resulting in incorrect output.

This attack, so-called unrolling-based SAT (UB-SAT) attack,

expands the given FSM in time to be able to find a sequence

of distinguishing inputs.

To defend against UB-SAT and model checker based at-

tacks in design with restricted access to the scan chain, in

this paper, we introduce a new obfuscation solution denoted

as Deep Faults and Shallow State Duality (DFSSD). The

DSFFD obfuscation scheme exploits the weaknesses of the

existing attacks in obfuscating FSM and sequential circuits

and prevents these attacks from satisfying their early exit

conditions, forcing them to become unbounded. To build

the DFSSD solution, we propose a combination of two

concepts: (1) encrypting Deep Faults (DF), the discovery of

which requires specific traversal patterns with a large enough

depth that cannot be reached by bounded model checkers

or unrolling based SAT attacks. (2) encoding Shallow State

Duality (SSD), in which by implementing key-controlled

duplicate states, the early termination conditions of the UB-

SAT are violated.

II. PRELIMINARY BACKGROUND

As described earlier, limiting access to the scan chain

removes the ability of the attacker to deploy a pure SAT attack

on the combinational logic between internal scan registers,

and has to revert to the weaker variant of SAT attacks such

as UB-SAT (working with only primary input and primary

output). Following is a short background on Scan chain

obfuscation and proposed attack solutions for de-obfuscating

such solutions needed for understanding the DFSSD.

Securing Scan Chain Structure: Several methods have

been recently proposed in the literature to obfuscate the scan

chains [19, 20]. To secure the test and debug operations,
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Algorithm 1 Sequential Attack on Obfuscated Circuits

1: b = initial boundary, Terminated = False;
2: Model = C(X,K1, Y1) ∧ C(X,K2, Y2) ∧ (Y1 6= Y2);
3: while not Terminated do
4: while (XDIS , K1, K2)← BMC(Model, b) = T do
5: Yf ← CBlackBox(XDI);
6: Model = ∧ C(XDIS , K1, Yf ) ∧ C(XDIS , K2, Yf );

7: if UC(Model, b) ∨ CE(Model, b) ∨ UMC(Model) then
8: Terminated;

9: b = b + boundary step;

[16] proposed a design-for-security (DFS) flow that deploys

a structure, denoted as Secure Cell (SC). However, SC was

compromised via the shift-and-leak attack [17]. Another early

attempt in this domain was the Encrypt Flip-Flop (EFF) [19]

scheme. In EFF the output of each scan flop is obfuscated

based on a key value such that either the Q or Qbar output

is propagated in the scan chain, and accordingly, the scan-

in sequence is also modified. The EFF was also tackled

by the ScanSAT attack [21]. The Dynamically Obfuscated

Scan (DOS) [20] scheme obfuscates the scan chain while

periodically changing the obfuscation key during the test

process. Assuming a hard to break scan chain obfuscation,

the pure SAT attack could be no longer applied. Hence, an

attacker should resort to SAT attack variants designed for

attacking scan-access restricted obfuscation solutions by only

relying on controllability (observability) of primary inputs

(outputs).

Deobfuscation Methods Without Scan Chain Access:

El Massad et al. [18] extended the SAT attack to circuits

with no scan chain access, proposing an attack that only

required access to the primary input/outputs of an activated

chip. The attack procedure is shown in Algorithm 1. Similar

to the SAT attack, it has an iterative process for pruning the

search space. However, due to the restricted access to the

internal registers, rather than finding a Discriminating Input

(in each iteration), it finds a sequence of inputs X denoted as

Discriminating Input Sequence (XDIS) that can generate two

different outputs for the same input sequence for two different

keys. In this algorithm, C(X,K, Y ) refers to the obfuscated

circuit producing output sequence Y using input sequence X

and key vector K, and CBlackBox(X) refers to the output

sequence of the activated circuit for the same input sequence.

After transforming the obfuscated circuit to a circuit SAT

(Model) problem, the attack instantiates a Bounded Model

Checker (BMC) to find the XDIS . After the discovery of

each XDIS , the Model is updated with a new condition to

make sure that the next onset of keys, that will be discovered

in the subsequent attack iterations, produce the same output

for previously discovered XDIS . This process continues until

no further XDIS is found within the boundary of b.

After reaching the boundary, the algorithm checks three

criteria to determine if the attack can be terminated: (1)

Unique Completion (UC): This criterion checks for the

uniqueness of the key. If there is only a single key that

satisfying all previous DISes, the attack is terminated. (2)

Combinational Equivalence (CE): If there is more than

one key that agrees with all previously found XDIS , the

attack checks the combinational equivalency of the remaining

keys. In this step, the input/output of FFs are considered

as pseudo primary outputs/inputs allowing the attacker to

treat the circuit as combinational. The resulting circuit is

subjected to a SAT attack, and if the SAT solver fails to

find a different output or next state for two different keys,

it concludes that all remaining keys are correct and the attack

terminates. (3) Unbounded Model Check (UMC): If UC

and CE fail, the attack checks the existence of a DIS for the

remaining keys using an unbounded model checker. This is an

exhaustive search with no limitation on bound (or the number

of unrolls). If no DIS is discovered, the existing set of DIS is a

complete set, and the attack terminates. Otherwise, the bound

is increased and previous steps are repeated. The original

implementation of this attack [18] uses NuSMV as the model

checker and is not scalable for larger circuits. Shamsi et al.

improved this attack via implementing several tweaks in the

attack procedure [22].

III. PROPOSED METHODS

The practicality of UB-SAT attack (proposed in [18])

is grounded on the use of a fast bounded model checker

(BMC) [23] and the implementation of early termination

strategies to avoid the exhaustive search. This allows the

attacker to avoid using time-consuming and exhaustive un-

bounded model checking runs for the discovery of DISes

and to find the obfuscation key in a reasonable time. In this

section, we describe an obfuscation solution that 1) prevent

the UC and CE early termination, and 2) pushes the required

bound for a BMC solver to an unreasonably large bound

(which is defined at design time), resulting in unreasonable

attack time against the proposed obfuscation solution.

A. Shallow State Duality

The first termination criterion (UC) relies on the uniqueness

of the key and it fails if there is more than one valid key

for the obfuscated circuit. In the sequential attack proposed

in [18], UC was the main termination criterion for most of

the benchmarks. For the second termination criteria (CE),

successful termination relies on the equality of all next state

and output values for remaining candidate keys for all input

and state combinations.
Our proposed solution for breaking both UC and CE

termination checks is simply adding duplicate key controlled,

yet valid states such that more than one valid key exists. We

refer to this scheme as Shallow State Duality (SSD). This

concept is illustrated in Fig. 2. In this example, the original

FSM has five Reachable States (RS) and three Un-Reachable

States (URS). In the modified FSM, the unreachable states

are used to replicate three of the existing states such that the

transition to the original or replicated state is controlled by

a key. In this example, all the replicated states produce the

same outputs as the original state and key bits are correct for

both values of 0 and 1, although, it might not be the case

in a different implementation. Therefore, the UC check fails

as more than one correct key exists. In addition, in the CE

check, the input to the registers is considered as a primary

output. Hence, for duplicated states, two different key values

do not generate the same output as they do not reach the

same state. Note that the SSD is not a form of obfuscation as

multiple keys are correct keys and it should be combined with

our obfuscation solution which is described next. However, it

is an effective and low-overhead technique to prevent early

termination of the UB-SAT attack and its variants.
The duplicate states can be added during the state encoding

(design time) or after logic synthesis (physical design time).
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Fig. 2. (a) Original state transition graph, (b) Modified state transition graph
with duplicate states (shallow state duality).

Algorithm 2 Extracting an unreachable state with minimum ham-
ming distance from a reachable state

1: boundary = limit, i = 1, hd = 1
2: Model = Ccomb(X,S,O, Snext) ∧ Ccomb(X1, Sinit, O1, S1)
3: while true do
4: A = (∀(S,X), ∃Surs, Snext 6= Surs) ∧ (HD(Surs, Si) == hd)
5: if (Si−1, Si, Surs)← QBF (Model ∧ A) = T then
6: return Si−1, Si, Surs

7: else if i < boundary then
8: i = i + 1
9: Model = ∧ Ccomb(Xi, Si−1, Oi, Si)

10: else if i == boundary and hd < output width then
11: i = 1, hd = hd + 1

Fig. 2 shows an example of a state transition graph encoded

with duplicated states at design time. The circuit functionality

remains unchanged while the circuit has 24 = 16 correct keys.

For adding duplicate states to a synthesize netlist, we first

need to find a few unreachable states (Surs). The Algorithm

2 describes our approach for finding such states using a

quantified Boolean formula (QBF) solver. To minimize the

logic (overhead) needed for encoding the duplicate states, we

search for Surs with minimum hamming distance (HD) from

one of reachable (existing) states. In this Algorithm, inputs,

states, outputs, and next states are defined as X , S, O, and

Snext, respectively, and Ccomb refers to the combinational

representation of the original circuit in which the input/output

of FFs are considered as pseudo primary outputs/inputs (sim-

ilar to CE check in UB-SAT attack).

After initializing the boundary limit and defining the de-

sired hamming distance (e.g. hd=1), a model consisting of two

Ccomb instances is created. To find a Surs, one instance of

Ccomb is used as Ccomb(X,S,O, Snext) with for-all condition

on its primary inputs (X) and current states (S) to generate all

the outputs (O) and next states (Snext) that could be produced

by the Ccomb. By assuming Snext 6= Surs, the QBF solver

will attempt to find a set of values for Surs that is not a

part of the generated Snext. Then, to select a URS from

the set of Surs that has a hamming distance of hd from a

RS, another instance of Ccomb as Ccomb(X1, Sinit, O1, S1)
is used. In the QBF solver, this instance produces RSes (S1)

that are reachable from the initial state (Sinit). Any URS in

Surs with HD of one from the S1 could be considered as the

answer. If such a URS was not found, a new copy of Ccomb

as Ccomb(X2, S1, O2, S2) is added to the model to produce

RSes that are reachable from the initial state in two cycles. If

necessary, this unrolling continues until the boundary limit to
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Fig. 3. Implementation of Deep Fault (DF) obfuscation for a 011 detector.
The protected pattern include the counter (C1C0) FFs, and the (S1S0) state
FFs. The state transition graph of the circuit is shown in the middle right.

check Surs with all RSes reachable in i cycles. When a URS

is found, it is added to the netlist by adding the logic to make

the transition between the URS and the original states based

on the key value. The URS will produce the same output as

the original RS it was duplicated from and will transition to

the same next state(s) (or the duplicate of the next states).

B. Deep Faults

The sequential attack [18] relies on a bounded search

space for finding a discriminating input sequence XDIS , and

it keeps increasing the boundary if the termination checks

fail. The XDIS is a sequence of inputs, each forces a

transition to a new state until a discriminating state is reached,

where a discriminating state refers to a state whose output

is different for the same input with two different keys (a

DIP condition). This state traversal (based on XDIS) will not

include any other discriminating state transition or repeated

state. Such a discriminating state could only be found if

the shortest state traversal path from the initial state to that

state is shallower than the boundary condition (the number

of transitions) specified when invoking the BMC solver.

The traversal depth of a sequential/FSM circuit is defined as

the maximum number of state traversals (starting from initial

state) where no state is visited twice. However, the sequen-

tial/FSM circuits may have a limited traversal depth [24]. This

makes a BMC a plausible attack for finding all possible DIS

in such circuits, as all states can be visited within a reasonably

small bound. Our solution to protect against BMC formulated

attack (e.g., [18]) is to increase the traversal depth of the

FSM/sequential circuits and push the impact of wrong keys

into deep states beyond reach of the BMC (with reasonable

bound). This makes the discovery of such DIS unreasonably

time consuming. We refer to such faults as deep faults.

Our obfuscation methodology for creating Deep Faults

(DF) is described via the example shown in Fig. 3. The circuit

targeted for obfuscation is a simple ‘0-1-1’ input sequence

detector. As illustrated, the DF is implemented by adding 1) a

tracer circuit, 2) a flip circuit, and 3) a recovery circuit to the

original circuit. The tracer, as described earlier, is a function-

modified counter or a LSFR that changes its state each time

a triggering event is observed. The triggering events can be

selected state transitions, state visits, or simply the rising

edge of the clock. For simplicity, in Fig. 4, the triggering

event is the clock and the tracer is a 2-bit counter. The

flip circuit toggles the value of a single primary output of

the original circuit when a protected pattern is observed.

The protected pattern is a predefined pattern generated by

combining selected state registers (from the original design)
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TABLE I
TRUTH TABLE FOR THE 011 DETECTOR OBFUSCATED USING A TWO-BIT

COUNTER. S1S2 AND C1C2 DENOTE THE STATE AND COUNTER FFS

RESPECTIVELY. Y IS THE ORIGINAL CIRCUIT OUTPUT AND Kn IS THE

OUTPUT FOR EACH FOUR-BIT KEY. THE PROTECTED PATTERN AND KEY

ARE 1011. STATE VALUES OF 11XX ARE UNREACHABLE.

S1S2C1C2 Y K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

0000 X ✗ X X X X X X X X X X X X X X X

0001 X X ✗ X X X X X X X X X X X X X X

0010 X X X ✗ X X X X X X X X X X X X X

0011 X X X X ✗ X X X X X X X X X X X X

0100 X X X X X ✗ X X X X X X X X X X X

0101 X X X X X X ✗ X X X X X X X X X X

0110 X X X X X X X ✗ X X X X X X X X X

0111 X X X X X X X X ✗ X X X X X X X X

1000 X X X X X X X X X ✗ X X X X X X X

1001 X X X X X X X X X X ✗ X X X X X X

1010 X X X X X X X X X X X ✗ X X X X X

1011 X ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ ✗

11xx S=11 is unreachable

and tracer’s state register. In Fig. 3, the flip circuit is shown as

a four-input AND gate that fires when the protected ’10,11’

pattern for ’S1S0, C1C0’ is observed. The last component

of the Deep Fault obfuscation is the recovery circuit that

toggles the output signal when the inserted obfuscation key

agrees with the protected pattern. Hence, when the correct key

is applied (1011 in this case), the previously flipped output

related to the protected pattern will flip back (recovered) by

the recovery circuit, however, insertion of a wrong key will

result in flipping a correct output.

Table I shows the truth table of the circuit in Fig. 3

for all key-combinations. In this circuit, when the DF is

subjected to UB-SAT attack, each input can only rule out

a single wrong key. Thereby, the pruning power of each

discovered DIS is very limited, and the correct key is found

only when the protected input is tested. This concept is similar

to obfuscation solutions using point functions (e.g. SARLock

[25] and Anti-SAT [26]). However, there is a fundamental

difference. In point functions, the adversary uses a random

input, and although the average case or worse case attack

time is an exponential function of the key size, the attacker

can potentially discover the correct key with a single lucky

attempt. However, in deep faults, the discovery of DISes

is conditioned on the tracer state, which cannot be directly

controlled by input. Hence, it can guarantee a minimum bound

on the number of required DISes before the discovery of

the fault, which is at least equal to the number of cycles

needed for the tracer to reach the fault generation state. This

is a necessary condition for the generation of the fault, but

it is not enough. For the fault to occur, the selection of state

registers of the circuit that are included as a part of a protected

pattern should also reach the fault generating pattern. Hence,

the number of required DISes, which is equal to the number

of cycles to reach the protected pattern, can be far larger.

The lower bound for finding the protected pattern could be

defined based on the tracer event counting mechanism. For

simplicity, let’s assume a counter is used as the tracer circuit.

Lemma 1. The bound requirement for a BMC solver to find

the protected pattern of a deep fault which is implemented

using a simple clocked counter is C = 2w where w is width

of the counter.

Proof. The protected pattern consists of two parts: 1) w bits

of tracer (counter) register bits, and s bits of state registers.

As illustrated in Fig. 4, the portion of protected pattern

implemented by counter is reached every C = 2w cycles.

However, the state transition does not have a predefined
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traversal order, and the fault is only generated when the

protected pattern (state-tracer) is observed. If the s bits of

state registers, that are selected for inclusion in the protected

pattern, do not take the needed value to build the protected

pattern at cycle C, the fault is not generated. The next viable

cycle for reaching the protected pattern will be at 2×C or in

general at N × C. Hence, the minimum bound requirement

for a BMC attack to discover the fault is C = 2w. �

Lemma 2. The bound requirement for a BMC solver to find

the protected pattern for a deep fault which is implemented

using a tracer that counts a selected state transition is M +
C×L+Q, where M is the shortest path to reach the selected

state transition from the initial state, C = 2w, w is width of

the counter, L is the shortest sequence of state transitions to

visit the selected triggering transition twice (shortest cycle

including the triggering transition), and Q is the number of

state transitions to reach a state whose encoding completes

the protected pattern signature.

Proof. As shown in Fig. 5, the tracer only counts up if a

specified state transition occurs. It takes at least M cycles for

the first triggering event to occur. After this transition, the

shortest sequence of transition that could result in a count-

up is L, where the state transition is repeated. The number

of times the triggering state transition should be visited is

C = 2w times. After M + (C ×L) cycles, the tracer portion

of the protected pattern is ready for fault generation. However,

we still need another Q cycles to reach a state whose encoding

completes the protected pattern. If the target state could not

be met in M + (C × L) +Q cycles, it might need to repeat

(C ∗ L) for N times to be able to reach the target state. So

the number needed cycles for generating the deep fault is

M + N(C × L) + Q. The lower bound of required cycles

(equal to the number of DIS) occurs at N = 1, thus the

minimum required BMC bound for the discovery of fault is

M + (C × L) +Q. �

Fig. 6 shows the result of the UB-SAT attack on the 011 de-

tector of Fig. 3. With a 2-bit counter, according to Lemma 1,

the BMC min-bound of discovering faults is 22 = 4. As
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Fig. 6. Cycle by cycle DIS discovery for the 011 detector of Fig. 3, which is
obfuscated using DF with a 2-bit counter. The deep fault is discovered when
the deep state representing the protected state (shown in green) is reached.

expected, in each cycle at least one fault is discovered, while

the deep fault is discovered at the expected boundary of 4.

C. Preventing the Removal of the Tracer

A simple mechanism to implement the DF-tracer is using

a counter. However, counters can be easily identified by

structural analysis [27] as they have well-defined structure

and are loosely connected to the rest of the circuit. Note

that, for implementing the DF, the exact counter behavior is

not needed; We only need a tracer circuit for tracking cycles

or events. Hence, we can use an event tracking LFSR (i.e.

where LFSR state is updated based on a state transition)

or a function-modified (with different encoding) counter to

implement the tracer. The repetition period of LFSR (number

of non-repeated LSFR state values) would serve as the depth

that the fault could be delayed. In addition, to prevent the

attacker from structural analysis using asynchronous signals,

the enable/rest signal of the tracer circuit should not be

separated from the rest of the circuit. furthermore, the tracer

could be designed to exhibit a pseudo-counter behaviour such

that the update of the tracer’s different register state values

relies on both the existing tracer register values and other

registers selected from the sequential circuit or FSM.

With the changes discussed earlier, the inserted tracer

(modified-counter or LFSR) can not be functionally identified.

However, it is still prone to detection by structural analysis

of the data flow graph. As Fig. 7.(a) shows, the tracer is

still loosely connected to the rest of circuit. To resolve this

issue, the data flow graph of the obfuscated circuit should be

modified such that tracer circuit can not be easily isolated. In

other words, the tracer’s registers’ values should be also in

the input logic cone of the other FFs. However, this should

not affect the functionality of the tracer. One solution for

modifying the data flow graph, as illustrated in Fig. 7.(b)

is through the usage of Covert Gates [28]. These gates

have dummy inputs, connected to always on or always off

transistors, that don’t affect the gates’ function. In practice,

the gates in the logic cone of the state registers can be

replaced by Covert gates, and the tracer registers’ output can

be connected to the dummy inputs of the covert gates. With

this change, without modifying the circuit functionality, the

tracer circuit will be strongly connected to the rest of the

circuit when the data flow graph is extracted. The covert gates

can be also used to bring additional dummy inputs from the

state machine or sequential circuit to tracer without affecting

its functionality. The problem with this method is that it can

only protect the design against adversaries attempting to fully

reverse engineer an existing ASIC, and it does not protect

the IP against an untrusted manufacturing facility. In fact, the

✔

✘

✔✔ S0

S1

S2

FSM 
Circuitry

Tracer 
Circuitry

C0

C1

wi

(a)

✔

✘

✔✔ S0

S1

S2

FSM 
Circuitry

Tracer 
Circuitry

C0

C1

wi

(b)

✔

✘

✔✔ S0

S1

S2

FSM 
Circuitry

Tracer 
Circuitry

C0

C1

wi

nos1

nos2

nos1

(c)

✔

✘

✔✔

si

s'i

si s'i

si

s'i
ci

si

si

ci

ci

always 
ON

always 
OFF

(d)

✔

✘

✔✔

0 1 0
s2s1s0

to

si

s'i

Valids2 s1 s0

0 0 0
0 0 1
0 1 0
0 1 1

1 1 1
. . . .

s2s1s0

cinot 
valid

always ZERO

si

s'i

(e)

Fig. 7. Camouflaged (Covert) gates and non-occurring states could be used
for merging the two strongly-connected graphs of state and counter FFs.
a) DF circuit, b) DF circuit hidden by covert gates, c) DF circuit hidden by
building dummy logic from non-occurring signal combinations, d) a covert
gate implementation with dummy input, e) non-occurring signal used for
implementing dummy logic.

manufacturing facility has access to the layout represented via

the GDSII file. Hence, the Covert gates are not hidden from

the foundry.
To protect against adversarial reverse engineering at un-

trusted foundries, one can also utilize non-occurring signal

combinations in the netlist for building dummy connections

to/from the tracer circuit. As Fig. 7 shows, the non-occurring

signal combinations can be found using a QBF solver [9] and

utilized to design an always-zero (or one) signal combined

from counter FFs and signals in input cone of other state

FFs.

IV. EXPERIMENTAL RESULTS

We have implemented the UB-SAT attack using Yices SMT

solver by creating the combinational equivalent circuit and

unrolling it for finding DISes and checking UC and CE

terminations. For UMC termination, we have used SuperProve

from Berkeley ABC package [30]. The experiments were

performed on an Intel Core i5 with 64GB RAM.
Table II captures the results of attacking the ISCAS’89

benchmarks when encoded using duplicated states (SSD),

obfuscated using deep faults (DF), protected using a combi-

nation of both techniques (DFSSD). The first few columns of

the table describe the characteristics of these benchmarks in

terms of number of flip-flops (FF), number of primary I/O (PI

and PO), and number of unreachable states (URS) according

to [29]. In this table DFw represent a DF obfuscation,

constructed using a counter of width w. For each obfuscated

circuit, number of discovered DISes, and the number of inputs

in the last DIS (its length) is reported as D/S. The maximum

attack time is set to eight hours. Attacks that take longer are

reported as TO.
The SSD column of Table II captures the result of UB-

SAT attack against circuits protected only by Shallow State

Duality. As expected, when UB-SAT is deployed against a

SSD encoded circuit, the UC And CE termination strategies

become useless. As reported, for all SSD-encoded bench-

marks, either the attack is terminated by UMC or prematurely

terminated for lack of memory resources.
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TABLE II
EXPERIMENTAL RESULTS FOR SHALLOW STATE DUALITY (SSD) AND DEEP FAULTS (DF) METHODS. ITERATION OF LAST DIS (D) AND ITS LENGTH (S)

IS REPORTED IN D/S COLUMNS. TIME IS IN SECONDS. SUCCESSFUL TERMINATION CONDITION IS REPORTED IN Term COLUMN.

Circuit

Circuit Info Shallow State Duality Deep Faults DFSSD

URS count from [29] SSD DF3 DF4 DF5 DF7 SSD + DF5 SSD + DF7

FF PI PO URS D/S Time Term D/S Time Term D/S Time Term D/S Time Term D/S Time Term D/S Time Term D/S Time Term

s344 15 9 11 9,536 0 9 UMC 29/8 39 UC 56/16 139 UC 119/32 2849 UC - TO - 115/32 5231 UMC - TO -
s382 21 3 6 2,073,412 0 5 UMC 17/48 9393 UMC - TO - - TO - - TO - - TO - - TO -
s386 6 7 7 51 0 6 UMC 8/8 9 UC 29/16 45 UC 70/32 482 UC - TO - 65/32 1232 UMC - TO -
s526 21 3 6 1,695,692 0 5 UMC 27/16 463 UMC 49/32 1580 UMC 92/64 4684 UMC - TO - 90/64 4676 UMC - TO -
s713 19 35 23 517,625 0 223 UMC 15/8 28 UC 53/16 317 UC - TO - - TO - - TO - - TO -
s832 5 18 19 7 0 12 UMC 32/16 86 UC 44/16 148 UC 99/32 2549 UC - TO - - TO - - TO -

s838 32 34 1 > 230 - TO - 20/72 1096 UC 43/80 2194 UC - TO - - TO - - TO - - TO -
s1196 18 14 14 259,492 0 12 UMC 27/8 77 UC 64/16 377 UC 135/32 3146 UC - TO - - TO - - TO -

s1423 74 17 5 > 272 - TO - 8/8 26 UC 49/16 2924 UC - TO - - TO - - TO - - TO -
s1494 6 8 19 16 0 15 UMC 21/8 46 UC 78/16 369 UC 187/32 4333 UC - TO - - TO - - TO -

s5378 179 35 49 > 2176 0 65 UMC 42/8 1653 UC - TO - - TO - - TO - - TO - - TO -

s9234 211 36 39 > 2227 0 3065 UMC - TO - - TO - - TO - - TO - - TO - - TO -

s38584 1426 38 304 > 21449 - TO - 8/8 1293 UC - TO - - TO - - TO - - TO - - TO -

Table II also captures the results of attacking circuits,

which are obfuscated using deep faults with varying counter

widths (3, 4, 5, and 7 bits). From this table, following

observations are made: 1) the number of discovered DISes

grow exponentially with respect to the size of the counter.

This is consistent with the Lemma 1: at each cycle we can

produce at least 1 DIS until the protected pattern (which in

this case is encoded using the highest value of the counter)

is reached. Hence, we should at least have 2w DISes. 2)

The size of the largest input sequence (S) in which the deep

fault is discovered is N × 2w (N being an integer). This is

consistent with Lemma 1, where the protected pattern could

be potentially (but not necessarily) observed at every N×2w

cycles; 3) the runtime of the attack increases exponentially

as the depth of DF tracer circuit (counter) increases; and 4)

when the circuit is solely protected by DF, the UC termination

is the most reoccurring termination strategy.

The last two columns of Table II, capture the impact of

combining the DF and SSD (DFSSD) which is the main

solution proposed in this paper. The DFSSD combines the

best feature of the two solutions. The SSD prevents early UC

and CE termination, while the DF pushes the faults down

into deep states, resulting in an exponential increase in the

number of required DISes and the attack time with respect

to the counter size. Note that by preventing the UC and CE

terminations, and by forcing the attack to UMC termination

check in every iteration, the SSD+DF5 has considerably larger

runtime compared to DF5.

V. CONCLUSION

In this paper, we proposed DFSSD, an obfuscation solution

for FSM and sequential circuits with restricted (locked) access

to the scan chain. The DFSSD deployed two mechanisms,

specifically designed to resist against BMC-based attacks

such as UB-SAT: 1) it uses shallow state duality to prevent

early termination of such attacks by invalidating the unique

completion and combinational equivalence checks, forcing the

attack to rely on exhaustive and time-consuming UMC for

assessing the attack’s termination condition; 2) it injects fault

into deep and hard to reach (by a BMC) states. The DFSSD

allows the designer to precisely control the depth of the fault

at design time using a low overhead circuit solution and make

the attack time unreasonably long.
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