
Instruction-Level Impact Analysis of Low-Level
Faults in a Modern Microprocessor Controller

Michail Maniatakos, Student Member, IEEE, Naghmeh Karimi, Student Member, IEEE,

Chandrasekharan (Chandra) Tirumurti, Member, IEEE, Abhijit Jas, Member, IEEE, and

Yiorgos Makris, Senior Member, IEEE

Abstract—We investigate the correlation between low-level faults in the control logic of a modern microprocessor and their instruction-

level impact on the execution of typical workload. Such information can prove immensely useful in accurately assessing and prioritizing

faults with regards to their criticality, as well as commensurately allocating resources to enhance online testability and error/fault

resilience through concurrent error detection/correction methods. To this end, we developed an extensive fault simulation

infrastructure which allows injection of stuck-at faults and transient errors of arbitrary starting time and duration, as well as cost-

effective simulation and classification of their repercussions into various instruction-level error types. As a test vehicle for our study, we

employ a superscalar, dynamically-scheduled, out-of-order, Alpha-like microprocessor, on which we execute SPEC2000 integer

benchmarks. Extensive fault injection campaigns in control modules of this microprocessor facilitate valuable observations regarding

the distribution of low-level faults into the instruction-level error types that they cause. Experimentation with both Register Transfer

(RT-) and Gate-Level faults, as well as with both stuck-at faults and transient errors, confirms the validity and corroborates the utility of

these observations.

Index Terms—Fault simulation, instruction-level error, microprocessor controller, concurrent error detection.

Ç

1 INTRODUCTION

AS aggressive scaling continues to push technology into
smaller feature sizes, various design robustness con-

cerns continue to arise. Among them, the frequent occur-
rence of transient errors has resurfaced as a contemporary
problem of interest. Part of the problem is attributed to
strikes by neutrons or alpha particles and the corresponding
single event upsets (SEUs) in memory bits, or single event
transients (SETs) in combinational logic, which may poten-
tially result in a soft error. As we move forward, however,
errors occurring due to various other issues related to design
marginalities, process variations and corner operating
conditions are starting to play an equally important role.
Notably, such errors may range in duration from single
events to permanent faults. As a result, interest in enhancing
online testability and error/fault resilience through con-
current error detection (CED) and/or correction methods
has been revived.

While a plethora of CED solutions have been developed
in the past [1], [2], [3], [4], [5], [6], [7], blindly applying them
across the board is not only prohibitive in terms of cost but
also unnecessary in terms of the attained coverage. Indeed,
not all faults incur the same level of criticality and not all
protection mechanisms contribute equally to the overall
robustness of a design. Therefore, methods which analyze
the relative importance of potential faults and the relative
effectiveness of candidate countermeasures are invaluable
for developing cost-effective solutions.

Modern microprocessors, in particular, exhibit an inher-
ent effectiveness in suppressing a significant percentage of
faults and preventing them from interfering with correct
program execution (i.e., application-level masking). In other
words, the probability that a fault will adversely impact the
typical workload of a microprocessor varies greatly, depend-
ing on the frequency with which the corresponding hard-
ware is used and the complexity of the control conditions
necessary to propagate its effect to the architectural state of
the microprocessor. Hence, application-level masking pre-
sents a great opportunity for developing cost-effective CED
methods by identifying and targeting the most critical faults.

To this end, the research described in this paper seeks to
provide the ability to assess the relative importance of low-
level faults (i.e., faults in the RT- or Gate-Level description)
in the control logic of a modern high-performance micro-
processor, as gauged by their impact on the execution of
typical programs. Specifically, the contributions of this
paper include:

. An extensive infrastructure built around a modern
microprocessor model, enabling simulation of low-
level faults and analysis of their instruction-level
impact during execution of typical workload.

1260 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

. M. Maniatakos is with the Department of Electrical Engineering, Yale
University, New Haven, CT 06520-8267.
E-mail: michail.maniatakos@yale.edu.

. N. Karimi is with the Department of Electrical Engineering, Duke
University, Durham, NC 27708. E-mail: naghmeh.karimi@duke.edu.

. C. Tirumurti is with the Validation and Test Solutions Group, Intel
Corporation, Santa Clara, CA 95050.
E-mail: chandra.tirumurti@intel.com.

. A. Jas is with the Validation and Test Solutions Group, Intel Corporation,
Austin, TX 78746. E-mail: abhijit.jas@intel.com.

. Y. Makris is with the Department of Electrical Engineering, The
University of Texas at Dallas, Richardson, TX 75080-3021.
E-mail: yiorgos.makris@utdallas.edu.

Manuscript received 5 June 2009; revised 21 Oct. 2009; accepted 17 Dec.
2009; published online 23 Feb. 2010.
Recommended for acceptance by C. Metra and R. Galivanche.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2009-06-0258.
Digital Object Identifier no. 10.1109/TC.2010.60.

0018-9340/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

. An instruction-level error model, reflecting the key
aspects of instruction execution, to which the impact
of low-level faults is mapped.

. A comprehensive set of fault simulation results
demonstrating the correlation between low-level
faults in a modern microprocessor controller1 and
the instruction-level errors that they incur.

The starting point for developing the aforementioned
infrastructure is a public-domain high-performance micro-
processor, which is briefly discussed in Section 2. Section 3
presents the various components and capabilities of the
developed infrastructure, along with its utilization flow for
fault injection, simulation, and impact analysis. The
proposed instruction-level error model, which is used to
capture the impact of low-level faults on program execution
is introduced in Section 4. Extensive fault simulation
campaigns using the developed infrastructure are pre-
sented in Section 5, along with a detailed analysis of the
obtained results and a discussion of their significance in
guiding the development of cost-effective CED methods.

2 TEST VEHICLE

We start by briefly presenting the microprocessor that we
will use as the test vehicle in our investigation. We discuss
the capabilities of the simulation infrastructure that has
been previously developed by other researchers around this
microprocessor, we pinpoint its limitations and we identify
its components that need to be enhanced in order to support
our study.

2.1 Microprocessor Model and Functional
Simulator

Since the focus of this work is the cross-correlation between
control logic faults and instruction-level errors in modern
microprocessors, the underlying test vehicle should incor-
porate as many of the state-of-the-art architectural features
as possible. Among the very limited number of such test
cases available in the public domain, we chose to work with
a Verilog implementation of an Alpha-like microprocessor,
called Illinois Verilog Model (IVM) [8]. IVM implements a
subset of the instruction set of the Alpha 21264 micro-
processor, and is rich in architectural features including
superscalar, out-of-order execution, dynamically-scheduled
pipeline, hybrid branch prediction, and speculative instruc-
tion execution. IVM can have up to 132 instructions in-flight
through its 12-stage pipeline, supported by a dynamic
scheduler of 32 entries and six functional units. The
complexity of IVM reflects most of the features of modern,
high-performance microprocessors; thus, it enables a
realistic investigation of the instruction-level impact of
control logic faults in such microprocessors. Besides the
Verilog implementation, a functional simulator that can be
used in conjunction with the IVM processor model through
the Verilog Procedural Interface (VPI) also exists. This
functional simulator supports the full set of the Alpha 21264
processor and is part of the SimpleScalar tool suite
implemented for the Multiscalar Research Project [9].

2.2 Capabilities and Limitations

IVM was developed and used to study the impact of single-
event transient errors [8], [10], [11], modeled as single
register-level bit-flips. Unfortunately, Gate-Level fault
simulation cannot be performed; due to certain coding
techniques used at the RT-Level model, IVM is not
synthesizable. Instead, an approach of stopping the simula-
tion, altering the state of the microprocessor, and then
resuming the simulation was employed in these studies.
This fault injection approach is effective when studying the
impact of single-cycle transient errors, such as those caused
by alpha particle strikes. However, it is extremely inefficient
for other fault models, such as stuck-at faults or transient
errors of longer duration caused by operational margin-
alities. Indeed, the process of injecting a fault for a clock
cycle involves extensive file-system-based interactions and
becomes very time consuming if done for more than a few
clock cycles. To alleviate this limitation, we enhanced this
infrastructure to support efficient injection and simulation
for such longer-lasting faults, as we describe in Section 3.

Another key aspect of the existing infrastructure is that
both IVM and the functional simulator can execute software
compiled for the Alpha microprocessor. This is important,
since it allows us to study the impact of faults while the
microprocessor is executing a typical workload, thus
making our findings more realistic. However, IVM does
not support the full instruction set of Alpha; floating point
instructions and various system calls have not been
implemented. Therefore, the functional simulator must be
used to surmount this limitation, by invoking it whenever
such instructions need to be executed. This interaction is
enabled through the ability of the functional simulator to
load/store the state of the Verilog model and vice versa at
any given clock cycle.

3 ENHANCED SIMULATION INFRASTRUCTURE

We now proceed to describe the fault simulation enhance-
ments that we added to the aforementioned infrastructure,
as well as the pertinent tool-flow that enables our study. We
first outline the main capabilities of the enhanced infra-
structure, followed by a detailed description of its basic
components and a discussion of its utilization.

3.1 Capabilities

We augmented the IVM microprocessor model described in
Section 2 to provide the following key features:

. Workload simulation: We can simulate software
written for the Alpha microprocessor. In our experi-
ments, we use SPEC2000 Integer benchmarks.

. Fault injection & simulation: We can perform fault
injection into any register or wire entity of the
microprocessor by mutating the model accordingly.
Fault injection is controlled by a fault controller
module inside the microprocessor. The fault simula-
tion infrastructure supports stuck-at faults and
transient errors of user-specified start time and
duration.

. Trace dumping: The model can produce traces at the
periphery of any module of the microprocessor for
any user-specified number of clock cycles.

MANIATAKOS ET AL.: INSTRUCTION-LEVEL IMPACT ANALYSIS OF LOW-LEVEL FAULTS IN A MODERN MICROPROCESSOR CONTROLLER 1261

1. While the data path of such microprocessors is equally important, we
mainly focus on their control logic for the following two reasons. First, CED
for data path is understood much better and various coding techniques
have been successfully applied. Second, advanced architectural features
complicate significantly the task of the controller, making it much harder to
analyze or predict its behavior in the presence of low-level faults.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

. State dumping: At any given clock cycle, we can
save all information concerning the machine state, as
well as the architectural state of the processor.

. Incorporation of Gate-Level modules: Synthesiz-
able versions of two modules, namely the Scheduler
and the ReOrder Buffer (ROB), have been imple-
mented and can substitute their RT-Level counter-
parts in the microprocessor model.

3.2 Main Components

The enhanced fault simulation infrastructure consists of
three main parts, as shown in Fig. 1: 1) supporting tools to
control fault injection and the I/O of the simulation
procedure, 2) a functional simulator of the Alpha micro-
processor, and 3) the augmented version of the micro-
processor model, where a Fault Controller module has been
added to enable Fault Injection.

3.2.1 Fault Injection Tools

The main functionality of the fault injection tools is to
provide support to the functional simulator by generating
the appropriate files and passing parameters for specific
operations (e.g., which fault location to inject, the type of
injected fault, etc.), as well as accumulating and reporting
the simulation results to the user.

Furthermore, the developed tools can be used to save
any trace or state files requested and perform comparisons
between golden (fault free) and faulty model executions.
The state files contain information regarding the states of all
flip-flops and SRAMs in the microprocessor, including the
register file and the main memory. The user can choose to
extract any subset of the aforementioned storage elements
(e.g., only the architectural register file). Besides state files,
we can also log the inputs and the outputs of any given
module at specified clock cycles, producing a trace file. This
file can then be used to study the impact of faults on
individual modules. Furthermore, the trace file provides
useful statistics about the activation and usage of the I/O of
a module, such as identifying the most frequently used
wires, their switching frequency, etc.

3.2.2 Functional Simulator

The presence of a functional simulator in the flow is essential
because it enhances the functionality of the microprocessor
model. Since the current version of IVM does not implement
floating point operations, system calls, and miscellaneous
other instructions of the Alpha 21264 processor, these

instructions can be executed via the functional simulator,
which implements the complete instruction set. The simula-
tion can be switched from the functional simulator to the
Verilog model and vice versa at any given time, using VPI
calls. In practice, for the SPEC2000 Integer Benchmarks used
in this study, the functional simulator is used to skip the
initial system calls, after which the execution continues at
the RT-level model of the IVM microprocessor.

Furthermore, the functional simulator enhances the I/O
functionality of the Verilog model. Thus, it enables reading
of values from files and passing parameters to the Verilog
model during transition between states. It can also output
the state or traces of the microprocessor model to the file
system. These features enable fault injection and analysis
as well as trace dumping through the developed simula-
tion infrastructure.

3.2.3 Microprocessor Model

The microprocessor model used is IVM, which was briefly
described in Section 2.1. Since the existing IVM version
cannot be synthesized so that gate-level fault injection and
simulation can be performed, an alternative way for doing
this is required. Even if the complete processor was
synthesizable, fault-simulating the entire Gate-Level model
would probably be impractical. Hence, we are limited to
using RT-Level logic simulation tools, such as Synopsys
VCS. This enables simulation of the RT-Level model of the
microprocessor while the latter executes actual workload,
but it does not offer fault injection capabilities.

To address this limitation, we mutate the IVM model so
as to support RT-Level fault injection. Specifically, a Fault
Controller module is added to the microprocessor, control-
ling the fault injection process. When this module is
deactivated, the microprocessor operates normally, as a
fault-free circuit. When it is activated, however, it provides
an extensive range of options for injecting faults. Since the
module is already built in the microprocessor model,
consecutive simulations injecting different faults can be
executed without recompiling the model, something that
would make any reasonably-sized fault simulation experi-
ment computationally prohibitive. Besides the insertion of a
new module, each existing module of IVM is also mutated
to provide support for the functions of the Fault Controller,
as explained in detail in Section 3.2.5.

3.2.4 Fault Controller

The main component of fault injection is the embedded
Fault Controller module, whose list of inputs and outputs is
presented in Table 1 and described below:

. fault index: Specifies the unique identification num-
ber (UID) of the entity to be fault injected. Every
entity in the microprocessor is assigned an UID. If
the UID is invalid, no entity will be fault injected.

. fault bit index: Specifies the bit index of the UID to
be fault injected.

. fault type: Specifies the type of the injected fault.
Our infrastructure supports stuck-at faults and
transient errors.

. error cycle start : Specifies the clock cycle at
which the fault injection should commence.

1262 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

Fig. 1. Infrastructure components and interactions.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

. error cycle end : Specifies the clock cycle at which
the fault injection should terminate.

. fault register: Outputs all the information that
should be passed to the modules (i.e., fault index,
fault bit index; and fault type).

. fault clock : The clock that activates fault injection
within the modules.

By manipulating the data stored in the registers, we can
perform single-cycle transient error injection, duration-
controlled transient-error injection, or stuck-at fault injec-
tion. The registered inputs of the Fault Controller are not
connected to and do not interact with the microprocessor
model; instead, the functional simulator is responsible for
setting these registers to the appropriate values. The
output of the Fault Controller propagates to all modules
of the microprocessor. In addition, the Fault Controller
outputs a clock, which specifies whether a fault should be
injected. Specifically, when this clock is 1 each module
receives a signal indicating that a fault injection should
occur, prompting the module to process the outputs of the
Fault Controller.

3.2.5 Fault Injection

During simulation, the Fault Controller is responsible for
fault injection. In each clock cycle, we can access one bit of
one entity and set it to a specific value, where the entity can
be either a register or a wire. We call this procedure Fault
Addressing. When the Fault Controller activates the fault
clock, each module compares the broadcasted UID to the
UIDs of its internal entities. If a match is found, the module
modifies the corresponding bit, as specified by the outputs
of the Fault Controller that are sent to the module. This fault
injection technique is similar to the “parallel saboteurs”
injection technique [12]. An extensive comparison to
existing fault injection approaches can be found in [13].

For a module to be able to respond to Fault Controller
functions, it must be mutated accordingly. For this purpose,
after assigning an UID to each entity, a piece of code that
will enable Fault Addressing within each module must be
generated. Moreover, a fault list containing all faults for
every bit of each entity must also be generated. Both fault
code and fault list generation are performed by internally
developed fault injection tools. Depending on whether a
module is described as a netlist or as behavioral Verilog, the
module is mutated differently:

RT-Level fault injection. For behavioral Verilog, injection
is performed in every entity defined in the Verilog model.
Fig. 2 presents a simplified diagram of the method, which is
capable of injecting either stuck-at faults or transient faults,
with user-defined starting and stopping times (dotted,

lighter colored lines indicate resources added for fault
simulation purposes). Since we operate at the RT-Level
model, only entities described in the Verilog model are fault
injected. Each entity is driven by a MUX, which is controlled
by the Fault Controller. The fault clock signal alters the value
of the target entity during the active fault injection window.
Each entity has a unique ID, so that the Fault Controller can
pick the one to be injected in each clock cycle.

Gate-Level fault injection. Netlist fault injection can also
be performed during RT-Level simulation, thereby support-
ing Gate-Level fault simulation. A simplified version of the
method is depicted in Fig. 3 (dotted, lighter colored lines
indicate resources added for fault simulation purposes).
In order to avoid cluttering the figure, we only show the
resources for three out of the 10 fault injection sites; the rest of
the sites are injected in the exact same way. In this simulation
environment, every wire has an additional driver, which is
controlled by the Fault Controller. Cells are treated as black
boxes. The Fault Controller drives a high-impedance value z
whenever a wire should not be fault injected, so that the
normal value of the wire is propagated. During fault injection,
a supply0 or a supply1 value is driven on the wire,
resembling a stuck-at-0 or a stuck-at-1 fault, respectively.
According to Verilog definition, if a wire has multiple drivers
the strongest one prevails, with z being a neutral value.
Supply0andsupply1are the strongest signals, overwriting
the regular0 or1 value of a signal and, thus, injecting a stuck-
at fault.

MANIATAKOS ET AL.: INSTRUCTION-LEVEL IMPACT ANALYSIS OF LOW-LEVEL FAULTS IN A MODERN MICROPROCESSOR CONTROLLER 1263

Fig. 2. Fault injection in latches of RT-Level model.

TABLE 1
Input/Output Interface of Fault Controller

Fig. 3. Fault injection in wires of Gate-Level model (resources for three
out of 10 fault injection sites shown).

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

We point out that additional buffers are used in the
diagram of Fig. 3, in order to enable fault injection in the
various segments of a wire with fan-out. These buffers
enable individual addressing and, thus, fault injection on
each of the branches of a fan-out net. Finally, we also note
that in order to successfully simulate a Gate-Level module
in an RT-Level environment, the delays of all the standard
cells are set to zero, matching the default zero propagation
delay of an RT-Level model.

3.3 Simulation Flow

After presenting each component of the infrastructure, we
now describe how these components are combined to
provide the aforementioned capabilities. Fig. 4 presents a
flowchart of the procedure, where each of the three distinct
components of Fig. 1 and their interactions are now
depicted in more detail.

Initially, for each entity that will be fault injected, the
corresponding fault code and fault list are added to the IVM
model. Fault injection tools initialize the procedure, parse
the given fault list, and produce the necessary files to guide
the functional simulator.

Following the initialization phase, the functional simu-
lator starts execution and parses the fault injection para-
meters while updating the Fault Controller registers. Once
the values are correctly set up, the functional simulator
executes a user-specified number of instructions. Given the
fact that IVM lacks system-call support, initial system calls
requested by applications must be executed by the func-
tional simulator. When the simulator completes execution,
the microprocessor state is transferred to the Verilog model.

The Verilog implementation of the Alpha microprocessor
simulates the rest of the program code. After a user-
specified number of clock cycles, which is provided through
a register in the Fault Controller, the latter activates the fault
clock through which it instructs all modules to check
whether they should alter any included entity (i.e., perform
fault injection during the next clock cycle). At the end of the
simulation, the state is saved and transferred back to the
functional simulator.

The functional simulator simply outputs the data
collected by the Verilog model and stops execution.
Subsequently, fault injection tools collect the data and
perform the operations requested by the user. We should
note that the whole process is very flexible and parameter-
ized; the user can choose functionality (e.g., trace dumping
and fault analysis), which faults to inject, when to inject
each fault, and how long to inject it for. In this way, various
types of studies are facilitated.

4 INSTRUCTION-LEVEL ERRORS

We continue by introducing various types of instruction-
level errors (ILEs), organized in several groups. While these
ILE types constitute neither a complete nor a mutually
exclusively set, they have been carefully selected to reflect
incorrect behavior occurring due to faults in the control
logic of a modern microprocessor. Thereby, these ILE types
enable us to study the correlation between low-level faults
in the hardware implementation of control logic and their
instruction-level impact.

4.1 ILE Groups & Types

In this study, we consider 13 types of ILEs, organized in five
distinct groups, as summarized in Table 2. Such grouping
reflects the five key aspects of instruction execution in a
superscalar out-of-order microprocessor, namely

1. the operation that is executed,
2. the operands that are being used,

1264 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

Fig. 4. Infrastructure utilization flowchart.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

3. the functional unit where execution takes place,
4. the starting and finishing time of execution, and
5. the order of commitment. The various ILE groups

and types are discussed in more detail below.

4.1.1 Group 1: Operation Errors

The first group covers errors in the operation code (op code)
of the instructions executed by the microprocessor, classi-
fied as one of the following ILE types:

. Type 1: The op code of an instruction is mutated to
another op code that is valid but incorrect.

. Type 2: The op code of an instruction is changed to
an invalid op code.

4.1.2 Group 2: Operand Errors

The second group covers errors in the operands that are
being used by an instruction. In certain instructions, such
errors may also affect the instruction execution flow of a
program and can, therefore, be considered as control errors.
Our error model covers both registers and immediate
operands through the following ILE types:

. Type 3: A register address used by an instruction
points to a valid but incorrect register file location.

. Type 4: A register address used by an instruction
points to an invalid register file location.

. Type 5: An instruction uses the contents of a register
prematurely, essentially violating a Read-After-
Write (RAW) constraint.

. Type 6: An instruction uses an incorrect immediate
value as one of its operands.

4.1.3 Group 3: Execution Errors

Superscalar microprocessors employ several functional
units of various types (e.g., integer ALUs, floating point
ALUs, branch unit, memory operation unit, etc.), in order to
execute multiple instructions simultaneously. Accordingly,
the third group covers errors in the utilization of these
functional units by the executed instruction through the
following ILE types:

. Type 7: An instruction is assigned to and executed
by a functional unit of incorrect type.

. Type 8: An instruction is assigned to more than one
functional unit.

4.1.4 Group 4: Timing Errors

The fourth group covers discrepancies in the timing of
instruction execution. Such discrepancies manifest them-
selves via incorrect starting and/or finishing instruction
execution times and are captured through the following ILE
types:

. Type 9: An instruction commences execution at an
earlier clock cycle than it is supposed to.

. Type 10: An instruction commences execution at a
later clock cycle than it is supposed to, or does not
commence execution at all.

. Type 11: An instruction completes execution in a
longer period of time than it is supposed to.

. Type 12: An instruction completes execution in a
shorter period of time than it is supposed to.

4.1.5 Group 5: Order Errors

The fifth group covers errors in the order in which
instructions are executed and committed. In a processor
with out-of-order execution capabilities, the order in which
instructions are scheduled and executed does not necessa-
rily follow the program sequence. Therefore, a reorder
buffer is typically used to keep track of the instructions that
are in-flight and ensure that they are committed in order.
Errors causing discrepancies in this order are captured by
the following ILE type:

. Type 13: The correct order of instruction commit-
ment is violated.

4.2 Classification of Low-Level Faults as ILE Types

In order to be able to appropriately categorize the impact of
a low-level control logic fault into one of the ILE types
introduced in the previous section, we use our fault
simulation infrastructure to collect the necessary informa-
tion. More specifically, for each clock cycle, we log various
fields related to the execution of instructions in the
processor. This is first done once for a golden run, wherein
no fault is injected, and subsequently repeated on the fault-
injected processor for each fault. The two traces of
information are compared and, at the first point of failure,
the corresponding fields are used to classify the injected
fault into an ILE type. The information that is collected from
the various modules during each clock cycle is summarized
in Table 3. Evidently, the entire microprocessor needs to be
simulated in order to accurately assess the impact of a low-
level fault on instruction execution. Specifically, the traced
information includes:

MANIATAKOS ET AL.: INSTRUCTION-LEVEL IMPACT ANALYSIS OF LOW-LEVEL FAULTS IN A MODERN MICROPROCESSOR CONTROLLER 1265

TABLE 2
Instruction-Level Errors

TABLE 3
ILE Classification Information Traced
from Various Microprocessor Modules

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

1. The op code of the instruction being executed; this is
simply the type of the instruction. Based on this,
ILEs of Types 1 and 2 can be identified.

2. The physical addresses of the source and destination
registers that are used by the instruction; this shows
where the operands reside and where the result will
be written. Based on this, ILEs of Types 3 and 4 can
be identified.

3. The ready bits of these registers; this indicates
whether the source operands are ready to be read.
Based on this, ILEs of Type 5 can be identified.

4. The values of any immediate operands that the
instruction may be utilizing. Based on this, ILEs of
Type 6 can be identified.

5. The identification number of the functional unit
where the instruction is executed. Based on this, ILEs
of Types 7 and 8 can be identified.

6. The clock cycle at which the instruction starts
execution. Based on this, ILEs of Types 9 and 10
can be identified.

7. The clock cycle at which the instruction is expected
to finish execution. Based on this, ILEs of Types 11
and 12 can be identified.

8. The ROBid of the instruction being executed; this is
an identification number assigned by the Reorder
Buffer which follows the instruction until it commits
and serves as the mechanism for ensuring in-order
instruction commitment in the out-of-order execu-
tion supported by the IVM. Based on this, ILEs of
Type 13 can be identified.

When fault simulation of a benchmark completes its
execution window, automated line-by-line comparison of
its trace to the trace of the golden run is performed, as
shown in Fig. 5. In the event of a discrepancy, internally
developed tools employ certain checks and algorithms to
classify the fault to the appropriate ILE type. Even though
we compare line-by-line for differences between the golden
trace and the faulty trace, when a discrepancy is found,
information from multiple cycles is used to correctly
classify the error. However, only the first discrepancy is
reported and classified as an ILE, because the execution
after that point is corrupted and will result in many
different ILEs. If more than one ILE are identified in the
clock cycle of first ILE appearance, all of them are reported.

5 EXPERIMENTS

In this section, we demonstrate the error correlation
capabilities and the corresponding insight that can be
gained through the developed infrastructure. Specifically,
we perform a series of simulations wherein low-level faults

(either at the RT- or at the Gate-Level) are injected in the
control logic of IVM while the latter executes SPEC2000
benchmarks and we analyze their instruction-level impact.
We first discuss the details of the fault simulation setup;
then, we present the obtained results and we reflect on the
information that they provide and its potential significance
in developing cost-effective CED methods.

5.1 Experimental Setup

Simulation workload. Seven different SPEC2000 bench-
marks, namely bzip2, mcf, parser, vortex, gzip, gap,
and cc are used as the simulation workload. The use of
multiple benchmarks ensures variability of the instructions
executed through the processor and the control logic that
they exercise. Each benchmark is executed by the functional
simulator for an initial warm-up period of 50,000 clock
cycles, at which point the machine state is transferred to the
Verilog model and the execution continues for 2,000 cycles,
during which a fault may be injected. On average, 1,297
instructions retire in this window of 2,000 clock cycles.

Target modules. Since our focus is on microprocessor
control logic, we target two key control modules: the
Scheduler, which controls the allocation of instructions to
execution units, and the ROB which controls the order of
instruction retirement. Both modules incorporate large
buffers to support the number of instructions that can be
in-flight, with a combined total of over 40,000 Verilog entities,
as shown in Table 4. The Scheduler is relatively small; it
contains 32 slots for instructions waiting to be executed and
keeps the information needed to identify and correctly issue
an instruction. The ROB is much larger because it contains a
64-slot instruction buffer, as well as complementary informa-
tion about instruction retirement order.

As shown in Table 4, the synthesized Scheduler consists
of 170,099 standard cells, while the synthesized ROB
consists of 228,881 standard cells. Even though the ROB
has over 20K (228 percent) more storage elements than the
Scheduler, it only uses 34 percent more standard cells. This
is explained since, despite the fact that the ROB uses much
larger buffers, the control logic involved is rather small and
is only limited to the proper retirement of instructions. On
the other hand, the Scheduler performs complicated tasks
such as checking whether operands are ready, whether an
instruction can be issued avoiding structural hazards, etc.,
which involve much more control logic. The two modules
employed in this study are quite diverse, one being a
control-logic heavy and the other being buffer-heavy.
Hence, we expect the results of our analysis to carry over
to other modules that are mainly concerned with instruction
execution flow.

Injected faults. Both stuck-at and transient faults are
considered in this study. For the transient fault model, we

1266 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

Fig. 5. Example of classifying a low-level fault as a Type 3 ILE (incorrect
register used).

TABLE 4
Target Module Details

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

inject a bit-flip in every simulated clock cycle, which
translates to 2,000 fault simulation runs per fault location.

While simulating the RT-Level versions of the two
modules, all entities (presented in Table 4) are injected. At
the gate-level, however, the number of faults is very large,
since it includes faults both in the flip-flops and in the
combinational logic, so we resort to sampling, with a sample
size of c ¼ 30%. For the Scheduler, where the total number of
faults isNScheduler ¼ 1;159;012, this translates to a sample size
of nScheduler ¼ 347;703 faults, while for the ROB, where
NROB ¼ 1;714;306 faults, this translates to a sample size of
nROB ¼ 514;290 faults. To assess the error incurred due to
sampling, we use the following equation, defined in [14]:

C0:99 ¼ c� �; � ¼
a2k

2Ni

ffi
1þ 4Nicð1� cÞ

a2k
;

r
ð1Þ

where � is the incurred error, C0:99 is the range of fault
coverage within which the true coverage lies with a
confidence interval of 99 percent, Ni is the total number
of faults, c is the fraction of faults to be simulated, a ¼ 2:60
to achieve a confidence interval of 99 percent, and k ¼ 1
since the total population is large. Thus, our sample size of
c ¼ 30% yields an error of � ¼ 0:01%, which is more than
adequate for the purpose of our analysis.

Computational power. The experiments are performed
on a Quad-core Xeon 3.33 GHz with 16 GB of memory.

5.2 Results and Analysis

In this section, we present the results of evaluating the
impact of low-level faults on the instruction level. The
results are divided in three sections:

1. First, we present results which reveal the correlation
between RT-Level faults and the instruction-level
errors that they cause.

2. Second, we present a comparative analysis of the
impact of RT- vis-a-vis Gate-Level faults on instruc-
tion-level execution. These results corroborate that
the above correlation remains valid independent of
the level at which fault injection is performed.

3. Third, we present a comparative analysis of the
impact of stuck-at faults vis-a-vis transient errors.
Once again, the results corroborate that the correlation
between low-level faults and instruction-level errors
holds true, independent of the injected fault type.

5.2.1 Instruction-Level Impact of RT-Level Stuck-At

Faults

Fault simulation statistics. As a first set of results, we
present cumulative data regarding the fault simulations
performed. Specifically, Table 5 reports the percentage of
the 80,804 injected faults (for both the Scheduler and the
ROB) that resulted in an ILE, as well as the average number
of ILE types that are simultaneously activated for each of the
seven SPEC2000 benchmark programs that were executed.
Based on this table, the following observations can be made:

. The number of faults resulting in an ILE ranges
between 16 and 42 percent. Intuitively, faults injected
during the execution of benchmark programs using a

limited variety and algorithmic combination of
instructions will excite fewer ILEs due to a larger
portion of unused processor functionality. Certain
register bits are rarely used in a typical execution
flow (e.g., the most significant bits of address
registers, or scheduler slots that are used only when
a fairly large number of instructions are in-flight).
This high percentage of application-level masking
highlights the advantage of using workload informa-
tion to develop efficient CED techniques.

. Among the faults resulting in an ILE, an average of
99.3 percent also cause an architectural error. This
high percentage elucidates the fact that the proposed
ILE types constitute an effective way of capturing
incorrect workload execution. The few faults that
cause an ILE but do not affect the architectural state
area attributed to either architectural masking (e.g., a
fault that corrupts an instruction which never
commits due to speculative execution) or perfor-
mance faults (e.g., a fault that delays the availability
of a functional unit and causes the workload to take
longer to execute) [15]. We also note that, in our
experiments, none of the faults may result in an
incorrect architectural state but not cause an ILE.

. Since the ILE types are not mutually exclusive, more
than one ILE types may be activated simultaneously,
even when checking in a cycle-by-cycle fashion.
However, as can be observed in the last column of
Table 5, the average number of simultaneously
activated ILE types is only 1.24; this implies that,
most of the time, only one of the 13 ILE types is
activated at the first point of failure. The implication
of this information is that corruption will typically
occur only at one aspect of instruction execution, with
the rest remaining unaffected. Thus, early detection of
such ILEs can guide simple local operations toward
restoring the correct state of the microprocessor.

Benchmark consistency. Our second set of results
examines the consistency of the information provided
through our experiments. Specifically, since each benchmark
utilizes different functional capabilities of the processor, the
ILE type resulting from a stuck-at fault may vary, depending
on the actual instructions being executed. In this sense, the
robustness of the error correlation information may be

MANIATAKOS ET AL.: INSTRUCTION-LEVEL IMPACT ANALYSIS OF LOW-LEVEL FAULTS IN A MODERN MICROPROCESSOR CONTROLLER 1267

TABLE 5
Results on SPEC2000 Integer Benchmarks

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

questioned. Therefore, in Fig. 6, we present the percentage of
stuck-at faults that results in ILEs of each of the five groups
described in Section 4.1, for each of the seven benchmark
programs. Based on this bar chart, the following observa-
tions can be made:

. The distribution of stuck-at faults to the five groups
of ILEs is consistent across the seven benchmarks.
Furthermore, the variance of stuck-at faults within
each group across the seven benchmarks is small.
These observations corroborate that the obtained
error correlation information is not biased by the
actual instructions executed by each benchmark
program and is, therefore, robust.

. A large percentage of stuck-at faults (60-75 percent)
result in timing errors in all benchmarks, implying
that, independent of the workload utilized, most
stuck-at faults in the control logic may not affect the
instruction itself but, rather, when this instruction is
executed. This is expected since faults injected in the
Scheduler and the ROB modules directly impact
instruction issuing and commitment. Such informa-
tion is very useful in guiding allocation of error
detection and recovery resources. In this case, for
example, one would focus on methods that predict
and monitor the correctness of instruction starting
and stopping times, since, thereby, the majority of
the faults would be detected [16].

ILE distribution. The third set of presented results
relates to the occurrence frequency of each of the 13 ILE
types described in Section 4.1. The average number of
stuck-at faults resulting in each ILE type over the seven
benchmarks is presented in Fig. 7. The subset of these faults
that eventually result in stalling of the pipeline is also
provided. The following observations can be made based on
the results:

. The most frequently occurring ILEs concern instruc-
tion execution timing. Specifically, late instruction
commencement (Type 10) and longer instruction

duration (Type 11) are the dominant types. In other
words, faults injected in the Scheduler and the ROB
module will often result in failure to issue an
instruction or failure to commit an instruction at the
appropriate clock cycle. Another interesting observa-
tion is the frequent appearance of operand mutations
(Type 3). Indeed, the complex structures employed by
the scheduler to keep track of the one to three registers
used by each instruction, appear to be vulnerable to
various stuck-at faults in the control logic.

. On the other hand, stuck-at faults in the Scheduler
and the ROB seem to rarely cause mutation of
operation codes (Type 2) or invalid operand address
(Type 4), since the logic involved is relatively
limited. Similarly, very few faults cause premature
use of operands (Type 5), incorrect functional unit
assignment (Types 7 and 8), or out-of-order instruc-
tion commitment (Type 13). In these cases, the
involved logic can be large, but its complexity is
such that it prevents single stuck-at faults in a
register from activating these ILE types, hence, their
low occurrence probability.

. Among the faults resulting in an ILE most (up to
80 percent) lead to a pipeline stall. In other words,
while the initial error may only manifest in one aspect
of instruction execution, if the error is not corrected
promptly it will most likely have an avalanche effect
that will eventually stall the processor. Moreover, our
intuition is that the reported percentage is an under-
estimate due to the limited fault simulation window
of 2,000 cycles.

The insight provided by the aforementioned observa-
tions regarding the most frequently occurring and, thus, the
most critical ILE types can be leveraged to facilitate cost-
effective use of error detection and correction resources by
implementing small, efficient CED techniques targeting
specific ILE types.

ILE appearance time. Another very interesting set of
results pertains to the time that elapses between injection of
a fault and its appearance as one of the defined ILE types,
as well as the latency between appearance of an ILE and a
potential subsequent stalling of the microprocessor. This

1268 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

Fig. 6. Percentage of stuck-at faults causing each ILE group for each of
the seven benchmarks.

Fig. 7. Average number of stuck-at faults causing each ILE type and
subsets causing stalled execution.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

information is provided in Fig. 8. While the activation time
of an ILE may depend on the actual sequence of executed
instructions, averaging the results over the seven SPEC2000
benchmarks provides an unbiased estimate. The obtained
results motivate the following observations:

. The average time until an injected fault results in an
ILE is 406 clock cycles. However, the standard
deviation across the 13 ILE types is rather high
(198 clock cycles), with some ILE types occurring
very quickly and others much later. For example,
invalid operation code (Type 2), utilization of
multiple functional units (Type 8), and incorrect
commitment order (Type 13) are types of ILEs
appearing very quickly after fault injection. Indeed,
despite the fact that the set of faults causing these
ILEs is relatively small (as presented in Fig. 7), such
faults are directly associated with these specific
types of ILEs. Thus, upon the appearance of such a
fault, the corresponding ILE is immediately acti-
vated. On the other hand, ILEs related to timing
issues (e.g., Types 9 and 11) appear much later. Such
ILEs seem to be often the result of faults propagating
to parts of the microprocessor that do not interfere
directly with the main pipeline flow, yet eventually
work their way into it and, hence, the longer latency.

. On average, a microprocessor stall occurs 280 clock
cycles after occurrence of an ILE. However, one may
observe that some ILEs concerning timing issues (i.e.,
Types 9 and 11) result in microprocessor stalling
much faster than the rest of the ILEs; given the fact that
these ILEs are caused when the Scheduler or the ROB
fail to timely issue or commit an instruction, subse-
quent instructions fail to issue or commit successfully,
inevitably causing the pipeline to stall very quickly.
On the other hand, for ILEs such as Type 7, stalling
appears much later, after the Scheduler and/or the
ROB fill up with instructions waiting for the in-
correctly executed instruction to retire.

The insight provided by the aforementioned observations
is two-fold. First, they reveal the relative temporal criticality
of each ILE type. Thus, they can be used to fine-tune

error tolerance methods that employ checkpoints to exam-
ine and restore the microprocessor state [10]. Second, they
indicate the window of opportunity for correcting an error
before it drastically corrupts the processor state and results
in a stall. Thus, they can be leveraged to prioritize the
allocation of error detection and correction resources.

Finally, Fig. 8 shows that the activated ILEs appear no
later than 1,200 cycles after fault injection; this ensures that
the window of 2,000 clock cycles that we observe is
sufficiently long for the performed analysis. While ILEs
that would require a much larger simulation window to
appear may exist, their number is relatively small and
would not alter the profile of the results.

5.2.2 Impact Comparison of RT- versus Gate-Level

Faults

Impact consistency. The first set of results compares the
accuracy of assessing the impact of low-level faults on
instruction execution at the RT- versus the Gate-Level.
Specifically, Figs. 9 and 10 present the classification of RT-
and Gate-Level faults into the ILE types that they cause, for
each of the seven benchmarks. The results are presented
separately for the Scheduler and the ROB since the Scheduler
is a control logic-heavy module whereas the ROB is a buffer-
heavy module. Based on the results, we can make the
following observations:

. The most important observation is a pronounced
consistency in the types and frequency of ILEs caused
by RT- versus Gate-Level faults. Indeed, for each
benchmark, the distribution of RT-Level faults to the
13 ILE types is strongly correlated with the distribu-
tion of Gate-Level faults to the same, as presented in
Table 6. On average, the correlation coefficient2 is
93 percent for both the Scheduler and the ROB. This
critical observation corroborates that RT-Level fault
analysis provides sufficiently accurate results with
respect to its Gate-Level counterpart.

. The next observation is that the distributions are
consistent across the various benchmarks, confirm-
ing the results presented in the previous section.
Hence, it is evident that the type of ILE caused by a
low-level fault is, typically, independent of the
instruction subset that is utilized.

. A final observation is that some ILE types appear
never to be caused by Gate-Level faults. These ILE
types have already a very small frequency of
occurrence due to RT-Level faults, which is further
diminished during Gate-Level fault simulation
because of sampling.

Fault simulation speed. The next set of results investi-
gates how the simulation speed is affected by the use of Gate-
Level modules. Table 7 compares the average simulation

MANIATAKOS ET AL.: INSTRUCTION-LEVEL IMPACT ANALYSIS OF LOW-LEVEL FAULTS IN A MODERN MICROPROCESSOR CONTROLLER 1269

Fig. 8. Average time stamp of ILE identification and subsequent pipeline
stalling (in clock cycles).

2. If R is the vector containing the 13 values representing the percentage
of the faults that result in each ILE Type for the RT-Level, and G is the
same vector for the Gate-Level (�R and �G being the respective average
values), then the correlation coefficient c is calculated as

c ¼
P13

n¼1 ðRn � �RÞðGn � �GÞffi�P13
n¼1 ðRn � �RÞ2

��P13
n¼1 ðGn � �GÞ2

�q :

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

time per fault for the various configurations. The first row
provides the baseline, where all modules are simulated at the
RT-Level, while the following rows indicate the overhead
when one or both of the target modules are simulated at the
Gate-Level. As may be observed, this makes the simulation
over an order of magnitude slower. Taking into account that,
even with 30 percent fault sampling, using the Gate-Level
Scheduler and ROB requires, on average, 5:8� (5:0� for

Scheduler, 6:6� for ROB) more fault simulations than their
RT-Level counterparts, a similar fault analysis at the Gate-
Level is 260� more expensive, rendering it almost infeasible
for extensive studies. Therefore, performing the simulations
at the RT-Level is strongly desired, especially since the
accuracy of the obtained results is up to par, as confirmed by
the above results.

1270 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

Fig. 10. Comparison between ILE types caused by RT- versus Gate-
Level faults in the ROB.

Fig. 9. Comparison between ILE types caused by RT- versus Gate-Level
faults in the Scheduler.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

5.2.3 Impact Comparison of Stuck-at versus Transient

Faults

Transient fault classification. We now compare the impact
of two different fault models, namely stuck-at faults and bit-
flip transients, on instruction execution. We note that, while
classifying the impact of a stuck-at fault to an ILE is rather
straightforward, doing so for a transient fault is more
complicated. Indeed, transients in the same location may
result in a different ILE type depending on the time of fault
injection during the simulation. Therefore, for each fault we
perform 2,000 simulations, each time injecting it at a
different clock cycle and we collect the probability with
which this fault will lead to an ILE of each type. For
example, assume that a stuck-at fault in a register causes an
ILE of Type 3, while a bit-flip in the same register results in
an ILE of Type 3 if injected in clock cycles 10, 500, or 1,200
and as ILE of Type 11 if injected in clock cycles 250 or 1,500.
Then, this transient fault contributes 0.6 to the number of
transient faults that result in an ILE of Type 3 and 0.4 to the
number of transient faults that result in an ILE of Type 11.
In contrast, the corresponding stuck-at fault contributes 1 to
the number of faults resulting in an ILE of Type 3.

Impact consistency. Fig. 11 shows the combined results
for the Scheduler and the ROB for the seven different
benchmarks. The results reveal a very high consistency
between the distribution of stuck-at and transient faults to
the corresponding ILEs (i.e., an average correlation coeffi-
cient of 98 percent). This consistency can be further
explained by examining the impact of individual transient
faults. While a transient may result in various ILE types
depending on its time of injection, it turns out that, most of
the time (over 80 percent on average), it causes the same ILE.
Hence, even if one is interested in developing CED methods

for transient bit-flips, assessing their instruction-level
impact through stuck-at fault simulations would provide
sufficiently accurate results. Moreover, as explained in the
previous paragraph, assessing instruction-level impact
through simulation of stuck-at faults is far less time
consuming than through transient faults, since only one
simulation is necessary per fault location.

MANIATAKOS ET AL.: INSTRUCTION-LEVEL IMPACT ANALYSIS OF LOW-LEVEL FAULTS IN A MODERN MICROPROCESSOR CONTROLLER 1271

TABLE 6
Results on SPEC2000 Integer Benchmarks

TABLE 7
Fault Simulation Speed Comparison

Fig. 11. Comparison between ILE types caused by stuck-at versus
transient faults in the Scheduler and the ROB.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

6 CONCLUSIONS

In order to develop cost-effective CED methods which
leverage the ability of modern microprocessors to suppress
a high percentage of errors at the application level, a
thorough understanding of the impact of low-level faults
on program execution is necessary. To this end, the
infrastructure reported herein, which we developed around
an Alpha-like high-performance microprocessor, enables
injection, simulation, and classification of low-level faults
into instruction-level error types. Extensive experimentation
with this infrastructure provided great insight regarding the
relative importance of low-level faults, as gauged by the
activation frequency and latency of the instruction-level error
types that they cause. Furthermore, it revealed a profound
instruction-level impact consistency between RT- and Gate-
Level faults, as well as between stuck-at and transient faults.
Besides CED, the capabilities of the developed infrastructure
may be utilized to provide similar insight and guidance for
various other design robustness endeavors.

ACKNOWLEDGEMENTS

This work is supported by a generous gift from Intel Corp.
The first two authors contributed equally to this work. The
second author performed this research while being a
visiting student at Yale University. Preliminary versions
of parts of the results reported herein were presented at the
2008 International Test Conference [17] and the 2009 VLSI
Test Symposium [18]. The authors would like to thank
Professor Sanjay Patel and Nicholas Wang from the
University of Illinois at Urbana-Champaign for sharing
the IVM microprocessor model and for providing technical
assistance in its installation and usage.

REFERENCES

[1] M. Goessel and S. Graf, Error Detection Circuits. McGraw-Hill,
1993.

[2] C. Metra, M. Favalli, and B. Ricco, “On-Line Detection of Logic
Errors Due to Crosstalk, Delay, and Transient Faults,” Proc. IEEE
Int’l Test Conf., pp. 524-533, 1998.

[3] S. Mitra and E.J. McCluskey, “Which Concurrent Error Detection
Scheme to Choose?,” Proc. IEEE Int’l Test Conf., pp. 985-994, 2000.

[4] K. Mohanram and N.A. Touba, “Cost-Effective Approach for
Reducing Soft Error Rate in Logic Circuits,” Proc. IEEE Int’l Test
Conf., pp. 893-901, 2003.

[5] S. Almukhaizim, P. Drineas, and Y. Makris, “Entropy-Driven
Parity-Tree Selection for Low-Overhead Concurrent Error Detec-
tion in Finite State Machines,” IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems vol. 25, no. 8, pp. 1547-1554, Aug.
2006.

[6] J.C. Lo, “A Hyper Optimal Encoding Scheme for Self-Checking
Circuits,” IEEE Trans. Computers, vol. 45, no. 9, pp. 1022-1030, Sept.
1996.

[7] C. Metra, D. Rossi, M. Omana, A. Jas, and R. Galivanche,
“Function Inherent Code Checking: A New Low Cost On-Line
Testing Approach For High Performance Microprocessor Control
Logic,” Proc. European Test Symp., pp. 171-176, 2008.

[8] N.J. Wang, A. Mahesri, and S.J. Patel, “Examining ACE Analysis
Reliability Estimates Using Fault Injection,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, pp. 460-469, 2007.

[9] D. Burger and T.M. Austin, “The SimpleScalar Tool Set,”
Technical Report CS-TR-97-1342, Version 2.0., Univ. of Wisconsin,
Madison, 1997.

[10] N.J. Wang and S.J. Patel, “Restore: Symptom Based Soft Error
Detection in Microprocessors,” Proc. Int’l Conf. Dependable Systems
and Networks, pp. 30-39, 2005.

[11] N.J. Wang, J. Quek, T.M. Rafacz, and S.J. Patel, “Characterizing
the Effects of Transient Faults on a High-Performance Processor
Pipeline,” Proc. Int’l Conf. Dependable Systems and Networks, pp. 61-
70, 2004.

[12] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault
Injection into VHDL Models: the MEFISTO Tool,” Proc. Int’l Symp.
Fault-Tolerant Computing, pp. 66-75, 1994.

[13] J.C. Baraza, J. Gracia, S. Blanc, D. Gil, and P.J. Gil, “Enhancement
of Fault Injection Techniques Based on the Modification of VHDL
Code,” IEEE Trans. Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 6, pp. 693-706, June 2008.

[14] V.D. Agrawal and H. Kato, “Fault Sampling Revisited,” IEEE
Design and Test of Computers, vol. 7, no. 4, pp. 32-35, Aug. 1990.

[15] N. Karimi, M. Maniatakos, C. Tirumurti, A. Jas, and Y. Makris,
“Impact Analysis of Performance Faults in Modern Microproces-
sors,” Proc. IEEE Int’l Conf. Computer Design, pp. 91-96, 2009.

[16] M. Maniatakos, N. Karimi, Y. Makris, A. Jas, and C. Tirumurti,
“Design and Evaluation of a Timestamp-Based Concurrent Error
Detection Method (CED) in a Modern Microprocessor Controller,”
Proc. IEEE Int’l Symp. Defect and Fault Tolerance of Very Large Scale
Integration Systems, pp. 454-462, 2008.

[17] N. Karimi, M. Maniatakos, Y. Makris, and A. Jas, “On the
Correlation Between Controller Faults and Instruction-Level
Errors in Modern Microprocessors,” Proc. IEEE Int’l Test Conf.,
pp. 24.1.1-24.1.10, 2008.

[18] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-Level Impact Comparison of RT- versus Gate-Level
Faults in a Modern Microprocessor Controller,” Proc. IEEE Very
Large Scale Integration Test Symp., pp. 9-14, 2009.

Michail Maniatakos received the BS and MS
degrees in computer science and embedded
systems from the University of Pireaus, Greece,
in 2006 and 2007, respectively, as well as the
MS degree in electrical engineering from Yale
University, New Haven, CT, in 2008, where he is
currently a PhD candidate. His current research
interests include test and reliability of modern
microprocessors and computer architecture. He
is a student member of the IEEE.

Naghmeh Karimi received the BS, MS, and
PhD degrees in computer engineering from the
University of Tehran, Iran, in 1997, 2002 and
2009, respectively. Her masters thesis was on
testability enhancement at the register transfer
level and the PhD thesis was on concurrent
error testing and reliability enhancement. Be-
tween 2007 and 2009, she was a visiting
researcher at Yale University. She is currently
a post-doctoral researcher at Duke University.

Her research interests include design for testability, concurrent testing,
fault tolerance, and reliability enhancement. She is a student member
of the IEEE.

Chandrasekharan (Chandra) Tirumurti is a
research scientist with the Validation and Test
Solutions group at Intel Corporation based in
Santa Clara, CA. His current focus is on
strategic manufacturing test initiatives for main-
stream CPUs. An alumnus of Indian Institute of
Technology, Kharagpur, India, has wide experi-
ence in many areas of CAD and design,
including simulation, data path synthesis, defect
oriented testing, and fault tolerance. He has

published several papers in the areas of test and fault tolerance. He
mentors funded research and SRC projects actively for Intel and is an
avid cricketer. He is a member of the IEEE.

1272 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

Abhijit Jas received the BE degree in compu-
ter science and engineering from Jadavpur
University, Kolkata, India, in 1996. He secured
the first rank among all graduating students
from the college of engineering. He received
the MS and PhD degrees in electrical and
computer engineering from the University of
Texas at Austin, in 1999 and 2001, respec-
tively. He is a component design engineer with
the Validation and Test Solutions group at Intel

Corporation in Austin, TX. His current focus is on scalable and modular
test access mechanism architecture for system-on-a-chip products. He
has published several papers in leading conferences and journals in
the areas of VLSI testing and fault tolerance. He mentors several
academic research projects funded by Intel. He was a corecipient of
the 2001 Best Paper Award at the VLSI Test Symposium. He serves
on the technical program committee of several IEEE conferences and
workshops. He was the program chair of the International Test
Synthesis Workshop in 2009. He is a member of the IEEE.

Yiorgos Makris received the diploma of com-
puter engineering and informatics from the
University of Patras, Greece, in 1995, and the
MS and PhD degrees in computer science and
engineering from the University of California,
San Diego, in 1997 and 2001, respectively. He,
then, spent over 10 years as a faculty of
Electrical Engineering and of Computer Science
at Yale University, and he is currently an
associate professor of Electrical Engineering at

The University of Texas at Dallas, where he leads the Trusted and
Reliable Architectures (TRELA) Research Group. His current research
interests include soft-error mitigation in digital circuits, machine learning-
based testing of analog/RF circuits, mitigation of hardware Trojans, as
well as test and reliability of asynchronous circuits. He serves on the
organizing and program committees of many conferences in the areas of
test and reliability and is the program chair for the 2011 Test Technology
Education Program (TTEP) of the IEEE Test Technology Technical
Council (TTTC). He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MANIATAKOS ET AL.: INSTRUCTION-LEVEL IMPACT ANALYSIS OF LOW-LEVEL FAULTS IN A MODERN MICROPROCESSOR CONTROLLER 1273

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:49:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

