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Real-Time Prediction for IC Aging Based on
Machine Learning

Ke Huang, Member, IEEE, Xinqiao Zhang, and Naghmeh Karimi , Member, IEEE

Abstract— Estimating the aging-related degradation and
failure of nanoscale integrated circuits (ICs), before they actu-
ally occur, is crucial for developing aging prevention/mitigation
actions and in turn avoiding unexpected in-field circuit failures.
Real-time monitoring of IC operating conditions can be efficiently
used for predicting aging degradation and in turn timing failures
caused by device aging. The existing approaches only take some
specific operating conditions (e.g., workload or temperature) into
account. In this paper, we propose a novel method for real-time
IC aging prediction by extending the prediction schemes to a
comprehensive model which takes into account any time-variant
dynamic operating conditions relevant to aging prediction. Using
a machine learning prediction model and the notion of equivalent
aging time, we show that our approach outperforms the existing
methods in terms of aging-prediction accuracy under different
scenarios of time-variant operating conditions.

Index Terms— Equivalent aging time, hot carrier injection
(HCI), machine learning, negative/positive bias temperature
instability (NBTI/PBTI), real-time IC aging prediction.

I. INTRODUCTION

THE robustness and reliability concerns of modern inte-
grated circuits (ICs) arise significantly with aggressive

scaling and process variations. The deviation of electrical
behavior of transistors due to negative/positive bias tempera-
ture instability (NBTI/PBTI) and hot carrier injection (HCI)
degrades the circuit performance over time and ultimately
leads to device failure as a result of extensive usage. Thus, run-
time prediction and prognosis of circuit performance degrada-
tion, before it actually occurs, are of paramount importance to
ensure that no catastrophic consequence would occur due to an
unexpected run-time failure caused by aging degradation [1].

In practice, the rate of IC performance degradation is
impacted by a variety of the IC operating conditions, such as
voltage bias, temperature, and workload distribution. More-
over, these operating conditions often exhibit time-variant
behaviors, i.e., these parameter values may change over time.
This in turn affects the rate of run-time IC degradation and
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makes aging failure prediction more uncertain and challenging.
Classic approaches to evaluate the effect of aging degrada-
tion in the field of operation consist of analyzing IC run-
time operating conditions (temperature, workload, and so on)
and detecting/predicting performance degradation accordingly
using lookup tables [2], aging sensors [3], or electromag-
netic signature [4]. Then, actions for compensating aging
degradation can be taken by adaptively changing the max-
imum operating frequency, bias voltage [5], or by giving
warnings on circuits with timing guardband violation [3].
Recently, machine learning-based aging-prediction technique
has received much attention as it can efficiently predict device-
aging-induced failure with generalization capability [6], [7].
The idea is to train a model using a set of samples with
both operating condition parameter values (e.g., workload and
temperature) and aging indicator values (e.g., the delays of
critical paths). The trained model can then be used to predict
the aging indicator values, given new operating conditions.

Among the challenges faced in the machine learning-based
techniques for IC-aging prediction, one issue is that the mod-
els often consider a constant operating condition over time.
Although a few models consider time-related information in
some operating condition parameters, such as 0/1 signal prob-
abilities in the workload, those models ignore the time-variant
characteristics of other parameters, such as temperature [6],
[7]. Intuitively, training a model without accurate time-variant
information of all operating conditions under which the IC
is deployed would result in inaccurate aging failure prediction
and even unexpected failure (e.g., circuits may fail earlier with
higher-than-expected temperature).

To fully account for the benefit of machine learning-
based aging-prediction techniques, we extended our previous
work [6] by proposing a novel model that employs a general-
ized function which takes into account a comprehensive set of
operating conditions without making any assumption on their
time stationarity. In other words, our model is able to predict
IC aging degradation with time-variant operating conditions.
To achieve this, we show that any operating condition parame-
ter expressed with respect to usage time can be divided into
N intervals using piecewise-constant approximation [8]. Then,
aging degradation prediction in the i th interval is performed
using the notion of equivalent aging time [9], which denotes
the stress time needed under the operating condition in the
i th interval to obtain the same performance degradation at the
end of the (i − 1)th interval. The main contributions of this
paper are summarized as follows: 1) developing a generalized
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Fig. 1. Bathtub curve illustrating typical device failure characteristics.

machine learning IC aging-prediction model that takes into
account any operating condition parameters and 2) developing
a time-variant prediction model that predicts the IC aging
degradation from time-variant operating conditions.

The rest of this paper is organized as follows. In Section II,
we present the background of NBTI aging mechanism for
ICs. In Section III, we discuss the prior work on IC aging
prediction. In Section IV, we illustrate the framework of the
proposed approach. In Section V, we show the effectiveness of
the proposed approach using several ISCAS’89 benchmarks,
and the conclusions are drawn in Section VI.

II. BACKGROUND ON NBTI AGING

During the lifetime of an IC, its performances continuously
degrade due to various aging mechanisms. A typical device
failure behavior curve is shown in Fig. 1. This failure curve is
commonly known as the bathtub curve [10], where the failure
rate is defined as the probability that a device will fail in the
time interval between t and t + δt , given that it has survived
until time t [11]. As can be observed in Fig. 1, aged devices
are expected to have shorter time to failure, as compared with
the new devices. Thus, predicting IC aging behavior before
aging-related failures occur is of paramount importance for
assuring the safety and reliability features of ICs. In this
section, we provide a brief description of NBTI, which is the
most common IC aging phenomena.

As one of the leading factors in the performance degrada-
tion of digital ICs, the NBTI occurs in p-type metal–oxide–
semiconductor (pMOS) devices stressed with negative gate
voltages at elevated temperatures. In the reaction–diffusion
model, the interface traps located near the gate oxide/silicon
channel boundary are pacified with a hydrogen species. The
bonds of the hydrogen species can be easily broken and
so diffusion is allowed. This movement of charge impacts
Vth of the transistor. For n-type metal–oxide–semiconductor
transistors, the equivalent phenomenon is PBTI. For pure oxide
and nitrided oxides, this has not been a dominant degradation
mode, but this may change with high-k metal gate.

In practice, a pMOS transistor experiences two phases of
NBTI depending on its bias condition. The first phase, i.e.,
the stress phase, occurs when the transistor is ON, i.e., when
a negative voltage is applied to its gate. In the stress phase,
positive interface traps are generated at the Si–SiO2 interface.
As a result, the magnitude of the threshold voltage Vth of
the transistor is increased. In the second phase, i.e., recovery
phase, a positive voltage is applied to the gate of the transistor.

Fig. 2. Percentage change in threshold voltage of a pMOS transistor over
time.

In this phase, the threshold voltage drift induced by NBTI
during the stress phase can partially “recover”.

Threshold voltage Vth drifts of a pMOS transistor under
stress depend on the physical parameters of the transistor,
supply voltage, temperature, and stress time. Fig. 2 shows the
threshold voltage drift of a pMOS transistor (at an operating
temperature of 80 °C using 45-nm technology with high-k
dielectric) that is continuously under stress for six months as
well as a transistor that is under stress and recovery every
other month. As can be observed, the NBTI effect is high in
the first couple of months but the threshold voltage tends to
saturate for long stress times.

The degradation of Vth often exhibits logarithmic depen-
dence on time [12]. Bhardwaj et al. [13] proposed a long-term
aging model for characterizing NBTI. The model provides an
analytical upper bound estimation of NBTI impact over time.
As shown in [9], the NBTI-induced threshold shift model can
be simplified to

�Vth(T, α, t) = be− nEα
kT

(
α

1 − α

)n

tn (1)

where T is the average temperature in Kelvin, α is the average
signal duty cycle, t denotes the usage time, n is the time
exponent, k is the Boltzmann constant, Eα = 0.49 eV, and
b is a fitting constant. A primary advantage of using (1) to
characterize the aging effect is that, given a reference model
precharacterized at Tref and αref , the aging effect under any
arbitrary T and α can be efficiently calculated using parameter
scaling.

III. PRIOR WORK ON IC AGING PREDICTION

Predicting device aging behavior in a proactive manner
has always been a challenge for the safety and reliability
enhancement of ICs. As discussed in Section II, the aging
degradation of IC performances is influenced by a variety of
environmental factors, such as supply voltage, temperature,
workload distribution, and stress time. One can assume a worst
case scenario of these environmental factors in estimating
aging-related performance degradation [14], [15]. However,
the pessimistic worst case scenario may not represent an
accurate account of realistic performance degradation under
various operating conditions.
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Various approaches have been proposed to-date to predict IC
aging degradation based on its environmental factors. In [2],
a lookup table-based failure prediction method was proposed
by considering the random change in the system workload and
supply voltages in the aging estimation. However, as the size of
transistors continues to shrink, lookup table-based techniques
may not be suitable for large-scale devices. In [3], circuit fail-
ure prediction was done by using aging sensors that capture the
impact of IC aging based on the observation of guardband vio-
lation in timing. In addition to the extra overhead introduced
by aging sensors, guardband techniques also face challenges
in modern technology nodes [16]. In [4], aging effects in
ICs were predicted by the electromagnetic signature which
requires expensive external equipment. The fact that aging
degradation is predicted/inferred during the field of operation
often renders the prediction approach as “on-line,” where real-
time operating condition parameters are collected and used
for predicting aging. Once the aging degradation is predicted
by a given prediction model, then actions for compensating
aging degradation can be taken by adaptively changing the
maximum operating frequency [5], supply/bias voltage [17],
device architecture [18], or by giving warnings on circuits with
timing guardband violation [3]. Different dynamic adaptation
techniques were explored in [19], including microarchitectural
adaptation and dynamic voltage/frequency scaling.

Recently, machine learning-based aging-prediction tech-
niques have received much attention as they can efficiently
predict device-aging-induced failures with generalization capa-
bility [6], [7]. The idea is to train a model using a set of
samples with both the operating condition parameter values
(e.g., workload and temperature) and the aging indicator values
(e.g., the delays of critical paths in a digital circuit). The train-
ing samples are often obtained from aging simulation in which
a degradation model, such as (1), is applied to the transistor
threshold value Vth according to various applied operating
conditions. Once the aging-prediction model is trained, it can
then be used to predict aging degradation, given new operating
conditions. The previously proposed machine learning models
often assume static operating conditions, i.e., the condition
parameters, such as temperature, under which the IC is oper-
ated are assumed to be constant between time 0 and time t
when the prediction is performed. Training a model without
accurate time-variant information of all operating conditions
under which the IC is deployed would result in inaccurate
aging prediction and even unexpected failures (e.g., circuits
may fail earlier with higher-than-expected temperature).

In this paper, we propose a novel model that employs a
generalized function which takes into account a comprehensive
set of time-variant operating conditions. The proposed method
will be discussed in Section IV.

IV. PROPOSED APPROACH

In this section, we will describe the details of our proposed
model. We will present an overview of our model and also
show how the model is calibrated for compensating process
variation effect and how the equivalent time technique is
used to predict aging degradation under time-variant operating
conditions.

A. Overview of the General MARS Prediction Model

Let O = [o1, . . . , on] denote a set of operating conditions
(workload distribution, temperature, and so on) under which
the circuit operates, where n is the total number of considered
operating conditions. We show that for a given device, we can
employ a supervised learning scheme to learn a function f j

that maps the operating condition vector O to the j th IC
aging indicator (e.g., path delay value) d j : f j : O �→ d j ,
j = 1, . . . , M , where M is the total number of considered IC
performances used as aging indicators. The top part of Fig. 3
shows the training of function f j . In this paper, we use a
multivariate adaptive regression splines (MARS) model [20]
to learn the function f j

d j = f j (O, t) = a0 +
M∑

i=1

ai · Bi (O, t) (2)

where a0 is the intercept, ai denotes the slope parameter, t rep-
resents the usage time under O, and Bi(O, t) denotes the i th
basis function which can take the form of a hinge function or
an interaction product of different hinge functions. In addition
to the easiness of implementation and straightforward learning
phase, one big advantage of the MARS model compared
with other models is its ability to provide interpretable coef-
ficients in its basis functions that quantitatively describe the
contribution of each input variable and their interactions to
the output variable. These interpretable coefficients can assist
the process/test engineer in understanding and moderating the
source of aging-related performance degradation. Moreover,
the MARS model can accurately handle both continuous
and categorical data [21], which provides a higher level of
flexibility especially for digital ICs with discrete binary signal
values. Using a set of L training samples with [d j , O, t]p,
p = 1, · · · , L, the MARS builds the regression in two phases:
the forward and the backward pass. In the forward pass, the
MARS starts with an empty model and then repeatedly adds
basis functions to the model by minimizing the sum-of-squares
residual error. The basis functions are added by searching
over all possible combinations of variables of hinge functions
until convergence is reached (e.g., the sum-of-squares residual
error becomes smaller than a predefined threshold value or the
maximum number of terms is reached). The search at each
step can be done using the brute force method or the heuristic
approach to speed up the searching process [22]. Then, during
the backward pass, the model is pruned by removing the
basis functions with the smallest increase in generalized cross-
validation error. The goal of this pass is to remove the least
effective basis functions to avoid the overfit problem.

The samples used to learn f j (O, t) can be obtained from the
circuit aging simulation by sampling the input space of [O, t].
To generate a representative set of samples, we employ a Latin
hypercube sampling (LHS) method to partition the sampling
space into different equally probable regions.

B. Model Calibration

Note that in the case of process variations which result in
the deviation of the prediction model fi , as shown in the
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Fig. 3. Overview of the proposed approach.

middle two blocks in Fig. 3, we can employ a calibration
technique to compensate the effect of process variations on
previously learned fi . The idea is to calculate the relative
circuit performance deviation from the nominal value with
respect to its total possible corner variation range at time t0
and to calibrate its predicted performance using the relative
performance variation [6]. Our calibration technique consists
of three steps as given in the following:

1) performing the corner simulation to obtain the best/worst
cases of circuit performances;

2) computation of the compensation factor of a new device
under a nominal operating condition at time t = t0;

3) process variation calibration using the compensation
factor computed in step 2.

Specifically, we propose to learn the model f j

( j = 1, . . . , M) described previously for the best/worst
corner cases during corner simulations. The best/worst
models are denoted by f j,min/ f j,max, which are learned from
best/worst corner circuit instances sampled at corner operating
conditions Omin/Omax.

The second step of the calibration process is to compute
the compensation factor for a manufactured circuit at time
t = t0. For any new fabricated circuit, we first need to
measure its performance values d j,n at a nominal operating
condition denoted by Onom. The j th performance value at
t0 is denoted by d j . Then, using the corner models f j,min
and f j,max learned from step 1, we can predict the j th best
and worst performance values at t0: d j,min = f j,min(Omin, t0)
and d j,max = f j,max(Omax, t0), j = 1, . . . , M . Based on the
above-mentioned definitions, we define the process variation
compensation scaling factor s j as follows:

s j = (d j,n − d j,min)/(d j,max − d j,min). (3)

The process variation compensation scaling factor s j defined
above allows us to calibrate the circuit and compensate the
impact of process variations on aging prediction at time t = t0.
Once s j is computed, we can use it to calibrate new aging
degradation prediction under any operating condition O and

usage time t

d̂ j = d jo,min + (d jo,max − d jo,min) × s j (4)

where d jo,min and d jo,max denote the best and worst perfor-
mance values predicted under the new operating condition O
and usage time t .

C. Model Prediction Under Time-Variant Operating
Conditions

Once the basic prediction model is learned and cali-
brated for process variations as shown in Fig. 3, we can
use it to predict aging degradation under time-variant oper-
ating conditions. To this end, we propose to approxi-
mate a continuous time-variant operating condition vector
O(t) using piecewise-constant approximation. Specifically, let
O(t) = [o1(t), . . . , on(t)] denote the operating condition
vector expressed as a function of usage time, where each
parameter oi is expressed by its own function oi (t), and n
denotes the total number of operating condition parameters
(e.g., workload distribution, temperature, bias voltage, and so
on). Using a piecewise-constant approximation derived from
the Riemann sum, we can approximate O(t) as [8]

O(t) ≈ Õ(t) = [
O1

(
t∗1

)
, O2

(
t∗2

)
, · · · , ON

(
t∗N

)]
(5)

where Oi (t∗i ) denotes the constant approximation of the func-
tion O(t) in the i th time interval, i.e., all operating condition
parameters are considered constant and denoted by Oi during
the i th time interval: Oi (t∗i ) = [o1(t∗i ), . . . , on(t∗i )]. The value
of Oi (t∗i ) can be determined by the left rule which takes the
value of O(t) at the left endpoint t∗i in the i th interval. The
total number of intervals N can be determined by a threshold
value � such that N is minimized while the integral squared
error between O(t) and Õ(t) is less than �

minN

s. t.
∫

|O(t) − Õ(t)|2 < �. (6)

Once the approximated operating condition vector Õ(t) is
obtained, for aging degradation prediction under time-variant
operation conditions, we use the notion of equivalent aging
time teqv [9], [23], which denotes the stress time needed under
the operating condition Oi+1 to obtain the same performance
degradation at the end of the i th interval under Oi . Fig. 4
shows the concept of equivalent aging time for two sets of
operating condition vectors, namely Oi and Oi+1. The aging
degradation for one performance measurement under Oi and
Oi+1 is shown by the blue and red curves, respectively. It can
be observed that the operating condition Oi+1 resulted in a
higher degradation rate as the red curve degrades at a higher
rate as compared with the blue curve. Suppose that we apply
a time-variant operating condition with Oi applied during the
interval [t0, t2] and Oi+1 applied after the time point t2, as can
be observed in Fig. 4, the degradation level at t2 under Oi

is equivalent to the level at t1 if Oi+1 was applied from t0.
Thus, a change of the operating condition to Oi+1 at t2 will
result in an equivalent degradation curve, as shown by the blue
dotted curve in Fig. 4. As a result, the prediction of aging
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Fig. 4. Illustration of equivalent aging time.

degradation after t2 is equivalent to the aging prediction after
t1 by assuming that Oi+1 was applied during [t0, t1] and the
same Oi+1 will be applied after t1.

Specifically, let d j,i = f j (Oi , t∗i+1) denote the predicted
aging degradation for the j th aging performance indicator
at the end of the i th interval. Then, the equivalent aging
time to obtain the same d j,i under Oi+1 is computed as
ti+1,equ = g(d j,i , Oi+1), where g denotes the function
that computes ti+1,equ from d j,i and Oi+1: g(d j,i , Oi+1) =
argmin

t
|d j,i − f j (Oi+1, t)|. Finally, the aging prediction at the

end of the (i + 1)th interval tend is performed as: d j,i+1 =
f j

(
Oi+1, (ti+1,equ+(

tend−t∗i+1)
))

. The detailed steps for time-
variant aging prediction are summarized in Algorithm 1.

Algorithm 1 Time-Variant Aging Prediction
1: procedure TIME_VARIANT_PREDICTION

2: Train the function d j = f j (O, t) using simulation samples,
calibrate the model for process variations

3: Select the total number of intervals N
4: Set inputs Õ(t) = [O1(t∗1 ), O2(t∗2 ), · · · , ON (t∗N )]
5: Set i = 1, j = 1, ti,equ = 0, t∗N+1 = tend
6: Select desired prediction time t in the i th time interval
7: Compute equivalent prediction time tp = ti,equ +(t∗i+1 − t∗i )
8: Aging prediction of the j th performance at the end of the

i th interval: d j,i = f j (Oi , tp)
9: If i < N

10: Equivalent aging time computation: ti+1,equ =
g(d j,i , Oi+1)

11: End
12: i = i + 1
13: While i < N , repeat steps 6-12
14: j = j + 1
15: While j < M , repeat steps 2-14

end procedure

The time-variant aging-prediction scheme outlined in
Algorithm 1 allows us to estimate aging-related circuit per-
formance degradation under arbitrary time-variant operating
conditions, which provides a higher level of flexibility in
predicting aging failures. As will be shown in Section V, our
proposed scheme outperforms the existing approaches when
the time-variant operating conditions are considered.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of
the proposed approach by using five different ISCAS’89

benchmarks: s510, s1494, s5378, s9234, and s15850. We used
the Synopsys design compiler and PrimeTime for logic syn-
thesis and extraction of time-critical paths at the 45-nm
technology using the open-source Nangate library [24]. We
consider the delays of timing critical paths in each of the
benchmarks as our aging indicators. These are the paths whose
delay, if degraded by 20% during the course of aging, would
possibly cause circuit failure. We used HSPICE MOSRA
to conduct aging simulations and we consider the effect of
NBTI/PBTI and HCI aging. The number of considered critical
paths in each benchmark is shown in the parentheses in
the first column of Table I. The operating condition vector
considered in this paper is: O = [α, T ], where α denotes
the workload distribution parameter which is the average
percentage value X% of primary inputs getting the value of
“1” in each clock cycle: X% = 1%, 25%, 50%, 75%, 99%,
and T denotes the operating temperature value. We ran aging
simulations using HSPICE MOSRA to evaluate the aging
degradation for a period of eight years with a time step of
two months. In addition, we ran Monte Carlo (MC) simula-
tions for each benchmark using HSpice MC by considering
the following process-variation parameters with a Gaussian
distribution: transistor gate length L: 3σ = 10%; threshold
voltage V th: 3σ = 30%, and gate-oxide thickness tO X :
3σ = 3%.

For each considered benchmark, the basic aging-prediction
models f j (O, t), as shown in (2), are learned from a generated
sample set of 2000 devices which are obtained by sampling
the input space [O, t] using the LHS method and subsequently
performing aging simulation to obtain d j . The sampling ranges
in the input space are: α = [0, 1], T = [25, 75], and
t = [0, 8yrs] with T expressed in degree Celsius. We nor-
malize each data parameter in the range of [0, 1] for model
learning purpose, and we randomly split the 2000 samples
into equal training and validation sets to build the prediction
model in (2). In this paper, we use the root mean square error
(RMSE) as the metric for evaluating the prediction accuracy,
which provides a robust indicator of the accuracy of predicted
delay values. For the basic model f j (O, t), the RMSE value
averaged from all considered critical paths in each benchmark
is below 2%.

Fig. 5(a) shows a typical example of path delay aging degra-
dation for one critical path randomly chosen from benchmark
s5378 for a period from zero to eight years under constant
workload distribution and temperature values: α = 50% and
T = 25 °C. The delay values are normalized between [0, 1].
It can be observed that the delay degradation follows an expo-
nential pattern, which is consistent with the NBTI-induced
transistor threshold shift model in (1). Fig. 5(b) shows the
prediction scatter plot of this path using the proposed learned
MARS model with actual values shown in the x-axis and
predicted values shown in the y-axis. It can be observed that
the proposed model can accurately predict aging degradation
with scatter points closely following the 45◦ line. Note that
in the case of process variations that would lead to deviation
in f j (O, t), as discussed in Section IV, we employ a calibra-
tion technique to compensate process variation-related model
deviations [6].
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Fig. 5. Example of a path delay prediction under constant operating
condition: α = 50% and T = 25 °C from benchmark s5378. (a) Normalized
aging degradation plotted as a function of usage time. (b) Prediction scatter
plot using the proposed model.

Fig. 6. Aging-prediction plot for a path delay in s5378 under Scenario 1.
(a) Normalized aging degradation. (b) Prediction plot for this path.

Once the basic models f j are learned, validated, and
calibrated for process variations, we use them to predict aging
degradation under time-variant operating conditions. In this
paper, we generate three scenarios for validating our approach:
1) two temperature values: 25 °C and 50 °C applied at
the time intervals [0, 4 yrs] and [4, 8 yrs], respectively,
during the eight years of simulated aging period; 2) three
temperature values: 25 °C, 50 °C, and 75 °C applied at the
time intervals [0, 2 yrs], [2, 6 yrs], and [6, 8 yrs], respectively,
during the simulated eight years; and 3) four temperature
values: 25 °C, 10 °C, 75 °C, and 50 °C applied at the time
intervals [0, 2 yrs], [2, 4 yrs], [4, 6 yrs], and [6, 8 yrs],
respectively, during the simulated eight years. The experimen-
tal results for the three considered scenarios are shown in the
following.

A. Scenario 1

In this scenario, we determine the number of time intervals
as N = 2 using the procedure outlined in (6). Thus, the equiv-
alent aging time is computed once according to Algorithm 1.
Each benchmark is simulated with five different α values
α = 1%, 25%, 50%, 75%, and 99% under the same time-
variant temperature profile for the eight years: 25 °C and
50 °C applied in the time intervals [0, 4 yrs] and [4, 8 yrs],
respectively. Fig. 6(a) shows the normalized aging degradation
for a path delay in s5378 under the operating conditions
applied in Scenario 1. It can be observed that there is a
sharp increase in the path delay at the time point in the
beginning of the fourth year, which is the time when a
change of temperature from 25 °C to 50 °C occurred. This
sharp temperature increase, according to (1), would result in a

TABLE I

AGING-PREDICTION RESULTS UNDER TIME-VARIANT
OPERATION CONDITION IN SCENARIO 1

Fig. 7. Prediction scatter plots for the same path delay shown in Fig. 6(b)
using (a) SVM regression and (b) RNN models.

sharp aging degradation in addition to the normal exponential
degradation pattern, as can be observed in Fig. 6(a).

Using the procedure outlined in Algorithm 1, we predict the
aging degradation at a time step of two months for the eight
years for each considered critical path in each benchmark. The
second column in Table I shows the averaged RMSE from all
critical paths and all α values for each of the benchmarks.
It can be observed that the proposed approach can accurately
predict aging degradation even under time-variant operating
conditions with average RMSE below 2% for all benchmarks.
Fig. 6(b) shows the aging-prediction plot for the same path
from Fig. 6(a). It can be observed that the proposed model
can accurately predict aging degradation under time-variant
operating conditions applied in Scenario 1. The two separated
groups of scatter points observed in Fig. 6(b) correspond to
the degraded path delay values at time intervals [0, 4 yrs]
and [4, 8 yrs] with 25 °C and 50 °C applied temperatures,
respectively.

To illustrate the advantages of the proposed model over
the existing models, we also applied two other techniques
for predicting the same path delay values under the oper-
ating conditions applied in Scenario 1 without computing
the equivalent aging time: 1) the support vector machine
(SVM) regression model proposed in [7] and 2) the fully
recurrent neural network (RNN) model which is very efficient
in capturing dynamic behavior for a time sequence [25]. The
third column in Table I shows the same averaged RMSE using
the SVM regression model in [7], and the fourth column
shows the RMSE obtained using the RNN model. It can
be observed that the proposed approach resulted in lower
prediction errors, roughly at 1%, as compared with both the
SVM and RNN models. To gain some insights on the aging
prediction using different models, Fig. 7 shows the prediction
scatter plots for the same path delay shown in Fig. 6(a) using
the SVM regression and RNN models, respectively. It can be
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Fig. 8. Aging-prediction plot for a path delay in s5378 under Scenario 2.
(a) Normalized aging degradation. (b) Prediction plot for this path.

observed that both the SVM regression and RNN models can
efficiently predict the lower left group of delay values, which
correspond to the degradation values between zero and four
years applied under the temperature value 25 °C as shown in
the first half of the time interval in Fig. 6(a). However, both
models fail to accurately predict the path delays in the period
of [4, 8 yrs] with 50 °C as the applied temperature value,
as can be confirmed by the scatter points on the upper right
part of the plots in Fig. 7(a) and (b) which are not well aligned
with the 45◦ line. This observation confirms the superiority of
the proposed model and the need for computing equivalent
aging time during prediction.

B. Scenario 2

In this scenario, we determine the number of time intervals
as N = 3 using the procedure outlined in (6). Thus, the equiv-
alent aging time is computed twice according to Algorithm 1.
Each benchmark is simulated with five different α values
α = 1%, 25%, 50%, 75%, and 99% under the same time-
variant temperature profile for the eight years: 25 °C, 50 °C,
and 75 °C applied in the time intervals [0, 2 yrs], [2, 6 yrs],
and [6, 8 yrs], respectively. Fig. 8(a) shows the normalized
aging degradation for a path delay in s5378 under the operating
conditions applied in Scenario 2. Two sharp increases in the
path delay can be observed at the beginning of the second and
sixth years when a sharp temperature increase was applied.
There two delay increases correspond to the temperature
changes from 25 °C to 50 °C and from 50 °C to 75 °C applied
at the second and sixth years, respectively.

We predict the aging degradation at a time step of two
months for the eight years for all considered critical paths
in each benchmark using the proposed model as before. The
second column in Table II shows the averaged RMSE from all
the critical paths and all α values for each of the benchmarks.
It can be observed that the proposed model consistently
predicts aging degradation with high accuracy with average
RMSE below 2% for all benchmarks. Fig. 8(b) shows the
aging-prediction plot for the same path from Fig. 8(a). It can be
observed that the proposed model can accurately predict aging
degradation under time-variant operating conditions applied
in Scenario 2. The three separated groups of scatter points
observed in Fig. 8(b) correspond to the degraded path delay
values at time intervals [0, 2 yrs], [2, 6 yrs], and [6, 8 yrs] with
25 °C, 50 °C, and 75 °C applied temperatures, respectively.

TABLE II

AGING-PREDICTION RESULTS UNDER TIME-VARIANT
OPERATION CONDITION IN SCENARIO 2

Fig. 9. Prediction scatter plots for the same path delay shown in Fig. 8(a)
using (a) SVM regression and (b) RNN models.

The third and fourth columns in Table II show the average
RMSE values obtained using the SVM regression and RNN
models, respectively. It can be observed that the proposed
model consistently outperforms the state-of-the-art models
with approximately 2% less in RMSE values. Fig. 9 shows
the prediction scatter plots for the same path delay shown
in Fig. 8(a) using the SVM regression and RNN models,
respectively. It can be observed that both the SVM regression
and RNN models can efficiently predict the lower left group
of delay values, which correspond to the degradation values
between zero and two years applied under the temperature
value 25 °C as shown in the delay values between zero and two
years in Fig. 8(a). However, both the models fail to accurately
predict the path delay values in the period of [2, 6 yrs]
and [6, 8 yrs] with 50 °C and 75 °C as the applied temperature
values.

C. Scenario 3

In this scenario, we determine the number of time intervals
as N = 4 using the procedure outlined in (6). Thus, the
equivalent aging time is computed three times according to
Algorithm 1. Each benchmark is simulated with five different
α values α = 1%, 25%, 50%, 75%, and 99% under the
same time-variant temperature profile for the eight years:
25 °C, 10 °C, 75 °C, and 50 °C applied in the time inter-
vals [0, 2 yrs], [2, 4 yrs], [4, 6 yrs], and [6, 8 yrs], respectively.
Fig. 10(a) shows the normalized aging degradation for a path
delay in s5378 under the operating conditions applied in
Scenario 3. It can be observed in Fig. 10(a) that only one
sharp increase in the path delay at the fourth year can be
identified. The reason for this observation is that the only
sharp temperature increase in this scenario was applied in the
fourth year (from 10 °C to 75 °C), while the temperature value
changes between all other consecutive time intervals were a
temperature decrease (from 25 °C to 10 °C at the second year
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Fig. 10. Aging-prediction plot for a path delay in s5378 under Scenario 3.
(a) Normalized aging degradation. (b) Prediction plot for this path.

TABLE III

AGING-PREDICTION RESULTS UNDER TIME-VARIANT

OPERATION CONDITION IN SCENARIO 3

Fig. 11. Prediction scatter plots for the same path delay shown in Fig. 10(a)
using (a) SVM regression and (b) RNN models.

and from 75 °C to 50 °C at the sixth year). As we discussed in
the equivalent aging time analysis in Section IV-C, a decrease
in the temperature value would result in a lower aging degrada-
tion rate, which explains the relatively flat degradation patterns
in the time intervals [2, 4 yrs] and [6, 8 yrs] in Fig. 10(a).

We predict the aging degradation in each benchmark using
the proposed model as before. The second column in Table III
shows the averaged prediction RMSE from all critical paths
and all α values for each of the benchmarks. It can be
observed that the proposed model consistently predicts aging
degradation with a high accuracy with an average RMSE
below 2% for all benchmarks. Fig. 10(b) shows the aging-
prediction plot for the same path from Fig. 10(a). It can
be observed that the proposed model can accurately predict
the aging degradation under time-variant operating conditions
applied in Scenario 3.

The third and fourth columns in Table III show the average
RMSE values obtained using the SVM regression and RNN
models, respectively. It can be observed that the proposed
model consistently outperforms the state-of-the-art models
with approximately 3% less in RMSE values. Fig. 11 depicts

the prediction scatter plots for the same path delay shown
in Fig. 10(a) using the SVM regression and RNN models,
respectively. It can be observed that the SVM regression and
RNN models fail to accurately predict the path delay values
under the operating conditions applied in Scenario 3, which
justifies the use of the proposed model for aging degradation
prediction.

VI. CONCLUSION

In this paper, we proposed a general purpose model for
predicting IC aging degradation during the runtime of the
IC based on machine learning and equivalent aging time.
We extended the existing prediction scheme to a comprehen-
sive model which takes into account arbitrary time-variant
dynamic operating conditions relevant to aging prediction.
The proposed model can be readily implemented offline
and online with a few operating condition sensing circuitry
(e.g., temperature sensors). The experimental results showed
that our approach outperforms existing methods in terms of
aging-prediction accuracy under different scenarios of time-
variant operating conditions.
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