
Special Session: Countering IP Security threats in
Supply chain

Hassan Salmani
EECS Departmente
Howard University

hassan.salmani@howard.edu

Muhammad Yasin, Jeyavijayan (JV) Rajendran
ECE Department

Texas A&M University
{myasin, jeyavijayan}@tamu.edu

Tamzidul Hoque, Swarup Bhunia
ECE Department
Florida University

{thoque,swarup}@ufl.edu

Naghmeh Karimi
CSEE Department

University of Maryland Baltimore County
naghmeh.karimi@umbc.edu

Abstract—The continuing decrease in feature size of integrated
circuits, and the increase of the complexity and cost of design and
fabrication has led to outsourcing the design and fabrication of
integrated circuits to third parties across the globe, and in turn
has introduced several security vulnerabilities. The adversaries in
the supply chain can pirate integrated circuits, overproduce these
circuits, perform reverse engineering, and/or insert hardware
Trojans in these circuits. Developing countermeasures against
such security threats is highly crucial. Accordingly, this paper
first develops a learning-based trust verification framework to
detect hardware Trojans. To tackle Trojan insertion, IP piracy
and overproduction, logic locking schemes and in particular
stripped functionality logic locking is discussed and its resiliency
against the state-of-the-art attacks is investigated.

I. INTRODUCTION

Aggressive scaling of VLSI technology results in more
complex systems in a single chip. High complexity and cost
of design and fabrication of such circuits has invoked the
outsourcing of design and fabrication to different parties across
the globe. Such globalization of Integrated circuit (IC) design
flow has jeopardized the security and trustworthiness of ICs
and introduced new security vulnerabilities among which the
followings have received significant attention: (1) tampering
the circuit to insert malicious circuitry in the form of hard-
ware Trojans aiming at denial of service or leaking sensitive
data; (2) reverse engineering aiming at gaining information
about the design, and consequently stealing and claiming the
ownership of the Intellectual Property (IP); (3) cloning and
unallowed overproduction by the foundry.

A hardware Trojan can be inserted during the design or
fabrication phase. It resides in hardware and is activated during
the hardware operation. In practice, a hardware Trojan may
result in denial of service, decreasing the device performance,
or leaking sensitive information [1]–[3]. Hardware Trojans
usually comprise of a small fraction of the circuit area as
otherwise they may be detected due to the change of chip
dimension. Moreover, hardware Trojans are mainly stealthy to
avoid being detected easily [4], [5].

Utilizing destructive reverse engineering schemes to check
the genuineness of manufactured chips is highly costly and
cannot ensure that those untested to be Trojan free [6]. On
the other hand, deploying VLSI testing schemes in detecting
Trojans is not highly effective, as the trigger condition of
a Trojan rarely appears [7]. The problem is exacerbated for
sequential Trojans as they need a sequence of vectors to be
triggered. Side-Channel based Trojan detection schemes that
monitor the device’s side-channel parameters such as power
signatures, path delays, and electromagnetic emanation are
more effective methods to detect hardware Trojans as they
do not need to trigger a Trojan to detect it [8]. However, the
success of these schemes in detecting Trojans is affected by
the Trojan size and the process variations occur during the
manufacturing process [9], [10]. Machine learning based solu-
tions are promising in detecting hardware Trojans due to their
ability to integrate a large number of Trojan properties which
could lead to robustness against feature bypassing efforts and
significant coverage for existing and future Trojan classes.
Accordingly, in this paper, to detect Trojans, a supervised
learning-based trust verification framework is proposed and
its challenges are discussed extensively.

As discussed earlier, IP piracy, overproduction, and reverse
engineering are among other threats that jeopardize the secu-
rity of integrated circuits. To tackle such threats, logic locking
has been proposed in recent years [11], [12]. In practice,
logic locking is applied at the design stage and hides the
functionality of a design by inserting key-controlled logic gates
(key gates) into the original circuit. A locked IC preserves the
correct functionality only when the correct key is provided
to the circuit. These key gates are fed by the key inputs
stored in a tamper-proof memory. As with logic locking, the
correct functionality of the design will be hidden from the
adversary, not only reverse engineering and piracy is prevented
but also hardware-Trojan insertion becomes highly difficult,
if not impossible. In practice, an adversary should insert a
Trojan in such a way that it is rarely triggered. Otherwise,
it would be detected during manufacturing test process. As

2019 IEEE 37th VLSI Test Symposium (VTS)

!

978-1-7281-1170-4/19/$31.00 ©2019 IEEE

!

with the logic locking the correct functionality of the chip is
not revealed, Trojan insertion would be very difficult since
the inserted Trojan may be triggered more often without the
knowledge about the proper functionality of the design. In this
paper we focus on a recently proposed logic locking scheme
so-called stripped functionality logic locking (SFLL) [13] and
discuss its resiliency against recent logic-locking attacks.

The rest of this paper is organized as follows. Section II
deals with different type of IPs and explains how hardware
Trojans affect each of these IP types. It then discusses the
hardware Trojan detection and prevention schemes. Then, Sec-
tion III proposes a learning-based trust verification framework
that provides a completely automated trust-verification flow.
The challenges and the possible future improvement of the
proposed flow is also discussed in this section. Section IV
focusses on logic-locking schemes and how an IP can be
protected against piracy, reverse engineering, and Trojan in-
sertion via logic locking. In particular, this section focuses
on stripped-functionality logic locking and how this locking
scheme will thwart different class of attacks. Finally, Section V
concludes the paper.

II. IP SECURITY THREATS AND HARDWARE TROJANS

IP providers are distributed all across the world, and IPs are
being used in designing complex circuits. The application of
these complex circuits may range from main frames and per-
sonal desktop computers to smart wristwatches, to autonomous
vehicles, and to smart homes. Extent and diversity of IP
usages mandate their protection against their infringement and
modifications. Hardware Trojans (HTs) are a type of circuits
that rarely interfere with circuit functional specifications or
cause negligible impacts on circuit parametric characteristics.
A HT circuit is composed of two main parts: a HT trigger and
a HT payload. The HT trigger seeks rare (sequence of) event(s)
to modify circuit functionality or its parametric characteristics
through the HT payload. Considering the stealthy nature of
HTs, they can be discussed from two different perspectives in
related to IP protections: IP protection against HT attacks and
the use of HTs for IP protection.

A. IP protection against HT attacks

The HT trigger maliciously propagates erroneous values
under rare conditions through the HT payload to subvert circuit
functional specifications or its parametric characteristics. For
example, a HT inserted in an IP may seek a specific sequence
of instructions to become activated. Upon activation, this
HT routes bits of a secret key or signal(s) affected by the
secret key to some memory elements or primary outputs.
Preventing HT insertion and detecting HTs mandate rigorous
vulnerability analyses of IPs toward HT attacks. Such analyses
reveal possible types of HTs aiming at infringement and
modifications of IPs. Different techniques can be then devised
to prevent and detect HTs to protect IPs.

1) HT vulnerability: There are three main categories of IPs
[14] soft, firm, and hard. Soft IP blocks are specified at the
register transfer level (RTL) or higher-level descriptions. As a

hardware description language (HDL) is process independent,
they are more suitable for digital cores. They are highly
flexible, portable, and reusable, but not necessarily optimized
in terms of timing and power. Presented at the layout level,
hard IP blocks are highly optimized for a given application in a
specific process. Their characteristics are already determined;
however, this comes with high cost and lack of flexibility. Firm
IP blocks are parameterized circuit descriptions, so they can
be optimized according to specific design needs. Firm IPs are
between soft and hard IPs, being more flexible and portable
than hard IPs, yet more predictable than soft IPs.

Soft IPs presented at RTL using HDLs provide signifi-
cant opportunities for HTs insertion that can compromise IP
security [15] [16]. These IPs can be easily readable by an
adversary, and security-sensitive modules can be identified.
While a soft IP may meet all specified specifications, it may
also provide a lot of spaces for HT insertion. For example,
undefined signals under certain conditions can be hijacked
to transport sensitive information. Firm IPs are synthesized
circuits in reference to some specific design libraries. Com-
pared to a soft IP, a firm IP is composed of signals and
logic cells; therefore, an adversary may need to put more
effort to identify control and data paths and which parts of
circuit perform security-sensitive tasks. However, there may
exist still enough rooms to manipulate some signals and logic
cells to realize fine-tuned HTs with small footprints [17].
For example, internal memory elements that hold intermediate
security-sensitive data can be targeted to covertly leak stored
data through some signals to some other memory elements or
primary outputs. Hard IPs are placed and routed circuits which
are highly optimized at specific technology node toward design
goals such as performance and reliability.

Hard IPs provide unprecedented opportunities for imple-
menting types of HTs that are not feasible in soft and firm IPs
[18]. For example, some passive elements such as capacitors
can tap into some security-sensitive signals, such as a reset
signal, and the passive elements can be controlled by software
code. As a result, a software-controlled HT can be realized.
Vulnerabilities of hard IPs made of analog or mixed-signal
circuits to HTs have recently obtained considerable attentions,
as well [19]. For example, it has shown that it is possible to
leak secret key through manipulating wireless transceivers.

2) HT Prevention: Preventing HT insertion at IPs means
their instrumentation such that no space practically remains for
an adversary to realize any HTs. For soft IPs, IP encryption
at RTL is a technique used in industry to facilitate sharing
soft IPs between vendors without revealing their detailed
implementation. As a result, a user’s capabilities are limited to
IP verification and synthesis, and it makes circuit manipula-
tions challenging for an attacker. Some other techniques have
proposed equipping a soft IP with information flow control
mechanisms to ensure no security-sensitive information (inten-
tionally) leaks from an soft IP [20]. Some work has suggested
split manufacturing at the RTL [21]. A soft IP is divided into
RTL units, and a submitted circuit to an untrusted foundry is
literally a sea of unconnected RTL units. Connections between

!

!

RTL units are unknown to the untrusted foundry; hence, it
makes it very challenging to realize a HT.

For firm IPs, IP obfuscation is one of major techniques that
is being widely studied. In general, some selected signals are
mixed with some secret keys such that an untrusted party
will not be able to easily determine whether the signals
are originally inverted or not. As a result, an adversary
cannot easily determine signals’ functionality. Some other
work proposes encryption of IPs’ communication with other
IPs in a complex circuit. Communication encryption makes
it considerably challenging for an attacker to induce internal
computation of IPs. As a result, it also becomes very difficult
for an attacker to purposefully manipulate communications
between IPs [22].

For hard IPs, the split manufacturing technique is another
technique that splits a layout in two parts to prevent HT
implementation. The layout’s substrate and transistors with
low level metal layers are manufactured by an (untrusted)
foundry, and the upper metal layers are manufactured by
another (trusted) foundry. As connections between logic cells
seem incomplete for an untrusted foundry, it cannot develop a
functional model of circuit. As a result, it becomes very chal-
lenging to design HTs effectively attacking security-sensitive
assets. Camouflaging is another technique that has been con-
siderably investigated to hide the functionality of logic cells
itself. Logic cells are implemented using lookup tables or
some programmable multiplexers so that a foundry does not
know the functionality of logic cells during manufacturing
[23]. Some other techniques in this line have proposed logic
cells whose layout are similar in their images, but they deliver
different functionalities [24].

3) HT Detection: There has been extensive study on HT
detection techniques before circuit manufacturing and after
circuit manufacturing. Majority of techniques targeting HTs
before circuit signoff perform various static and dynamic
analyses to capture HTs through suspicious logical activities.
On the other hand, techniques targeting HTs after circuit
manufacturing mainly look for HT footprints on side-channel
signals or perform online monitoring to flag any activities
different from expected behaviors.

Before circuit manufacturing, a circuit under authenti-
cation undergoes various verification techniques by a trusted
entity to isolate inserted HTs. As a circuit is available in its
original form, i.e. neither encrypted nor obfuscated, different
techniques have been proposed based on an IP’s abstraction
level.

For soft IPs, there exist techniques that perform control-
flow subgraph matching or look for known patterns of HTs at
RTL to detect them. These techniques assume the existence
of a library containing HT triggers and payloads. As it is not
expected that HT lines become executed frequently, some tech-
niques suggest identifying suspicious signals by use of formal
verification, coverage analysis, removing redundant circuit,
sequential automatic test pattern generation and equivalence
theorems. Some other work also propose using formal methods
to ensure predefined security properties have not been violated

when a soft IP arrives to a customer [20] [25].
For firm IPs, some techniques study switching activities

of signals to detect HTs. These techniques basically apply
(random) test patterns to a circuit and observe switching ac-
tivities across the circuit. Some techniques then continue with
guided test pattern generation targeting suspicious modules
to determine whether the suspicious ones are HTs with a
higher confidence [26]. Some others perform correlation anal-
yses between switching activities of signals and use machine
learning techniques to isolate HTs [27]. Opposite to circuits
dynamic analyses, i.e. test pattern application, some techniques
perform static analyses of gates and signals to detect HTs.
A technique has hypothesized that HT signals need to have
either considerably high controllability or high observability
values to present a stealthy behavior [28]. As a result, this
technique detects HTs based on their testability values in gate-
level netlist.

For hard IPs, some techniques may still extract correspond-
ing gate-level netlist of a hard IP to detect HTs. While such
techniques mainly look for functional HTs, hard IPs also
enable designing new types of HTs. Hard IPs open door to
analog and mix-signals IPs so that sophisticated HTs can be
designed at the layout level. Detection of majority of HTs for
hard IPs is performed after circuit manufacturing.

After circuit manufacturing, detecting HTs takes two
main forms: performing circuit testing before using the circuit
in a system and conducting runtime monitoring of circuit. To
have an effective HT detection after circuit manufacturing,
several design-for-trust techniques have been proposed [20].
These techniques magnify HT contributing into a circuit side
channel signals during circuit testing or facilitate security
property checking during online monitoring. To detect HTs
through circuit testing, some techniques strive to (partially)
activate HTs and capture their footprints in circuit power
consumption [29]. Some other techniques suggest various
delay-based testing to capture extra delay introduced by a HT
due to HT cells placement and routing [30]. Real-time online
learning techniques are being also proposed to learn a complex
circuit’s behavior based some application-oriented information
[31]. Any behavior residing far from expected behaviors in the
field is flagged as HTs. Using wrappers around IP modules can
also being used to ensure security policies have been followed
by taking over control over some input/output signals [32].

B. The use of HTs for IP protection

While majority of study has been on detecting HTs in IPs,
there has been some study on using HTs for IP protection. It
has shown that a sequential HT can be embedded in a firm
IP to realize IP expiration date. These HTs can be obfuscated
to avoid their removal, and they become activated when a
sequence of rare events occurs. A checking mechanism based
on the sequence of states in the host design’s finite state
machine has been introduced to determine if a soft IP is used
in a legal host design or not [33].

!

!

III. LEARN & CHURN: A KNOWLEDGE GUIDED
APPROACH TO HARDWARE IP TRUST ASSURANCE

A. Learning-based Trust Verification

System-on-Chip (SoC) based design paradigm has become
commonplace for design houses where SoC developers ex-
tensively rely on hardware designs obtained from external
vendors. Use of third-party hardware intellectual property (IP)
cores provides a significant economic benefit by eliminating
the cost and associated delay of developing individual hard-
ware IP cores from scratch. While the soft-IPs obtained in
the form of register-transfer-level code or gate-level netlist are
verified for functional correctness during and after integration,
it is extremely hard to assure that no hidden or malicious
functionality exists within the untrusted IP core. The challenge
of detecting hidden malicious circuits or hardware Trojans
has received significant attention from the government and
academia during the last decade where various detection,
prevention, and monitoring strategies have been developed
that are applicable to specific Trojan insertion scenario. While
the detection of foundry inserted Trojans received the highest
attention, most countermeasures applicable to this context
require a golden design. As this requirement cannot be met
for detecting Trojans in untrusted third-party IP (3PIP) cores,
a significantly different detection approach is required for IP
trust assurance.

Researchers have leveraged the white-box observability of
the untrusted 3PIP core to propose various Trojan detection
solution that uses static analysis of the IP. Static analysis
involves examining the structures within the design without
simulating it. Dynamic analysis based detection techniques
observe the design response during simulation and often
requires the Trojans to be activated for detection. The major
challenge in the context of dynamic analysis is the generation
of intelligent test vectors that could fully activate the Trojan
and make the malicious impact observable. Along with the
scalability issue for large IPs, dynamic analysis is limited to
the Trojan classes that creates observable functional change
within the design once triggered.

Static analysis based detection methods have been proven
effective in detecting hard-to-activate Trojans by observing
individual functional features of nets within the design such
as switching activity and controllability [34]. While these
solutions are effective for specific Trojan classes (i.e., ones
that rarely trigger), structurally redesigning the Trojans to
eliminate the very few functional features have been proven
effective in bypassing such technique [35]. Besides, activity
and controllability related features could be insufficient in
detecting some of the existing (e.g., always-on) and new
Trojan types that do not exhibit any difference compared to the
normal segment of the design when examined based on these
features. Machine learning based solutions are promising in
this regard due to their ability to integrate a large number
of Trojan properties which could lead to robustness against
feature bypassing efforts and significant coverage for existing
and future Trojan classes. While similar learning-based trust-

verification approach has been studied by others [36]–[38],
they suffer from the following major disadvantages: 1) use of
either structural or functional features [28], 2) use of features
only applicable to Trust-HUB Trojans, 3) common training and
testing process for Trojan classes with opposite behaviour, 4)
reliance on a limited set of static Trojan database for training,
5) imperfect validation of the approach where the training and
testing database contain common instances.

In [39], we propose a supervised learning based framework
that eliminates all the aforementioned weaknesses and pro-
vides a completely automated trust-verification flow containing
four primary steps as shown in Fig. 1. First, a set of Trojan-
free sample IPs are collected on which a large number of
valid Trojans are inserted for each known class of Trojans
that we want to detect. An automated Trojan insertion tool
is used for this purpose. For a particular class, the Trojan
instances are varied with respect to a number of structural and
functional parameters including the Trojan fan-in, switching
activity, insertion location etc. Tool-based insertion of Trojan
helps to eliminate the reliance on a limited static database
during training. A total of 14 different generic features are
used that effectively capture both the functional and structural
behaviour of each net. Along with the activity related features,
we examined a number of functional features that are related
to the Boolean function of the net’s driving logic. With the
help of commercial synthesis tools or in-house netlist parser,
the desired functional and structural properties for each net
is extracted. The labeled training data for each Trojan class is
then used for generating separate trained model capable of de-
tecting corresponding classes of Trojans. Class-wise separation
of training and testing process enables better understanding
of the verification outcome and provides increased detection
performance compared to other supervised learning based
approaches [39]. Finally, the test database is generated from
the suspect IP and provided to each trained model dedicated
to detecting the diverse Trojan classes. Each model identifies
a set of suspect nets that could potentially belong to Trojans.

B. Challenges in Learning-based Trust Verification

In this section, we discuss some of the major challenges
and possible future improvements that are significant for the
proposed approach.

1) Selection of Sample Benchmarks: Generation of training
set requires a number of sample benchmarks to be inserted
with Trojans. The data points obtained from the normal and
Trojan inserted segments of these benchmarks help the clas-
sifier to learn about the non-Trojan and Trojan net behaviour
respectively. In [39], four of the largest ISCAS89 benchmarks
were selected as sample benchmarks and the designs were
inserted with approximately 800 combinational and sequential
Trojans. Since the available sample IPs could have diverse
functionality, it could be hard to select the most appropriate
benchmarks for a given suspect design. One naive approach
would be to choose training benchmarks that have similar
functionality to the suspect IP. For instance, if the suspect
IP is an AES core, several other open source block ciphers

!

!

Fig. 1. The overall machine learning based IP trust verification framework proposed in [39].

Fig. 2. IP-level clustering to identify sample benchmarks for training that are
similar to the suspect IP.

could be selected. While this approach is intuitive, a more
formal approach would be to apply an unsupervised clustering
at the IP-level based on some features as shown in Fig. 2.
However, the features to be used for net-level classification
are not directly applicable for IP-level clustering. Hence, some
function of the net-level features should be used. For instance,
if we intend to use controllability of nets as net-level features
for Trojan detection, the IP-level clustering could be done
using the average and standard deviation of controllability
of all nets in the IP. It is expected that the sample IPs that
form a cluster with the suspect IP have similarity among the
majority of nets with respect to the features to be used for
Trojan detection. Hence, as shown in Fig. 2, to detect Trojans
in IP1, IP5 and IP6 could be used as training benchmarks.

2) Trojan Insertion Parameters: The Trojan insertion tool
has a number of configurable parameters which dictates the
functional and structural behavior of the inserted Trojans.
Since for a sample design with moderate size (10K nets)
thousands of valid Trojan instances could be inserted, under a
given trust verification time bound only a limited number of
Trojans could be inserted to generate the training data. Hence,

the optimum number of Trojans to be inserted and the range of
Trojan parameters that must be covered among these limited
Trojan set is an important research question that could dictate
the quality of the training data and required time to verify an
IP.

3) Feature Selection: As the number of features to be
extracted from the design increases, training and test time is af-
fected. Besides, not all features would be useful for each class
of Trojans. Even though the advantage of certain features for
specific classes of Trojan could be intuitively understood with
domain knowledge, there could be features that combinedly fa-
cilitate the classification but appears ineffective when observed
separately. For the reduction of verification time and a better
understanding of the test results, it is important to select the
best possible set of feature for individual Trojan class. Hence,
a wrapper-based feature selection process could be used. In
wrapper algorithm, a mining algorithm (e.g., Naive Bayes)
is predefined first and utilized for feature subset evaluation.
For each generated feature subset, the mining algorithm is
applied to data and the goodness of the subset is determined
by assessing the quality of the mined outputs. Hence, wrapper
based feature selection could be applied on the training data
to estimate which features could provide the best detection
accuracy for a specific Trojan class.

4) Selection of Classifiers : Once the training data is gener-
ated, one or more classification algorithm has to be selected for
training. Depending on the nature of the training and test data,
the performance of the classifier is impacted. For instance,
in [39], three different classifiers (i.e., Random Forest, Naive
Bayes, and AdaBoost-DecisionStump) were tested along with
their voting ensemble that combines the result from all three.
As shown in Fig. 3, for two different classes of Trojans
(i.e., combinational and sequential), the performance of the
classifiers vary significantly among different classification
algorithm. While no single classifier outperformed the rest
in detecting all Trojan classes, the best result was obtained
through the voting of multiple classifiers. The performance of

!

!

Fig. 3. The average (a) precision, (b) recalll, and (c) F-Score of the two Trojan classes for different machine learning algorithms in detecting a number of
combinational and sequential Trojans obtained from Trust-HUB.

such a voting scheme is yet to be observed for other classes of
Trojans (e.g., always-on and DeTrust Trojans [35]). While a
voting-based scheme sounds attractive, it increases the overall
verification time as multiple classifiers have to be used. Hence,
selection of the best classifier for each class of Trojan should
be done by experimenting with a large number of classifiers
and diverse Trojan classes.

5) Adversarial Learning : Similar to the application of
machine learning in malware and network intrusion detection,
the proposed supervised learning for IP trust verification is
vulnerable to adversarial learning. An attacker with the Trojan
insertion tool and knowledge of the overall scheme could try
to design Trojans to bypass the proposed verification approach.
The assumption is that the attacker can test the Trojan inserted
IP with the proposed scheme before sending it to the design
house where the suspect IP is tested by the verification engi-
neer under a similar implementation of the proposed scheme.
One method of attack would be to understand the feature that is
responsible for the successful detection of a particular Trojan.
The Trojan could be redesigned ensuring that the identify-
ing signature is reduced to a point where the Trojan is no
longer detectable. However, the attacker must ensure that the
modification does not allow the Trojan to get easily detected
or observed using new features or complementary detection
techniques (e.g., logic testing). Thwarting adversarial attack
would require verification personnel to execute experiments
similar to the attacker to improve the Trojan designs to be
inserted by the tool for robust training.

IV. LOGIC LOCKING

As mentioned earlier, the globalization of the integrated
circuit (IC) supply chain has given rise to security threats such
as IP piracy, overbuilding, reverse engineering, and hardware
Trojans [40]. Logic locking has emerged as a promising de-
fense against these threats [11], [13], [41]–[44]. Logic locking
locks a circuit by adding introducing additional key-controlled
logic into a circuit. In addition to the original inputs, a locked
circuit has key inputs that are driven by an on-chip tamper-
proof memory. The added protection logic may consist of XOR
key gates [11], [41], look-up-tables (LUTs) [45] or complex
Boolean functions [13], [43]. The locked netlist passes through
the untrusted design phases, i.e., untrusted manufacturing, test,

and assembly. Without the knowledge of the secret key, neither
a design can be pirated nor an IC can be made functional.

A. A brief history of logic locking

The earliest logic locking techniques focused on discovering
the most suitable locations for inserting XOR/XNOR key-
gates [11], [12], [45]. However, many key-recovery attacks
have been launched on these techniques [12], [42]. The most
notable among these attacks is the SAT that attack that lever-
ages Boolean satisfiability to eliminate incorrect key. Subse-
quent research on logic locking defends against the SAT attack
by combining an original circuit with a point-function [43],
[46]. Although point-function techniques, e.g., SARLock [46]
and Anti-SAT [43], thwart the SAT attack, they are vulnerable
to the removal attacks. These attacks can identify and remove
the protection circuity [47]. An approximate key for these
techniques can also be recovered by different variants of the
SAT attack [48]. Stripped Functionality Logic Locking (SFLL)
is the first technique to defend against all the aforementioned
attacks in a provable way [13]. Another recent technique,
cyclic logic locking, resist the SAT attack by introducing
cycles in a netlist [49].

Apart from the combinational logic techniques mentioned
above, sequential locking techniques that lock finite state ma-
chines have also been developed [50], [51]. However, all these
techniques are susceptible to state-machine-reconstruction [52]
and bounded-model-checking-based attacks [53], [54].

B. Stripped-Functionality Logic Locking (SFLL)

As mentioned, logic locking is a promising defense against
piracy and reverse engineering. This section focuses on a spe-
cific class of logic locking techniques, referred to as stripped-
functionality logic locking (SFLL). We will elaborate on the
resilience of SFLL against the latest attacks. In particular,
in this section, we summarize the operation of SFLL and
its variants. We present “post-SFLL”attacks that have been
developed after the inception of SFLL, and to answer the
frequently asked questions (FAQs) on the security of SFLL, we
elaborate on the resilience of SFLL against these post-SFLL
attacks.

SFLL thwarts all classes of attacks on logic locking, i.e.,
SAT [42], removal [47], [56], and approximate [48], [57].

!

!

Fig. 4. The three variants of SFLL: a) SFLL-HD [13], b) SFLL-Flex [13], and c) SFLL-Fault [55].

SFLL is based on the notion of “strip and restore”. Selected
functionality is taken-away from the original circuit and is
stored as secret key(s). Upon fabrication, the chip is activated
by loading the secret key(s) to an on-chip memory.

SFLL has three variants: SFLL-HD, SFLL-flex, and SFLL-
fault, which are discussed next.

1) SFLL-HD: SFLL-HD creates a functionality-stripped
circuit (FSC) by inverting the output of the original circuit for(
k
h

)
input patterns that are of Hamming distance (HD) h from

the k-bit secret key. These patterns are referred to as protected
input patterns. The number of the protected input patterns
represents the resilience to removal attacks. As depicted in
Fig. 4(a), a single HD-unit forms the restore unit that recovers
the original functionality upon applying the correct key to it.
For the incorrect keys, however, an error is introduced into
the circuit systematically, i.e., in a way that maximizes the
resilience to the SAT attack [13].

2) SFLL-Flex: SFLL-HD suits applications where it is
useful to protect a large number of input patterns; the patterns
may be selected on an arbitrary basis. However, in many
applications, a specific set of input patterns or a range of input
patterns has to be protected. SFLL-Flex locks a circuit cost-
effectively by compacting the patterns-to-be-protected using
a small set of input cubes (input patterns with don’t care
bits) [13]. The cubes are stored on an on-chip look-up table
as illustrated in Fig. 4(b).

3) SFLL-Fault: SFLL-HD and SFLL-Flex realize
functionality-stripping through existing logic synthesis
algorithms. For example, the FSC in SFLL-HD is obtained
by synthesizing the original circuit along with an HD-unit
containing a hard-coded secret key. The HD-unit is susceptible
to removal when it is not fully merged with the original
circuit. Instead of adding logic to a circuit, SFLL-Fault
subtracts the logic through fault injection [55]. SFLL-Fault,
thus, does not leave any structural traces in a netlist and
hampers removal attacks [55].

C. Post-SFLL attacks and resilience of SFLL

1) CycSAT [58] and BeSAT [59]: CycSAT is a variant of
SAT attack that breaks cyclic logic locking [58]. CycSAT adds
additional clauses that help extract a key that either renders
the circuit acyclic or ensures that none of the cycles are
sensitizable. CycSAT, however, may run into scalability issues
when the cyclic circuit maintains a state, i.e., the output for
a given key/input combination differs based upon the state.
BeSAT improves upon CycSAT to resolve statefulness [59].

Resilience of SFLL. Both CycSAT and BeSAT build upon
the SAT attack by adding constraints to remove cycles from a
design. When considering the resilience of SFLL, these attacks
are no different than the SAT attack. The additional clauses
play no role in defeating SFLL. Thus, SFLL thwarts CycSAT
and BeSAT in the same say way as it thwarts the SAT attack.

2) Structural analysis using machine learning (SAIL) [60]:
The SAIL attack uses machine learning to determine the secret
key. The attack exploits the correlation between the secret key
value and the netlist structure [60]. Note that upon insertion
of XOR key-gates, the netlist structure typically changes only
locally, i.e., within a few levels of logic.

Resilience of SFLL. The SAIL attack can succeed only
when the impact of XOR/XNOR key-gate insertion is localized
within a few levels of logic. The SAIL attack is successful
against RLL, where the impact of individual key-gates is
localized and detached from that of the other key-gates [60].
This allows the machine learning algorithm to learn templates
that help match the local netlist changes to the key-bit value.
SFLL, however, does not introduce any localized changes to a
netlist that may be linked to the values of individual key-bits.
In SFLL, all the key-bits are entangled, e.g., through an AND-
tree or an HD-unit, and cannot be targeted on an individual
basis. The SAIL attack thus fails to target SFLL, where a
divide-and-conquer strategy is not applicable.

3) Satisfiability modulo theory (SMT) attack [61]: The
SMT attack is a superset of the SAT attack since it relies on
SMTs that are more general than SAT [61]. The SMT attack
incorporates the SAT attack and its multiple variants, including
the accelerated SAT attack and the approximate attacks.

Resilience of SFLL. The SMT attack mainly shows that
all variants of the SAT attack can also be implemented using
SMT. The attack targets logic locking techniques that have
been vulnerable to other variants of the SAT attack. It does
not explicitly target any weakness of SFLL. Since SFLL is
secure against the different variants of SAT attack that the
SMT attack implements, it also remains secure against the
SMT attack. The SMT attack against SFLL would require the
same number of iterations as the SAT attack.

4) Functional analysis attack on logic locking (FALL) [62]:
The FALL attack utilizes structural and functional properties
of the HD-unit to identify and remove it [62]. The attack is
successful when the HD-unit with the hard-coded secret key
is left as is during logic synthesis.

Resilience of SFLL. As already mentioned, SFLL-HD and
SFLL-Flex “add” an HD-unit or an AND-tree, respectively,

!

!

with a hard-coded secret key before re-synthesizing the circuit.
The HD-unit and the AND-tree may remain intact post-
synthesis. The FALL attack can thus circumvent SFLL-HD
and SFLL-Flex, since it can use the properties of the HD-
unit and AND-trees to locate them inside a netlist. This also
gives rise to the need for developing secure logic synthesis
algorithms that can defend against the attack.

However, the FALL attack cannot break SFLL-Fault that
strips functionality by “subtracting/removing” logic from the
original circuit. The subtraction of the logic does not leave
any traces for an attacker to exploit. An attacker cannot guess
exactly what logic removed from a circuit to construct its
current form.

5) Redundancy identification [63]: The redundancy identi-
fication attack relies on the observation that incorrect keys may
create logic redundancy in a netlist, rendering certain faults
untestable [63]. By comparing the changes to the structure of
a netlist for a key-bit value of 0 and a key-bit value of 1, the
attack can identify the more likely value for a given key-bit.

Resilience of SFLL. Similar to the SAIL attack, the re-
dundancy identification attack succeeds using a divide-and-
conquer approach that targets individual key-bits. The attack
cannot break SFLL, where all key-bits feed a restore unit and
must be considered in tandem.

In sum, most of CycSAT, SAIL, SMT, FALL, and redun-
dancy identification attacks target the weaknesses of specific
combinational and sequential logic locking techniques but fail
to break SFLL. The other attacks target only specific variants
of SFLL. Thereby, no existing attack can break all variants
of SFLL. Note that we need secure logic synthesis algorithms
to further secure SFLL and other logic synthesis techniques
against structural attacks.

V. CONCLUSION

This paper discussed different IP security threats that can
occur in the supply chain and the schemes that can be deployed
to tackle such threats. In particular, we focused on Trojan
detection schemes in different type of IPs and proposed a
learning-based framework that when deployed significantly
improves Trojan detection rate. In addition, we discussed how
logic locking schemes counter IP piracy, cloning, reverse engi-
neering and Trojan insertion threats and investigated how the
recently proposed stripped functionality logic locking scheme
can tackle the state-of-the-art logic locking attacks.

REFERENCES

[1] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware
Trojan attacks: Threat analysis and countermeasures,” Proceedings of
the IEEE, vol. 102, no. 8, pp. 1229–1247, Aug 2014.

[2] M. Tehranipoor and F. Koushanfar, “A survey of hardware Trojan
taxonomy and detection,” IEEE Design and Test of Computers, vol. 27,
no. 1, pp. 10–25, Jan 2010.

[3] J. Dubeuf, D. Hly, and R. Karri, “Run-time detection of hardware
Trojans: The processor protection unit,” in ETS, 2013, pp. 1–6.

[4] M. Banga and M. S. Hsiao, “A region based approach for the identifi-
cation of hardware Trojans,” in HOST, 2008, pp. 40–47.

[5] N. Karimi, J.-L. Danger, and S. Guilley, “On the effect of aging in de-
tecting hardware Trojan horses with template analysis,” in International
Symposium on On-Line Testing And Robust System Design (IOLTS).
IEEE, 2018, pp. 281–286.

[6] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay
fingerprint,” in HOST, 2008, pp. 51–57.

[7] R. Rad et al., “Power supply signal calibration techniques for improving
detection resolution to hardware Trojans,” in ICCAD, 2008, pp. 632–639.

[8] D. Agrawal et al., “Trojan detection using IC fingerprinting,” in IEEE
Symp. on Security and Privacy, 2007, pp. 296–310.

[9] T. Hoque et al., “Golden-free hardware Trojan detection with high
sensitivity under process noise,” Journal of Electronic Testing, vol. 33,
no. 1, pp. 107–124, 2017.

[10] J. Zhang, H. Yu, and Q. Xu, “Htoutlier: Hardware Trojan detection with
side-channel signature outlier identification,” in HOST, 2012, pp. 55–58.

[11] J. Roy, F. Koushanfar, and I. Markov, “Ending Piracy of Integrated
Circuits,” IEEE Computer, vol. 43, pp. 30–38, 2010.

[12] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security Analysis
of Logic Obfuscation,” IEEE/ACM Design Automation Conference, pp.
83–89, 2012.

[13] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran,
and O. Sinanoglu, “Provably-Secure Logic Locking: From Theory To
Practice,” ACM SIGSAC Conference on Computer & Communications
Security, pp. 1601–1618, 2017.

[14] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux,
P. P. Pande, C. Grecu, and A. Ivanov, “System-on-chip: Reuse and
integration,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1050–1069,
2006.

[15] H. Salmani and M. Tehranipoor, “Analyzing circuit vulnerability to
hardware Trojan insertion at the behavioral level,” in 2013 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFTS), 2013, pp. 190–195.

[16] H. Salmani and S. G. Miremadi, “Contribution of controller area
networks controllers to masquerade failures,” in 11th Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC’05), 2005.

[17] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in 2013 IEEE 31st Inter-
national Conference on Computer Design (ICCD), 2013, pp. 471–474.

[18] H. Salmani and M. M. Tehranipoor, “Vulnerability analysis of a circuit
layout to hardware Trojan insertion,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 6, pp. 1214–1225, 2016.

[19] A. Antonopoulos, C. Kapatsori, and Y. Makris, “Security and trust in the
analog/mixed-signal/RF domain: A survey and a perspective,” in 2017
22nd IEEE European Test Symposium (ETS), 2017, pp. 1–10.

[20] H. Salmani, Trusted Digital Circuits - Hardware Trojan Vulnerabilities,
Prevention and Detection. New York: Springer., 2018.

[21] X. Cui, J. J. Zhang, K. Wu, S. Garg, and R. Karri, “Split manufacturing-
based register transfer-level obfuscation,” J. Emerg. Technol. Comput.
Syst., vol. 15, no. 1, pp. 11:1–11:22, 2019.

[22] S. Bhunia, S. Ray, and S. Sur-Kolay, Fundamentals of IP and SoC
Security. New York: Springer., 2017.

[23] T. Winograd, H. Salmani, H. Mahmoodi, K. Gaj, and H. Homayoun,
“Hybrid STT-CMOS designs for reverse-engineering prevention,” in
Proceedings of the 53rd Annual Design Automation Conference. ACM,
2016, pp. 88:1–88:6.

[24] M. Tehranipoor, H. Salmani, and X. Zhang, Integrated Circuit Authen-
tication - Hardware Trojans and Counterfeit Detection. New York:
Springer., 2013.

[25] P. Mishra, S. Swarup, and M. Tehranipoor, Hardware IP Security and
Trust. New York: Springer., 2017.

[26] M. Oya, Y. Shi, M. Yanagisawa, and N. Togawa, “A score-based classifi-
cation method for identifying hardware-Trojans at gate-level netlists,” in
2015 Design, Automation Test in Europe Conference Exhibition (DATE),
2015, pp. 465–470.

[27] B. Çakir and S. Malik, “Hardware Trojan detection for gate-level ICs
using signal correlation based clustering,” in Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition, 2015,
pp. 471–476.

[28] H. Salmani, “COTD: Reference-free hardware Trojan detection and
recovery based on controllability and observability in gate-level netlist,”
IEEE Transactions on Information Forensics and Security, vol. 12, no. 2,
pp. 338–350, 2017.

[29] X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic, “Hardware
Trojan detection and isolation using current integration and localized
current analysis,” in 2008 IEEE International Symposium on Defect and
Fault Tolerance of VLSI Systems, 2008, pp. 87–95.

!

!

[30] K. Xiao, X. Zhang, and M. Tehranipoor, “A clock sweeping technique
for detecting hardware Trojans impacting circuits delay,” IEEE Design
& Test of Computers, vol. 30, no. 2, pp. 26–34, 2013.

[31] A. Kulkarni, Y. Pino, and T. Mohsenin, “SVM-based real-time hardware
Trojan detection for many-core platform,” in 2016 17th International
Symposium on Quality Electronic Design (ISQED), 2016, pp. 362–367.

[32] J. Portillo and E. John, “Using static hardware wrappers to thwart
hardware Trojans and code bugs at runtime,” in 2018 IEEE 61st
International Midwest Symposium on Circuits and Systems (MWSCAS),
2018, pp. 1034–1037.

[33] S. Narasimhan, R. S. Chakraborty, and S. Chakraborty, “Hardware IP
protection during evaluation using embedded sequential Trojan,” IEEE
Design Test of Computers, vol. 29, no. 3, pp. 70–79, 2012.

[34] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: identifica-
tion of stealthy malicious logic using boolean functional analysis,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 697–708.

[35] J. Zhang, F. Yuan, and Q. Xu, “Detrust: Defeating hardware trust
verification with stealthy implicitly-triggered hardware trojans,” in Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 153–166.

[36] K. Hasegawa, M. Yanagisawa, and N. Togawa, “A hardware-trojan
classification method using machine learning at gate-level netlists based
on trojan features,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. 100, no. 7, pp. 1427–
1438, 2017.

[37] ——, “Hardware trojans classification for gate-level netlists using multi-
layer neural networks,” in 2017 IEEE 23rd International Symposium on
On-Line Testing and Robust System Design (IOLTS). IEEE, 2017, pp.
227–232.

[38] ——, “Trojan-feature extraction at gate-level netlists and its application
to hardware-trojan detection using random forest classifier,” in 2017
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,
2017, pp. 1–4.

[39] T. Hoque, J. Cruz, P. Chakraborty, and S. Bhunia, “Hardware ip
trust validation: Learn (the untrustworthy), and verify,” in 2018 IEEE
International Test Conference (ITC). IEEE, 2018, pp. 1–10.

[40] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware
Security: Models, Methods, and Metrics,” Proceedings of IEEE, vol.
102, no. 8, pp. 1283–1295, 2014.

[41] M. Yasin, J. Rajendran, O. Sinanoglu, and R. Karri, “On Improving
the Security of Logic Locking,” IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, vol. 35, pp. 1411–1424, 2016.

[42] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the Security of Logic
Encryption Algorithms,” IEEE International Symposium on Hardware
Oriented Security and Trust, pp. 137–143, 2015.

[43] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock:
SAT Attack Resistant Logic Locking,” IEEE International Symposium
on Hardware Oriented Security and Trust, pp. 236–241, 2016.

[44] M. Yasin and O. Sinanoglu, “Evolution of Logic Locking,” IFIP/IEEE
International Conference onVery Large Scale Integration, pp. 1–6, 2017.

[45] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC Piracy Using
Reconfigurable Logic Barriers,” IEEE Design & Test of Computers,
vol. 27, no. 1, pp. 66–75, 2010.

[46] Y. Xie and A. Srivastava, “Mitigating SAT Attack on Logic Locking,”
International Conference on Cryptographic Hardware and Embedded
Systems, pp. 127–146, 2016.

[47] M. Yasin and B. Mazumdar and O. Sinanoglu and J. Rajendran,
“Removal Attacks on Logic Locking and Camouflaging Techniques,”
IEEE Transactions on Emerging Topics in Computing, pp. 1–1, 2018.

[48] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately Deobfuscating Integrated Circuits,” IEEE International
Symposium on Hardware Oriented Security and Trust, pp. 95–100, 2017.

[49] ——, “Cyclic Obfuscation for Creating SAT-Unresolvable Circuits,”
ACM Great Lakes Symposium on VLSI, pp. 173–178, 2017.

[50] Y. Alkabani and F. Koushanfar, “Active Hardware Metering for Intel-
lectual Property Protection and Security,” USENIX Security Symposium,
pp. 291–306, 2007.

[51] R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1493–1502, 2009.

[52] M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier,
and C. Paar, “On the difficulty of fsm-based hardware obfuscation,”

IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 293–330, 2018.

[53] M. El Massad, S. Garg, and M. Tripunitara, “Reverse Engineering
Camouflaged Sequential Circuits Without Scan Access,” IEEE/ACM
International Conference on Computer-Aided Design, pp. 33–40, 2017.

[54] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “KC2: Key-Condition Crunch-
ing for Fast Sequential Circuit Deobfuscation,” Design, Automation &
Test in Europe Conference Exhibition, 2019, to appear.

[55] A. Sengupta, M. Nabeel, M. Yasin, and O. Sinanoglu, “ATPG-based
cost-effective, secure logic locking,” IEEE VLSI Test Symposium, pp.
1–6, 2018.

[56] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Security
Analysis of Anti-SAT,” IEEE Asia and South Pacific Design Automation
Conference, pp. 342–347, 2016.

[57] Y. Shen and H. Zhou, “Double DIP: Re-Evaluating Security of Logic
Encryption Algorithms,” ACM Great Lakes Symposium on VLSI, pp.
179–184, 2017.

[58] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-Based Attack on Cyclic
Logic Encryptions,” IEEE/ACM International Conference on Computer-
Aided Design, pp. 49–56, 2017.

[59] Y. Shen, Y. Li, A. Rezaei, S. Kong, D. Dlott, and H. Zhou, “BeSAT:
Behavioral SAT-based Attack on Cyclic Logic Encryption,” IEEE Asia
and South Pacific Design Automation Conference, pp. 657–662, 2019.

[60] Kocher, Paul and Jaffe, Joshua and Jun, Benjamin, “SAIL: Machine
Learning Guided Structural Analysis Attack on Hardware Obfuscation,”
ACM International Cryptology Conference on Advances in Cryptology,
pp. 388–397, 2018.

[61] K. Azar, H. Kamali, H. Homayoun, and A. Sasan, “SMT Attack: Next
Generation Attack on Obfuscated Circuits with Capabilities and Perfor-
mance Beyond the SAT Attacks,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2019, no. 1, pp. 97–122, 2018.

[62] D. Sirone and P. Subramanyan, “Functional Analysis Attacks on Logic
Locking,” Design, Automation & Test in Europe Conference Exhibition,
2019, to appear.

[63] L. X. Li and A. Orailoglu, “Piercing Logic Locking Keys through
Redundancy Identification,” Design, Automation & Test in Europe Con-
ference Exhibition, 2019, to appear.

!

!

