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Abstract

We discuss the results of an extensive fault simulation study
involving the control logic of a modern Alpha-like micropro-
cessor. In this comparative study, faults are injected in both
the RT- and the Gate-Level description of the design and are
simulated under actual workload of the microprocessor, which
is executing SPEC2000 benchmarks. The objective of this study
is to analyze and contrast the impact of RT- and Gate-Level
faults on the instruction execution flow of the microprocessor.
The key observation is a pronounced consistency in the type
and frequency of Instruction Level Errors (ILEs) arising due to
RT- vs. Gate-Level faults. The motivation for this work stems
from the need to understand the relative importance of low-
level faults based on their instruction-level impact, in order
to appropriately allocate error detection and/or correction
resources. Hence, the consistency revealed through this study
implies that such decisions can be made equally effective based
on RT-Level fault simulation results, as with their far more
computationally-expensive Gate-Level equivalents.

1. Introduction

Concurrent Error Detection (CED) [1], [2], [3] has recently
enjoyed revived interest as a possible solution to various factors
threatening the reliable operation of modern microprocessors,
including not only Single Event Upsets (SEUs), but also design
marginalities, Negative Bias Temperature Instability (NBTI),
coupling, power supply noise, etc. [4], [5]. CED methods,
however, incur area, power, and performance overhead and
cannot be applied across the board. Rather, the limited budget
available for CED features needs to be judiciously allocated. To
this end, a method for assessing the relative importance of low-
level faults with regards to their impact on the instruction-level
execution of a typical microprocessor workload and allocating
CED resources accordingly could prove invaluable.

Such information may, possibly, be obtained via extensive
fault simulations. Performing these simulations at the Gate-
Level could provide highly detailed and accurate information;
yet it may be computationally prohibitive and rather late in
the design cycle to effectively use this information to develop
appropriate CED methods. Indeed, working at higher levels
of abstraction, especially at the RT-Level, is preferred among
designers, not only because they are faster to simulate but also
because they are conceptually easier to follow, allow rapid
prototyping of functions, offer portability/extendibility to simi-

lar/larger designs, and enable exploration of potential collateral
benefits. However, obtaining the aforementioned information
via RT-Level simulations raises the perennial question of ac-
curacy when higher abstraction levels are used [6], [7].

Towards supporting efficient allocation of CED resources
early in the design cycle, in this paper we investigate the
accuracy of information obtained through RT-Level fault sim-
ulations. More specifically, we contrast the instruction-level
impact caused by faults in the RT-Level description of a modern
microprocessor controller, to that caused by faults in its Gate-
Level equivalent. Our study focuses on faults in the control
logic of modern microprocessors with advanced architectural
features, for which CED solutions have recently started to
appear [8], [9]. The underlying microprocessor model and the
mechanism for capturing instruction-level impact of low-level
faults are described in Section 2. Details of the target control
modules are given in Section 3, while the RT- and Gate-
Level fault injection and simulation capabilities developed for
this study are discussed in Section 4. Results are presented
and analyzed in Section 5, while conclusions are drawn and
possible extensions are pinpointed in Section 6.

2. Study Framework

Among the very limited choice of publicly available mi-
croprocessor models with modern architectural features, we
chose to work with IVM (Illinois Verilog Model) [10], [11].
This Verilog model resembles the functionality of an Alpha
21264 microprocessor, including out-of-order execution, 12-
stage pipeline, hybrid branch prediction, speculative execution,
etc. IVM complex control logic supports up to 132 instructions
in-flight.

A key feature of IVM and our reason for choosing to work
with it is the ability to simulate real workload (i.e. SPEC2000
benchmarks). Since the objective of our study is to contrast the
instruction level impact of RT- vs. Gate-Level faults, being able
to simulate actual workload rather than random traces boosts
significantly our confidence in the obtained results.

In order to capture the instruction level impact of low-
level faults, we employ the concept of Instruction Level Errors
(ILEs). Specifically, we use the ILE Types defined in [12],
which we summarize in Table 1. Fig. 1 shows an example,
where a low-level fault (i.e. a bit-flip at the output of an
inverter) causes an instruction to use a different register than
the one intended (i.e. an ILE of Type 3). ILEs are not mutually
exclusive (i.e. more than one ILE Type can be caused simulta-
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Fig. 1. Instruction level impact of low-level fault

neously by a low-level fault) and do not reflect every possible
instruction level error, yet they provide a comprehensive basis
for capturing incorrect behavior in the instruction execution
flow. For proper classification of a low-level fault into one or
more ILE Type, information is collected from various parts
of the microprocessor, including the Scheduler, the ReOrder
Buffer, the Execution Units, the Scoreboard etc., as shown in
Table 2. In other words, the complete microprocessor model
needs to be simulated to ensure accurate classification. Details
about ILEs and the classification process can be found in [12].

The key limitation of the IVM version which supports
simulation of actual workload is that it is not synthesizable,
thus limiting our logic and fault simulation options to the RT-
Level. Therefore, in order to perform a comparative study of
the instruction-level impact of RT- vs. Gate-Level faults, we
converted the target modules to synthesizable, incorporated
their Gate-Level version in the RT-Level model of the micro-
processor, and created the necessary infrastructure for using an
RT-Level logic simulator to perform fault simulation of both
their RT- and Gate-Level versions.

3. Target Modules
Since our focus is on microprocessor control logic, we target

two key control modules: the Scheduler, which controls the
allocation of instructions to execution units, and the ReOrder
Buffer (ROB) which controls the order of instruction retire-
ment. Both modules incorporate large buffers to support the
number of instructions that can be in-flight, with a combined
total of over 40,000 storage elements, as shown in Table 3. The
Scheduler is relatively small; it contains 32 slots for instructions
waiting to be executed and keeps the information needed to
identify and correctly issue an instruction. The ROB is much
larger because it contains a 64-slot instruction buffer, as well as
complementary information about instruction retirement order.

In order to perform a comparative RT- vs. Gate-Level
analysis, we converted the Verilog description of these two
modules to a synthesizable version and employed Synop-
sys Design Compiler to synthesize them and obtain their
Gate-Level description. The synthesized Scheduler consists of
170,099 standard cells, while the synthesized ROB consists of
228,881 standard cells. Even though the ROB has over 20K
(228%) more storage elements than the Scheduler, it only uses
34% more standard cells. This is explained since, despite the
fact that the ROB uses much larger buffers, the control logic
involved is rather small and is only limited to the proper retire-
ment of instructions. On the other hand, the Scheduler performs

Group 1: Type 1: Incorrect (yet valid) operation code used
Operation Errors Type 2: Invalid operation code used

Type 3: Incorrect (yet valid) register addressed
Group 2: Type 4: Invalid register addressed

Operand Errors Type 5: Premature use of register contents
Type 6: Incorrect immediate operand used

Group 3: Type 7: Incorrect functional unit type utilized
Execution Errors Type 8: Multiple functional units utilized

Type 9: Early commencement
Group 4: Type 10: Late or no commencement

Timing Errors Type 11: Longer duration
Type 12: Shorter duration

Group 5:
Order Errors

Type 13: Commitment order violation

TABLE 1. Instruction-Level Errors

Module Information
Decoder Opcode, Operands
Rename Physical Registers
Execution Functional Unit Utilization
Scheduler Issue Time, Replays
Scoreboard Availability of Registers
Reorder Buffer (ROB) ROBid, Retirement Cycle/Order

TABLE 2. ILE classification information traced from
various microprocessor modules

complicated tasks such as checking whether operands are ready,
whether an instruction can be issued avoiding structural hazards
etc., which involve much more control logic. This observation
implies diversity, since both control logic-heavy and buffer-
heavy modules are considered in the study. Finally, using an
industrial-strength tool, we performed fault enumeration and
collapsing on the two target modules and we provide the results
in Table 4. All faults, including faults within the cells, are
considered.

4. Fault Simulation

With the exception of the Scheduler and the ROB modules,
for which we created synthesizable versions, the rest of the
IVM microprocessor is not synthesizable; therefore, Gate-Level
fault simulation tools cannot be used in our study. Even if
the complete processor was synthesizable, fault-simulating the
entire Gate-Level model would probably be impractical. Hence,
we are limited to using RT-Level logic simulation tools, such as
Synopsys VCS. This enables simulation of the RT-Level model
of the microprocessor while it executes actual workload, but
it does not offer fault injection capabilities. In this section,
we describe the methods that we employ in order to inject
faults in the RT- and Gate-Level models of the target modules,
while performing RT-Level logic simulation. These methods
have been fully automated through in-house software.

4.1. RT-Level Fault Injection

In order to support RT-Level fault injection, an extra module
called Fault Controller is added to control all fault injection
parameters, and the RT-Level model of each target module
is mutated. Injection is performed in every storage element
defined in the Verilog model, as shown in Table 3. Fault
injection during RT-Level fault simulation is performed using
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Module # of Storage Elements
Scheduler 9,411
ReOrder Buffer (ROB) 30,735

TABLE 3. Statistics on RT-Level Modules

Fault Type Scheduler ReOrder Buffer
All faults 1,159,012 1,714,306
Unique faults 679,833 1,074,850
Untestable faults 320 19,845

TABLE 4. Statistics on Gate-Level Modules

a method similar to the parallel saboteurs technique described
in [13]. Fig. 2 presents a simplified diagram of the method,
which is capable of injecting either stuck-at faults, with user-
defined start and stop times and duration (lighter color indicates
hardware resources added for fault simulation purposes). Since
we operate at the RT-Level model, only storage elements are
fault-injected. Each storage element is driven by a MUX which
is controlled by the Fault Controller. The latter also provides an
additional fault clock signal which alters the value of the target
storage element during the active fault injection window. Each
storage element has a unique ID, so that the Fault Controller
can pick the one to be injected each time, while the rest
hold their value. The fault clock is different than the regular
clock, with fault injection performed when it has a value of 1.
Otherwise, the value set by the Fault Controller is ignored.

4.2. Gate-Level Fault Injection
Gate-Level fault injection during RT-Level fault simulation

is also supported through addition of a Fault Controller mod-
ule and mutation of the Gate-Level description of the target
module. A simplified version of the method is depicted in
Fig. 3, with lighter color indicating hardware resources added
for Gate-Level fault injection. In order to avoid cluttering the
figure, we only show the resources for 3 out of the 10 fault
injection sites; the rest of the sites are injected in the exact
same way. In this simulation environment every wire has an
additional driver, which is controlled by the Fault Controller.
In contrast to the RT-Level, we inject faults on wires rather
than storage elements, hence we do not need a fault clock.
Cells are treated as black boxes. The Fault Controller drives a
high-impedance value z whenever a wire should not be fault-
injected, so that the normal value of the wire is propagated.
During fault-injection, a supply0 or a supply1 value is
driven on the wire, resembling a stuck-at-0 or a stuck-at-1
fault, respectively. According to Verilog definition, if a wire
has multiple drivers the strongest one prevails, with z being
a neutral value. Supply0 and supply1 are the strongest
signals, overwriting the regular 0 or 1 value of a signal and,
thus, injecting a stuck-at fault.

We point out that additional buffers are used in the diagram
of Fig. 3, in order to enable fault-injection in the various
segments of a wire with fanout. These buffers enable individual
addressing and, thus, fault-injection on each of the branches of
a fanout net. Finally, we also note that in order to successfully
simulate a Gate-Level module in an RT-Level environment, the
delays of all the standard cells are set to zero, matching the
default zero propagation delay of an RT-Level model.

Fig. 2. Fault injection in latches of RT-Level model

Fig. 3. Fault injection in wires of Gate-Level model
(resources for 3 out of 10 fault injection sites shown)

5. Experimental Results

In this section, we outline the simulation setup used for our
study and we present and discuss the obtained results.

5.1. Simulation Setup

Simulation Workload: Three different SPEC2000 bench-
marks, namely bzip2, mcf, and cc, are used as the simulation
workload for the IVM processor. The use of multiple bench-
marks ensures variability on the instructions executed through
the processor and the control logic that they exercise. Each
benchmark is executed in the fault-free microprocessor for an
initial warm-up period of 50,000 clock cycles, at which point
a fault is injected and the execution continues for 2,000 cycles
on the faulty microprocessor. On average, 1,297 instructions
retire during benchmark execution.
Target Modules & Types of Injected Faults: We report results
individually for the Scheduler and the ROB. We remind that
the complete microprocessor needs to be simulated in order
to accurately assess the instruction level impact of a low-
level fault. Therefore, we employ the fault injection methods
described in Section 4, which perform RT-Level simulation of
the microprocessor model while employing either the RT- or
the Gate-Level view of the target module. In both abstraction
levels, the types of faults injected after the warm-up period
are stuck-at faults. This choice is driven by the fact that
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such injected faults resemble errors occurring due to design
marginalities and in-field failures. Furthermore, their permanent
nature increases the probability that they will cause an ILE,
and, thereby, decreases the length of the fault simulations
necessary to study their impact. We note, however, that the
developed fault injection infrastructure also supports simulation
of other fault types, such as single-cycle or multi-cycle tran-
sients, so a similar (yet much more computationally expensive)
study can be performed for those.
Number of Injected Faults: While simulating the RT-Level
versions of the two modules, all faults presented in Table 3 are
injected. At the Gate-Level, however, the number of faults in
Table 4 is very large so we resort to sampling, with a sample
size of c = 10%. For the Scheduler, where the total number of
faults is NScheduler = 1, 159, 012, this translates to a sample
size of nScheduler = 115, 901 faults, while for the ROB, where
NROB = 1, 714, 306 faults, this translates to a sample size of
nROB = 171, 430 faults. To assess the error incurred due to
sampling, we use the following equation, defined in [14]:

C0.99 = c± ε, ε =
a2k

2Ni

√
1 +

4Nic(1− c)
a2k

(1)

where ε is the incurred error, C0.99 is the range of fault
coverage within which the true coverage lies with a confidence
interval of 99%, Ni is the total number of faults, c is the
fraction of faults to be simulated, a = 2.60 to achieve
a confidence interval of 99%, and k = 1 since the total
population is large. Thus, our sample size of c = 10% yields
an error of ε = 0.015%, which is adequate for our analysis.
Computational Power: The reported simulation times are ob-
tained on a Quad-core Xeon 3.33GHz with 16GB of memory.

5.2. Results and Discussion

The first set of results investigates how the simulation
speed is affected by the use of Gate-Level modules. Table 5
compares the average simulation time per fault for the various
configurations. The first row provides the baseline when all
modules are simulated at the RT-Level, while the following
rows indicate the overhead when one or both of the target
modules are simulated at the Gate-Level. As may be observed,
this makes the simulation over an order of magnitude slower.
Taking into account that, even with 10% sampling, the Gate-
Level Scheduler and ROB require 72x and 55x more fault
simulations than their RT-Level counterparts, a similar fault
analysis at the Gate-Level is 675x more expensive, rendering
it almost infeasible for extensive studies. Therefore, performing
the simulations at the RT-Level is strongly desired, as long as
the accuracy of the obtained results is up to par.

The next set of results compares the accuracy of assessing
the impact of low-level faults on instruction execution at
the RT- vs. the Gate-Level. Specifically, Fig. 4 presents the
classification of RT- and Gate-Level Scheduler faults into the
ILE types that they cause, for each of the three benchmarks,
based on which we can make the following observations:

Seconds per Time Overhead
Fault Simulated Modules Fault Simulation (Compared to RTL)
All RTL modules 3.26 -
Gate-level Scheduler 35.04 10.7x
Gate-level ROB 42.20 12.9x
Gate-level Scheduler & ROB 79.02 24.2x

TABLE 5. Fault simulation speed comparison

• The most important observation is a pronounced con-
sistency in the types and frequency of ILEs caused by
RT- vs. Gate-Level faults. Indeed, for each benchmark,
the distribution of RT-Level faults to the 13 ILE types
is strongly correlated with the distribution of Gate-Level
faults to the same (correlation coefficient is 92% for
bzip2, 92% for mcf, and 98% for cc). This critical
observation corroborates that RT-Level fault analysis pro-
vides sufficiently accurate results with respect to its Gate-
Level counterpart, yet it is much faster, as revealed by the
simulation times of Table 5.

• The next observation is that results are consistent across
the various benchmarks, even though each of them uti-
lizes different instructions. The correlation coefficient is
92.85% between the results on bzip2 and mcf, 98.70%
between mcf and cc, and 93.49% and between the results
on mcf and cc. Hence, it is evident that the type of ILE
caused by a low-level fault is, typically, independent of
the instruction subset that is utilized.

• A final observation is that some ILE types appear never
to be caused by Gate-Level faults. These ILE types have
already a very small frequency of occurrence due to RT-
Level faults, which is further diminished during Gate-
Level fault simulation because of sampling.

Similar observations hold true for the data shown in Fig. 5,
which presents the results for the ROB. Therein, the correlation
coefficient between the types and frequency of ILEs caused by
RT- and Gate-Level faults is 94% for bzip2, 97% for mcf,
and 97% for cc.

The next set of results compares the time that it takes
for an RT- vs. a Gate-Level fault to cause its corresponding
ILE. This information is useful since it reflects the window of
opportunity for taking action prior to the fault corrupting the
architectural state of the processor. Figs. 6 and 7 present the
results for each ILE Type and for each of the three benchmarks
for the Scheduler and the ROB, respectively, assuming that fault
injection occurs at time zero. Based on these, we can make the
following observations:

• There is some level of correlation between the appearance
times of RT- and Gate-Level faults as an ILE Type. While
this correlation does not appear to be as strong as one may
expect, we raise caution to the following points that help
explain the discrepancy: (i) some ILE Types appear never
to be caused by Gate-Level faults due to sampling, as
discussed above; yet the appearance times of the RT-Level
faults causing the same ILE Type are taken into account,
so the results may be slightly skewed, and (ii) faults
injected at the RT-Level immediately impact the registers,
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Fig. 4. Comparison between ILE Types caused by RT- vs. Gate-Level faults in the Scheduler

Fig. 5. Comparison between ILE Types caused by RT- vs. Gate-Level faults in the ROB

while faults injected at the Gate-Level have to traverse
more logic which may require infrequent combinations of
inputs, in order to reach a register.

• More importantly, due to point (ii) above, it is evident
that it takes longer for a Gate-Level fault rather than an
RT-Level fault to manifest as an ILE. Therefore, defining
the window of opportunity for taking preventive/corrective
action based on RT-Level fault simulation analysis is a
pessimistic approach, whose validity and effectiveness
holds for the Gate-Level faults as well.

6. Conclusion & Future Directions
Motivated by the need to develop cost-effective CED meth-

ods for the control logic of modern microprocessors, we
performed a comparative investigation of the instruction level
impact of RT- vs. Gate-Level faults. Our study revealed a very
strong correlation in the type and frequency of ILEs caused
by RT- and Gate-Level faults, respectively. Furthermore, we
observed that the time needed for an injected RT-Level fault to
appear as an ILE is a pessimistic estimate of the time it takes
for a Gate-Level fault, which typically takes longer to manifest.
In addition, we demonstrated that substitution of even a single
RT-Level module with its Gate-Level equivalent results in fault

simulation which is over an order of magnitude slower per
fault, as well as a large increase in the number of faults that
need to be simulated to ensure accuracy, even when sampling
is employed. Based on these observations, we conclude that
instruction-level impact analysis of RT-Level faults provides
sufficiently accurate information with regards to the prevalent
types of ILEs and the window of opportunity for averting
them, yet earlier in the design cycle and at significantly lower
computational cost than analysis of Gate-Level faults.

As a continuation of this study, we plan to expend the com-
putational resources needed for fault-simulating the complete
Gate-Level fault list as opposed to the current 10% sample,
experiment with more SPEC2000 benchmarks to increase the
variety of instructions executed by the microprocessor, and
convert more control modules into synthesizable versions in
order to extend the scope of our results.
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Fig. 6. Comparison of time-to-appearance of RT- vs. Gate-Level faults in the Scheduler as ILE Types

Fig. 7. Comparison of time-to-appearance of RT- vs. Gate-Level faults in the ROB as ILE Types
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