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Abstract—Memristors are an attractive option for use in future
memory architectures but are prone to high defect densities due
to the nondeterministic nature of nanoscale fabrication. Several
works discuss memristor fault models and testing. However, none
of them considers the memristor as a multilevel cell (MLC).
The ability of memristors to function as an MLC allows for
extremely dense, low-power memories. Using a memristor as an
MLC introduces fault mechanisms that cannot occur in typical
two-level memory cells. In this paper, we develop fault models
for memristor-based MLC crossbars. The typical approach to
testing a memory subsystem entails testing one memory cell at
a time. However, this testing strategy is time consuming and
does not scale for dense, memristor memories. We propose an
efficient testing technique that exploits sneak-paths inherent in
crossbar memories to test several memory cells simultaneously.
In this paper, we integrate solutions for detecting and locating
faults in memristors. We develop a power aware built-in self-test
solution to detect these faults. We also propose a hybrid diag-
nosis scheme that uses a combination of sneak-path and March
testing to reduce diagnosis time. The proposed schemes enable
and leverage sneak-paths during fault detection and diagnosis
modes, while disabling sneak-paths during normal operation. The
proposed hybrid scheme reduces fault detection and diagnosis
time by 24.69% and 28%, respectively, compared to traditional
March tests.

Index Terms—Built-in tests, fault diagnosis, memristors,
multilevel memory, sneak-paths.

I. INTRODUCTION

THE INTERNATIONAL Technology Roadmap for
Semiconductors highlights that the performance

characteristics of emerging resistive random access
memory (RRAM) and phase change memory technolo-
gies at the advanced technology nodes (<65 nm), may
be quite promising and even superior to the current
static-CMOS RAM (SRAM) technology [1]. Metal-oxide
memristors [2], [3], a type of RRAM, are a promising
candidate for next-generation high-performance, high-density
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storage technology due to their nonvolatility, scalability
and low-power consumption [4], [5]. Memristor are also
used as multilevel cells (MLCs) allowing ∼ 2 − 3× denser
memories [1], [6].

Notwithstanding these advantages, nanoscale memristor
devices are prone to defects. To screen memristor memories,
a stuck-at fault model was proposed in [7]. This fault model
was extended to include open, short, and bridging faults [8].
A new fault model, where a memristor can hold either an unde-
fined (X) or logics 1 or 0 state has also been proposed [8]. To
test these fault models a design-for-test (DfT) circuit based on
a variable timing sensitive circuit has been proposed in [9].
A physics-based analysis of the memristor physical structure
and fault models that represents all possible defects in memris-
tors have been proposed in [10]. However, all these approaches
consider memristor cells capable of storing a single bit. All
these approaches (except [10]) use the conventional March
memory test [11]. A March test detects faults by applying
a fixed pattern of read and write operations to each mem-
ory cell. However, cell-by-cell checking is time-consuming
for large/dense memories. We developed sneak-path testing
in which sneak-paths (unintended and undesirable electrical
paths within a circuit) present in the crossbar are exploited to
test multiple memristors simultaneously [10], [12], while tar-
geting single-bit (two-level) cells. We extend this technique to
test MLCs.

The contributions of this paper are as follows.
1) We develop a set of fault models to model the defects

in a multilevel memristor. (Kannan et al. [10], [12] per-
formed a similar study on defects in two-level cells,
while MLCs introduce unique failure mechanisms.)

2) We also consider faults that model defects in the cross-
bar structure, providing a comprehensive fault model for
multilevel memristor crossbars.

3) We then modify the power-aware sneak-path
testing [10], [12] scheme and extend it to detect
faults in multilevel memories. This not only involves
the derivation of fault detection sequences (March test),
but also their adaptation into a parallel sneak-path
based framework.

4) We develop a built-in self-test (BIST) architecture to
perform sneak-path testing for MLCs.

5) We use the sneak-path diagnosis in [13], which tar-
gets two-level cells, and adapt it to perform diagnosis
(determine the location of faults and type of defects) in
multilevel memories.
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Fig. 1. Memristor read and write operation in a four-level memristor. The
resistive range (Rmax to Rmin) is divided into four equal discrete regions for
each logic level. The gray region represents undefined region.

6) We provide a brief summary of techniques that repair
faults in a multilevel memory. These techniques are
entirely new and unsuitable for use with two-level
memories.

This paper is structured as follows. First, in Section II,
we review the memristor and how we model this device.
We describe memristor defect mechanisms and then develop
fault models that represent each defect. Section III introduces
the crossbar memory architecture and shows how we lever-
age sneak-paths to test the memristor crossbar in an expedited
manner. Section IV describes our fault detection scheme and
Section V describes our proposed BIST architecture used for
fault detection. Section VI demonstrates the fault diagnosis
and repair methodologies, respectively. Section VII provides
an analysis of the proposed test and diagnosis techniques.
Section VIII summarizes and concludes this paper.

II. MEMRISTOR DEFECTS AND FAULTS

A. Multilevel Memristor Cell

The metal-oxide memristor is a two-terminal passive ele-
ment in which the resistance of the device is determined by
the voltage or current applied across the device as a func-
tion of time. In this paper, we consider the TiOx metal-oxide
memristor device, developed by HP Laboratories [3]. MLC
nonvolatile memories allow a single memory cell to store
multiple bits of data, exponentially increasing the memory
density. A memristor can be programmed to any resistance
level between a maximum possible resistance (Rmax) and min-
imum resistance (Rmin). The range of resistance in each cell
can be quantized into q discrete levels, which can store log2q
bits. In this paper, without loss of generality, we assume that
the memristor is quantized with q = 4 (as shown in Fig. 1).
Each logic level represents two bits of data 00, 01, 10, and 11.
We follow a compact notation where 0–3 indices are used to
denote logic levels. While a new analysis and notation are
required for memristor quantizations with q > 4, the analy-
sis in this paper can be easily extended for any quantization
value.

The logic level of a memristor can be determined by using
a sense amplifier that measures the current flowing through
a memristor relative to known reference currents (Iref). In
memristor-based memories a current sensing scheme is faster

than voltage sensing schemes [14]. However, if the current
flowing through the device lies too close to Iref, due to addi-
tive noise in the circuit, the output of the sense amplifier may
show an erroneous value [9]. Hence, to prevent the effects
of noise, a safety margin (or undefined region) is added to
ensure the reliability of the memristor. The undefined region
for a memristor is shown in Fig. 1.

1) Write Operation: Applying a negatively biased voltage
(v(t) < 0) across the memristor, gradually increases the over-
all resistance of the memristor to Rma. Conversely, applying
a positively biased voltage (v(t) > 0) across the memristor
reverses the above process, reducing the overall resistance of
the memristor to Rmin. Intermediate resistances are obtained
by either reducing the pulse width or reducing the voltage.
In this paper, we use varying pulse widths to program the
intermediate resistance levels.

2) Read Operation: To read the logic stored in a memristor,
a positive pulse followed immediately with a negative pulse,
with the magnitude and duration adjusted to create a zero net
change in resistance, is used [4].

B. Memristor Model

The memristor is modeled using the TEAM model [15],
which is based on the Simmons tunneling effect. The model
provides us with an asymmetric switching behavior and non-
linear I–V characteristics. The I–V relationship in this model
is given by

i (t) = v (t) · Rone−(λ/xoff−xon)(x−xon)

Window: f (w) = 1 − (w/D − stp(−i))2p (1)

where w, D, p, λ, xon, and xoff are experimental fitting param-
eters. The window function is based on the function used
in [15] which introduces the bounds of the device and adds
nonlinear behavior close to these bounds.

C. Memristor Defects and Fault Models

We model a memristor based on the equations described
in (1). We then introduce different types of physical defects,
such as variation in length, width, and doping concentration
and study their effect on the functionality of a memristor. We
also study the effect of introducing defects into the crossbar
structure. We model these defects as faults and determine the
appropriate test sequence that can be used to sensitize and
detect these faults.

1) Variation in Length and Cross-Sectional Area: Let us
assume that we have a memristor with length L and cross-
sectional area A. Any variation in the length (�L) causes
a change in resistance �R = ρ(�L/A), where ρ is the resis-
tivity of the memristor. Any variation in the cross-sectional
area (�A) of the memristor causes the resistance to shift by
�R = ρ[(L � A)/(A(A − �A))].

The change in the minimum resistance (�Ron) and maxi-
mum resistance of the device (�Roff) is evaluated using the
resistivity of the doped and the undoped region of the mem-
ristor. The maximum and minimum resistance increase to
Roff + �Roff and Ron + �Ron. This results in three unique
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Fig. 2. (a) 3w1 and 3w2 operation on a memristor with a defective ±10%
change in length. A slow-write fault occurs when the write pulse is not long
enough to switch the faulty device into the logic 1 state. (b) 0w1 and 0w2 oper-
ation on a memristor with a defective ±10% change in length. This time,
a slow-write fault occurs when the write pulse is not long enough to switch the
faulty device into the logics 1 or 2. The gray region represents the undefined
region.

faults: 1) the slow-write fault; 2) fast-write fault; and 3) the
deep fault.

a) Slow-write fault: In Fig. 2(a), the dotted line rep-
resents a fault-free memristor and the red line represents
a defective memristor with a 10% increase in length. The
device is initially at logic 3. When a w1 (write logic 1) pulse is
applied, the fault-free memristor switches to logic 1. A faulty
memristor transitions slower between states, resulting in the
memristor to remain in logic 2 or in the undefined region. This
type of fault is a slow-write-3-1 (SW3-1) fault. A SW3-1 is
represented by 〈{3w1}/X21〉; i.e., a write 1 operation is per-
formed while the device is currently at logic 3, sensitizing the
fault and resulting in a faulty response or X21 which represents
the undefined region between logics 2 and 1. A similar study
of the memristor with different initial logic levels also shows
a possible SW2-0 fault, represented by 〈{2w0}/X10〉.

The defects considered in this paper have a maximum
defect margin of 10%. For example, if a defect-free mem-
ristor has length L, a defective memristor has a maximum
possible length of 1.1 L. Defects with a larger variation are
extremely unlikely. Hence, the memristor model we are con-
sidering suggests a possibility of only a SW3-1 and a SW2-0
fault.

Writing from a high resistance state to a low resistance
state is more susceptible to a slow-write fault. As we can
see in Fig. 2(b), our memristor is susceptible to a SW0-1
and a SW0-2 fault. A SW0-1 is represented by 〈{0w1}/X01〉
and a SW0-2 is modeled as 〈{0w2}/X12〉. The memristor also
demonstrates a SW1-2 (not shown in figure) fault that is
represented by 〈{1w2}/X12〉.

b) Fast-write fault: As we can see in Fig. 2(b), the dotted
line represents a fault-free memristor and the green line rep-
resents a defective memristor with a 10% decrease in length.
The device is initially at logic 0. When a w1 pulse is applied
to the fault-free memristor, it switches to logic 1, but the faulty
memristor transitions faster between states and results in the
memristor to switch to logic 2. We refer to this type of fault as
a fast-write-0-1 (FW0-1) fault. A FW0-1 can be represented
by 〈{0w1}/X21〉.

c) Deep fault: An increase in the length (�L) or
a decrease in the cross-sectional area (�A) results in an upward
shift in the upper and lower resistance limits of the memristor
by Roff + �Roff and Ron + �Ron, respectively. The memris-
tor enters a “deep-0” state when its resistance R > Roff [12].
When we attempt to write a higher logic level, say logic 2,
to a memristor that is in the deep-0 state, the duration of the
write pulse is too short to switch from deep-0 to logic 2. This
type of fault is called a deep-0 fault. A deep-0 can be sen-
sitized using a sequence of operations and is represented as
〈{w0, w0, w1}/X01〉; a series of operations {w0, w0, w1} are
required to sensitize the fault.

d) Deep-(q-1)-fault: This fault occurs in a memristor
with q quantization levels, due to a decrease in the length
(�L) or an increase in the cross-sectional area (�A) of the
memristor. This causes the range of resistance to decrease
to Ron − �Ron and Roff − �Roff. When a memristor with
q = 4 enters the “deep-3” state (i.e., R < Ron) the write
pulse is not long enough to switch the state from deep-1 to
logic 0. A deep-3 fault can be sensitized by a sequence of
operations denoted by {w3, w3, w2}. The fault is represented
by 〈{w3, w3, w2}/X32〉.

2) Variation in Doping: The variation in doping density
affects the mobility of the charge carries in the memristor.
As we can see from Fig. 3(a), an excess in doping results in
an increased rate at which the memristor transitions from one
state to another. Similarly, a deficiency in doping [Fig. 3(b)]
results in a decreased rate at which the memristor transitions
from one state to another. A completely undoped memristor is
permanently at resistance Rmax and is modeled as a stuck-at
0 fault.

3) Open/Short Defects: Open and short defects in the
memory circuits such as broken or missing metal wires,
extra metal lines, etc. can be modeled at the electrical level
using a resistor [9]. An open is an unintended series resistance
Ropen where, 0 < Ropen < ∞�. A short is an unintended
resistive path Rshort between any part of the circuit and a sup-
plied voltage Vdd or ground. The short resistance can be in
the range of 0 < Rshort < ∞�. An open or a short defect can
be modeled as a stuck-at fault.

a) Stuck-at 0: A short to ground at either terminal of the
memristor will result in the memristor being stuck-at logic 0
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Fig. 3. (a) 3w1 and 3w2 operation for a memristor for ±10% change in dop-
ing concentration. A slow-write-3-1 (SW3-1) fault occurs when the transition
from a low resistance state to a high resistance state is slower than normal.
(b) 0w1 and 0w2 operation for a memristor with a ±10% change in dop-
ing concentration. A slow-write-0-1 (SW0-1) fault occurs when the transition
from a high resistance state to a low resistance state is slower than normal.

irrespective of the voltage applied across it. This fault is called
a stuck-at 0 (SA0) fault and represented by 〈wL/0〉; a logic L is
the expected output of a fault-free memristor (where L = 2, 3).
A 〈w1/0〉 falls short to unambiguously detect a SA0 since
a logic 0 output may also occur if the device resistance is stuck
in X01 resulting in a false positive fault detection. To detect
a SA0, we should use a write operation to a logic level that
is at least two logic levels apart.

b) Stuck-at L: The defect represented by a stuck-at
L (SAL) fault, where L is any logic level in 1–3, is slightly
different from a stuck-at 0 fault. An open defect in series
with the memristor results in the memristor to remain stuck-at
any logic level independent of any voltage applied across the
device. The fault can be sensitized by any write operation and
detected by reading for the stuck-at logic level L. However,
there is a chance that the stuck-at value may be of a resistance
that lies in the undefined region. Hence, to detect a SAL fault
we use 〈w(L ± 2)/L〉. For instance a stuck-at-2 fault can be
detected by a 〈w0/2〉.

4) Bridges Between Rows/Columns: This defect arises from
the structure of the crossbar rather than the memristor. When
adjacent rows or columns are bridged together [Rsc and Rsr

in Fig. 4(a)] a transition in one cell may result in a similar
transition in the adjacent cell. This behavior is modeled as
a coupling fault.

Fig. 4. (a) Coupling faults occurring due to resistive bridge defects (Rsc, Rsr,
Rsrc). (b) Two tests required to detect all coupling faults. Gray cells are aggres-
sor cells and white ones are victim cells. Arrows indicate aggressor/victim
pairs that may be detected. With an initial state as logic 0, alternate cells
are programmed to a logic 1. Any change in the victim cells indicate
a fault.

a) Coupling fault: The memory element that is addressed
is the aggressor cell and the victim cell is a vertically or
horizontally adjacent cell. The fault can either be written as
〈Xw1; 0/1〉 (with any initial state, a w1 triggers a change from
logic 0 to logic 1 in the adjacent element) or 〈Xw0; 1/0〉.

As shown in Fig. 4(b), in order to sensitize and detect cou-
pling faults we perform 〈0w1〉 on alternate memory cells. Any
change in the other set of memory cells indicates a coupling
fault. As shown in [16], the resistive bridge Rsrc does not result
in a fault.

Table I summarizes the defects in a memristor caused during
fabrication and the associated fault models. Defects that cause
an undefined output, such as a deep or slow-write, may pos-
sibly be undetected by a standard March test since the faults
cause a random logic value to be read from the defective mem-
ristive cell. To detect these faults, we propose a testing scheme
(described in Section III) that provides two capabilities.

1) The ability to distinguish between a logic level and an
undefined state.

2) Improved test time and minimized cost by using sneak-
paths to test multiple memristors simultaneously.

III. LEVERAGING SNEAK-PATHS FOR TESTING

A. Crossbar Memory

Nanoscale memories are constructed using dense nanoscale
crossbar [17]. The crossbar array consists of two sets of
nanowires running perpendicular to one another. There is
a memristor cell at the intersection of each pair of perpendic-
ular nanowires. One set of parallel wires are used as bit-lines
and the second set of wires, orthogonal to the first, are used
as word lines.

Due to the bidirectionality of metal-oxide memristors, cross-
bar architectures suffer from sneak-paths. Sneak-paths are
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TABLE I
CORRESPONDENCE BETWEEN DEFECTS AND FAULT TYPES

unintended and undesirable electrical paths within a circuit
that may corrupt the output current, resulting in incorrect
read and write operations [18]. Several techniques to eliminate
sneak-paths have been proposed [19], [20].

B. Testing Methodology

Most memory testing techniques, including the methods dis-
cussed in [7]–[9] use the March testing [11]. March exhaus-
tively tests a memory for a number of faults, one memory
cell at a time. However, when applied to large memristor
memories, this technique leads to prolonged test times. Other
techniques such as [21] use a divide-and-conquer approach
that works extremely well for crossbars with a small num-
ber of faults (<5 ∼ 6 faults/crossbar), but test time increases
exponentially with increased number of faults.

We propose a “sneak-path testing” technique for multi-
level memories. In every memristor cell, crossbar current and
voltage are the only two measurable quantities. We lever-
age sneak-paths to measure the accumulated sneak currents,
capturing information about multiple memristors in a single
measurement.

Fig. 6 illustrates the currents flowing through a 2 × 2 cross-
bar when the memory cell M12 (memristor in row 1, column 2)
is accessed. The output current (Ioutput) at the second col-
umn is the sum of two parallel currents, the primary current
(Iprimary) and the sneak-path current (Isneak). The output current
of a simple 2 × 2 crossbar can be given as

Ioutput = Vpu

M12|| (M11+M21+M22)
. (2)

Fig. 5. Sneak-path testing in a 2 × 2 crossbar. M12 is the addressed memory
cell. A sneak-path current Isneak flows through M11, M21, and M22. Any vari-
ations due to defects in the memristors are reflected as a measurable variation
in Ioutput.

Fig. 6. Output logic of sense amplifier with reference current (a) Iideal3,
(b) Iideal2, (c) Iideal1, and (d) Iideal0.

Any variation in the resistance (due to defects) in
M12, M11, M21, or M22 results in a variation of Ioutput. Hence,
by simply measuring the output current while reading a single
memory cell, sneak-paths help us capture information about
multiple memristors in a single step.

In order to enable the proposed sneak-path testing, we need
to modify the crossbar. During typical read/write operation
only transistors on the addressed row are turned on elimina-
tion sneak-paths. During test phase, we introduce sneak-paths
by turning on transistors on all rows. To implement this we
modify the transistor control circuitry as shown in [12].

Comparing the actual output current Iactual with the ideal
current Iideal (output current of a defect free crossbar) we can
detect defective memristor(s). The variation in Ioutput dimin-
ishes for faults that are further away from the addressed
cell. A group of memristors that are tested simultaneously is
referred to as the “region of detection” (RoD).

Each memristor with q quantization level has q values of
ideal current given by IidealL; where 0 ≤ L ≤ q − 1. Based
on [22], we determine the minimum noise margin of the sense
amplifier to be around 0.12 μA. Hence, to detect a fault, the
variation in output current needs to be greater than 0.12 μA.
The values of IidealL are the reference currents to the sense
amplifier during the test phase. As illustrated in Fig. 5, this
ensures that faults are detected for any faulty resistance.

IV. FAULT DETECTION

A memory test consists of a sequence of operations that are
all applied to a given memory cell before proceeding to the
next cell (increasing “⇑,” or decreasing “⇓” address sequence;
“
” represents either ⇑, or ⇓). Operations on memory cells are
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TABLE II
FAULT SENSITIZATION AND DETECTION SEQUENCES

IN MARCH TEST SEQUENCE (3)

“wL” (write logic L) and “rL” (read a cell expecting a logic
L value), where 0 ≤ L ≤ 3 [11]. We introduce a new way
to determine the next cell that needs to be tested denoted by
“
a0” and “
a1.” 
a0 represents a sequence that proceeds to
alternate memory elements starting from address location 0.
Similarly, 
a1 is a sequence that performs the test to alter-
nate memory locations starting from address 1. The addressing
sequence is unique to each fault type and is explained later in
this section. The fault sequence is tabulated in Table III.

To test a memristor memory, we first determine the
proper March sequence that can detect all faults defined in
Section II-C. Next, we improve the test efficiency by leverag-
ing sneak-paths. Based on the fault models in Section II-C,
the proper March sequence to test a memristor memory is

{M1: 
 (w0, w0); M2: 
a0 (w3); M3: 
a1 (r0);
M4: 
a1 (w3); M5: 
 (r3); M6: 
 (w1, r1, w0, w2,

r2, w0, r0, w1, r1, w3, w3); M7: 
a1 (w0);
M8: 
a0 (r3); M9: 
a0 (w0); M10: 
 (r0)}. (3)

We have labeled each March element with a label, “Mx.”
Table II describes how the proposed algorithm detects the
various multilevel memristor faults (shown in Table I).

Testing a m × n crossbar requires 18 mn memory accesses.
In order to minimize test time we determine and exploit the
RoD for each fault type to maximize test area.

Using the sneak-path testing described in Section III, we
determine the RoD for each type of fault.

A. MLC Fault Types

1) Stuck-at Fault: All stuck-at faults can be detected in two
steps. First, write any logic level followed by a read. Second,
write any other logic level that is at least two levels away and
perform another read. For example, all stuck-at faults can be
detected by either by {w0, r0, w2, r2} or {w1, r1, w3, r3}.

Fig. 7(a) illustrates the RoD for the SA1 fault. Each square
represents a memory cell. The memory cell at the center of
the RoD (red square) is the memory cell under test. Faults
in the surrounding cells (yellow squares) are detected by test-
ing the addressed cell and the variation in output current for
a fault occurring at that location. Iideal0 is the expected current
at the output. If any fault exists in the RoD the output current
is greater than Iideal0 and the sense amplifier output is seen as
logic 1.

Fig. 7. (a) RoD for stuck-at fault. (b) Test points and coverage for a SA fault
by tiling the RoD in a 8 × 8 crossbar. Red squares are the addressed memory
cell. Yellow squares represent memory cells in RoD whose faults can be
sensed at output. Number in each cell is the variation in Ioutput as a function
of Iideal for a fault at that location.

Fig. 8. RoD for a single (a) deep-0 fault using Iideal0 = 91.9 μA. (b) Deep-3
fault using Iideal3 = 36 μA for a 8 × 8 crossbar. (c) Tiling the deep fault
RoD in a 8 × 8 crossbar. Number in each cell is the variation in Ioutput as
a function of Iideal for a fault at that location.

In order to test the entire memory we test specific points
on the memory, ensuring that every memory cell falls into the
RoD of at least one test point. Hence, we “tile” the RoD to
minimize the number of measurements, and thus the test time
[Fig. 7(b)]. The order in which the cells need to be tested
is denoted by “
SA.” We estimate the number of memory
accesses to test a m × n memory as 2 mn + (2mn/13).

2) Deep Fault: To detect a “deep-0,” we need to force the
cell into the deep-0 state using {
 (w0, w0, w1); 
 (r1)} with
a reference current of Iideal1. The RoD for a deep-0 is shown in
Fig. 8(a). Similarly, for q = 4, a deep-3 is detected by {
 (w3,
w3, w1); 
 (r1)} with a reference current of Iideal3. The RoD
for a deep-3 fault is shown in Fig. 8(b). Fig. 8(c) shows how
the RoDs can be tiled to minimize the number of test points.
The order in which the cells need to be tested is denoted by
“
deep.” Note that the RoD for a deep fault is a subset of the
RoD of a SA fault and the sequence 
deep can be used instead
of 
SA if necessary.

3) Slow-Write Fault: SW3-1 and SW0-1 faults are detected
by using {
(w3, w1); 
(r1)} and {
 (w0, w1); 
(r1)}, respec-
tively. However, as we see from (4), the tests for deep-0 and
deep-3 faults cover these types of faults. The RoD for a SW2-0
and SW0-2 faults shown in Fig. 9(a)–(c) demonstrates how we
can tile the RoD within a memory. The order in which the cells
need to be tested is denoted by “
SW.”

4) Fast-Write Fault: FW0-1 can be detected by using
{
(w0, w1); 
(r1)}. We see from (4), the tests for deep-0
and deep-3 faults covers these fault types.

5) Coupling Fault: Coupling faults are detected by using
{
 (w0); 
a0 (w3); 
a1 (r0)} and {
 (w3); 
a1 (w0);

a0 (r3)}. The first sequence detects any fault with the
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Fig. 9. RoD and variation in output current for a single (a) SW2-0 fault using
Iideal0 = 7.9 μA. (b) SW0-2 fault using Iideal3 = 28 μA for a 8 × 8 crossbar.
(c) Test points and coverage for a SW fault by tiling the RoD. Number in
each cell is the variation in Ioutput as a function of Iideal for a fault at that
location.

Fig. 10. RoD and variation in output current for a single coupling fault using
Iideal0 = 91.9 μA using (a) 
a0 and (b) 
a1 for a 8 × 8 crossbar. (c) Tiling
the RoD in a 8 × 8 crossbar. Number in each cell is the variation in Ioutput
as a function of Iideal for a fault at that location.

TABLE III
DESCRIPTION OF TEST SEQUENCES

aggressor cell in memory address a0 and victim cell in a1.
Similarly, the second sequence detects any faults with mem-
ory address a0 as the aggressor cell. Fig. 10 illustrates the
RoD for the coupling fault. The sequence in which the cells
need to be tested are denoted by “
ra0” or “
ra1.”

B. Sneak-Path Detection of MLC Faults

To minimize test time, we replace the read operations with
sneak-path testing. Modifying (3), we get

{
 (w0, w0); 
a0 (w3); 
ra1 (r0); 
a1 (w3),
deep (r3);

 (w1); 
SW (r1); 
 (w0, w2); 
SW (r2); 
 (w0);

SW (r0); 
 (w1); 
SW (r1); 
 (w3, w3); 
a1 (w0);

ra0 (r3); 
a0 (w0); 
deep (r0)}. (4)

The sequence notation is explained in Table III. Using the
test sequence shown in (4) reduces the total test time to 11 mn
writes + (2.56) mn reads, which is a 24.69% reduction in test

Fig. 11. BIST architecture to implement sneak-path testing.

time compared to the March sequence shown in (3). Table VIII
provides the test time for each type of fault and compares them
to the March tests in (3).

If there are several faults in a single RoD, the output cur-
rent moves further away from Iideal making it easier to detect.
Faults with opposite effects do not mask each other since they
can never be sensitized at the same time.

V. BIST

Embedded memories can be considered as the densest cir-
cuitry on a chip, and are expected by the end of 2014 to occupy
around 94% of the silicon area in SoCs [23]. Thus, BIST will
be more efficient than external testing. The BIST architecture
is shown in Fig. 11. The main purpose of the address genera-
tor is to generate the address sequences required by sneak-path
testing (
,
a0,
a1,
deep,
SW). The pattern controller pro-
vides the required control signals for the address generator.
The read/write controller stores the test sequence and pro-
vides the location on the memory where data is to be written
during the write operation and data is to be read during the
read operation. The read/write controller determines how many
cycles a given address is maintained before the address counter
is incremented and which address sequence is required. The
data generator is controlled by the read/write controller and
provides the correct data to the memory corresponding to
the particular element of the particular test pattern. The com-
parator compares the output of the sense amplifier with the
expected output, provided by the data generator, to detect
a fault. In order to perform hybrid diagnosis (described in
Section VI-A) the output of the comparator forms a feedback
loop with the read\write controller allowing us a more dynamic
approach to generate the address sequence. Multiplexers are
used to toggle between test and normal mode. The area of the
BIST is 1260 + 430 mn transistors.

The address generator that is controlled by the pattern con-
troller should be capable of generating the address sequences
required by sneak-path testing (
,
a0,
a1,
deep,
SW).
Fig. 12 demonstrates the different control signals utilized
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(a)

(d)

(b)

(e)

(c)

(f)

Fig. 12. (a) Address generator structure for a m × n crossbar. Pattern control signal and address generator output for a 4 × 4 crossbar (m, n = 4)
(b) 
 sequence, (c) 
a1 sequence, (d) 
a0 sequence, (e) 
SW sequence, and (f) 
SA, 
deep sequence (RoD of deep fault is a subset of the RoD of a SA fault
and 
deep can substitute 
SA).

TABLE IV
REDUCTION IN NUMBER OF TRANSITIONS IN ADDRESS SEQUENCE FOR POWER-AWARE TESTING

IN A 64 × 64 CROSSBAR AND THE CORRESPONDING AREA OVERHEAD

by the pattern controller to generate the required address
sequences.

A. Power-Aware Test

Test power is an important issue that should be taken into
consideration. It has been shown that in memory testing the
primary source of test power is the transitions of the address
sequence [24]. Hence, we need to modify (4) to minimize the
number of transitions. The 
 sequence is the most frequently
used sequence and also has the largest number of transitions.
Instead of using a counter, we may use a gray code generator to
minimize the number of transitions in the sequence. Similarly,
the 
SWsequence may use a gray code generator as well, to
generate the column address. The 
a0, 
a1, 
ra0, and 
ra1
sequences are used to sensitize and detect coupling faults and
are very sensitive to the order in which they are applied, and
thus cannot be optimized. Table IV summarizes the address
sequences and the reduction in address transitions when a gray
code generator is used. As shown in Table III, using a gray
code generator instead of a counter for 
 and 
SW reduces
the total number of transitions by 56.58% at an area overhead
of 7%.

VI. FAULT DIAGNOSIS AND REPAIR

Faults are either: 1) recoverable or 2) nonrecover-
able [13]. A typical repair solution for nonrecoverable faults
is to use redundant rows and columns when designing
the memory [25]. Columns with defective memristors are
bypassed and replaced using the redundant columns. On the
other hand, recoverable faults can be repaired using a variety
of techniques (Section VI-B). Hence, a diagnostic sequence
is required to distinguish between the fault types so that the
appropriate repair technique may be applied.

A. Memory Diagnosis

In order to repair a fault, we first perform fault diagnosis
to determine: 1) fault location and 2) fault type. The March
test (3) determines the location of the faulty cell at the same
time it detects a fault since it tests one cell at a time, i.e.,
fault detection and diagnosis are performed simultaneously.
However, sneak-path testing (4) detects a fault within the RoD,
and the exact location of the fault is unknown. Hence, a sepa-
rate diagnosis technique is required to determine the location
of the fault.
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TABLE V
FAULT SENSITIZATION AND DETECTION SEQUENCES

IN MARCH DIAGNOSIS SEQUENCE (5)

1) Diagnosis Using March Sequence: In traditional March
testing, a SA1 fault is typically detected by {w0, r0}. However,
if the initial state is logic 1 the w0 operation may sen-
sitize either a SA1 or SW1-0 fault. Hence, to distinguish
between these faults, the initial state of the cell-under-test
is considered. We use {w0, w0, r0} and {w1, r1, w0, r0}
to sensitize and detect a SA1 and SW1-0 fault, respec-
tively. The r1 in {w1, r1, w0, r0} is a part of the sensi-
tizing sequence to ensure that the memristor is in logic 1
before applying the w0. Similarly, we use {w3, w3, r3} and
{w0, w1, r1} to sensitize and detect the SA0, SA1, SA2,
and SW0-1 faults.

Table VI provides the test sequences used to distinguish
between different types of faults. To diagnose the SW0-2 fault
sequence S7 can be used. However, to diagnose a deep-0 fault,
two test sequences (S2 and S5) are required. A fault is diag-
nosed as deep-0 if it is detected by sequence S5 but not
detected by sequence S2. The last row of the table summarizes
the diagnostic sequences that is used for each fault type. The
March sequence to diagnose all faults is

{M1: 
 (w0, w0, r0); M2: 
a0 (w3); M3: 
a1 (r0);
M4: 
a1 (w3), M5: 
 (r3);
M6: 
 (w1, r1, w0, r0, w2, r2, w0, r0, w1, r1, w3, w3, r3);
M7: 
a1 (w0); M8: 
a0 (r3); M9: 
a0 (w0); M10: 
 (r0)}.

(5)

The fault sensitization and detection sequence for each fault
is shown in Table V. We will show in Section VI-B that it is
unnecessary to distinguish between SA1, SA2, etc., since the
same technique is used to repair both types of faults.

2) Diagnosis Using Sneak-Paths: The sneak-path diagno-
sis technique is a modified version of [13]. In [13], we only
consider defects in a two-level memristor. We now extend the
diagnosis technique to multilevel memristor faults and cou-
pling faults. In order to minimize diagnosis time we leverage
sneak-paths and use the following sequence:

{
 (w0, w0); 
SA (r0); 
a0 (w3); 
a1 (r0); 
a1 (w3),


deep (r3); 
 (w1); 
SA (r1); 
 (w0); 
SA (r0); 
 (w2);

SA (r2); 
 (w0); 
SA (r0); 
 (w1); 
SA (r1); 
 (w3, w3);

SA (r3); 
a1 (w0); 
a0 (r3); 
a0 (w0); 
deep (r0)}. (6)

Equation (6) can diagnose the type of fault, but the only
information about the fault location is that it is somewhere
within the RoD. However, we can exploit the structure of the
RoD to determine the exact location of the fault.

Fig. 14(a) shows a single RoD for a SA1 fault with sneak-
paths restricted to three rows. The value in each square
represents the Ioutput when a SA1 fault exists in that cell. If
the addressed memory cell suffers from a SA1 fault, Ioutput
is IA. Similarly, if Ioutput is IB, it implies that the fault lies in
the cells in the same row or column as the addressed memory
cell and an Ioutput of IC indicates that the fault lies in the cells
diagonal to the addressed memory cell.

We use a binary search algorithm with overlapping RoDs
to pinpoint the location of the fault.

Fig. 14(b) demonstrates the steps taken to diagnose
SA1 faults. For example, let us assume that there is a SA1 fault
at the location marked as X3. The diagnostic sequence (6) is
applied. Say, when RoD1 is read during M7, Ioutput = IC. This
indicates that a SA1 fault is located at one of the following
locations: X1–X4. In step 2, we narrow down the possible fault
locations using RoD2. Say, when RoD2 is read, Ioutput = IC.
This narrows down the possible fault locations to X1 or X3. In
step 3, we can pinpoint the location of the fault using RoD3.
When reading RoD3, if Ioutput = IA then the fault must be X3.
However, if the SA1 fault was at location X1 then Ioutput would
have been equal to IB.

3) Diagnosis Using Hybrid Technique: In cases where mul-
tiple defects exist in the RoD, sneak-path diagnosis is slow
to diagnose the location of all faults. Hence, we introduce
a hybrid diagnosis technique that can diagnose clustered faults
(multiple faults in the same RoD).

The proposed hybrid diagnosis technique combines March
and sneak-path diagnosis to minimize diagnosis time. First,
fault detection is performed using sneak-paths and Ioutput is
compared to IA, IB, and IC. If Ioutput is equal to one of these
currents, a single fault must be located in the RoD and we per-
form sneak-path diagnosis. However, if Ioutput �= {IA, IB, IC}
then multiple faults must be existing in the RoD. In this
case, we perform March diagnosis on all memory cells in
the RoD sequentially to determine their locations. Our BIST
scheme (Section V) supports both sneak-path and hybrid
diagnosis technique. The feedback loop, shown in Fig. 11,
facilitates hybrid diagnosis. The BIST performs sneak-path
diagnosis until a fault is detected. When a fault is detected
the feedback loop is used to signal the read\write controller
to switch to March diagnosis to pinpoint the location of
the fault.

B. Memory Repair

Once the faults are detected and diagnosed the final step is
to suppress erroneous behavior of faulty cells. We categorize
the faults into: 1) nonrecoverable and 2) recoverable faults.

1) Nonrecoverable Faults: The erroneous behavior caused
by stuck-at and coupling faults can be avoided only by
using redundant rows and columns. The memristor crossbar is
designed with redundant rows and columns, and a switch block
is inserted between the row/column decoder and the crossbar.
The switch block may be used to bypass rows/columns which
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TABLE VI
TEST SEQUENCE AND FAULTS DETECTED BY EACH SEQUENCE. VARIOUS COMBINATIONS

OF TEST SEQUENCES USED TO DETERMINE THE TYPE OF FAULT

(a)

(b)

Fig. 13. (a) RoD of a SA1 fault. Ioutput due to a fault at each memory cell
is shown. IA > IB > IC . (b) Diagnosing a SA1 fault using binary search.
X represents possible fault locations.

have defective memristors and use the redundant rows/columns
instead. This technique is used in current SRAM/DRAM
technologies and has been studied in [25].

2) Recoverable Faults: We can avoid faulty behavior result-
ing from fast-write, slow-write, and deep faults. A technique
that remedies these faults using a strong write pulse is pro-
posed in [13]. In MLCs each logic level is assigned a narrow
resistance band. Strong write pulses result in large changes in
resistance and are unsuited for MLCs where accurate program-
ming is required. Hence, a strong write is only compatible
with two-level memories. Another technique that may be
used to avoid these faults is the read-monitored write [26].
Fig. 13(a) shows a typical memristor write operation for a 3w0.
The read determines the initial resistance of the memristor.
This read allows the memory controller to determine the width

Fig. 14. (a) Typical memristor write. Initial read to determine initial resis-
tance. (b) Read-monitored write [26]. Successive reads followed by short
writes ensures required resistance is reached.

of the write pulse. The write pulse is applied to the memris-
tor to program it to its required resistance. This long write
pulse may be susceptible to SW or FW faults. On the other
hand, a read-monitored write [Fig. 13(b)] uses successive reads
followed by short write pulses to gradually increase/decrease
the resistance of the memristor until the desired resistance is
obtained. Even if the short write pulse sensitizes a SW, FW, or
deep fault, the read operations provide feedback to the mem-
ory controller which ensures that the write pulses are provided
until the memristor is programmed to the desired resistance.
This technique eliminates all SW, FW, and deep faults, but
has a ∼5× higher write energy and ∼5× to 20× increased
write time [26].

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:41:09 UTC from IEEE Xplore.  Restrictions apply. 



832 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 5, MAY 2015

TABLE VII
(a) FITTING PARAMETERS AND CONSTANTS USED IN MODELING THE

MEMRISTOR [27]. (b) PHYSICAL PARAMETERS USED

IN MODELING THE CROSSBAR

(a) (b)

VII. EXPERIMENTAL ANALYSIS

A. Experimental Setup

The memristors are modeled using the TEAM model [15]
shown in (1). The fitting parameters used in our model are
presented in Table VII.

Memristor defects and faults are modeled by changing the
physical parameters of the device as shown in [10]. The 1T1M
memristor crossbar is modeled using SPICE while includ-
ing realistic physical parameters such as wire resistance and
peripheral control circuitry. The results are reported for a
16 × 16 crossbar.

B. Experimental Results

In this section, we present an analysis of the proposed fault
detection and diagnosis methods. The results are categorized
into two sets; the first set presents the effectiveness of our
fault detection scheme. The second set highlights the efficacy
of the proposed fault diagnosis method.

1) Fault Detection:
a) Accuracy: We built a SPICE model for a 16 × 16

memristor crossbar using the TEAM model described
in Section II-B. The crossbar model includes physical
parameters such as wire resistance, sneak-path elimination
techniques (1T1M) [20] and peripheral control circuitry. To
the best of our knowledge, there is no access to the manu-
factured memristors in the public domains and memristors are
only fabricated in a few research laboratories. Hence, there
is no available data on the distribution of faults. Accordingly,
in our experiments, we assume equal probability for all fault
types within the crossbar. To determine accuracy of our test
technique, we assume that M87 is the addressed memory cell.
We consider the following cases.

1) A single fault is injected into a memory cells around
M87. We exhaustively consider all fault types at every
possible memory location.

2) Multiple faults are injected at locations around M87. We
consider from two to five faults injected simultaneously
around M87.

We consider all combinations of fault types at all possible
combinations of locations. Each logic level is represented by
a range of resistances (resistance band) in the memristor. For
all simulations, we assume the worst case scenario where the
memristor is at the edge of the resistance band. We exhaus-
tively consider all possible combinations of faults types and
location. Simulating all possible combinations, we see that
50 out of 38 024 simulated faults are undetected. Hence, we
can accurately detect faults with 99.87% success rate.

b) Test time: The test time is determined as a function of
the crossbar dimensions (m, n). For each fault type (SA, deep,
etc.) we inject the fault into random locations in the crossbar.
The average test time is determined over 1000 different runs.
While determining the test time with all fault types we assume
an equal distribution of all faults. Table VIII (columns 2 and 3)
shows the fault detection time using our proposed detection
scheme with March test scheme (5). Both March and sneak-
path testing utilize the same number of write operations used
to detect a fault. However, sneak-path testing significantly
reduces the number of read operations. Slow-write and fast-
write faults benefit the largest test time reduction, from using
sneak-path testing, i.e., 43% test time reduction compared
to March testing. Deep faults show a 20% reduction in test
time. On average, to detect all fault types, sneak-path testing
offers a test time reduction of 24.69% compared to the March
sequence in (2).

2) Fault Diagnosis: This set of results evaluates the
proposed fault diagnosis scheme. Our proposed March
sequence (5) identifies both the type and location of a fault in
a single step. However, we use sneak-path diagnosis to reduce
diagnosis time. In sneak-path diagnosis, we first use a test
sequence to detect a fault and then use additional read opera-
tions to locate the fault. In Table VIII (columns 4–6), we show
the additional memory accesses required to diagnose a fault.
As mentioned in Section VI, if the fault lies in the center of the
RoD it is immediately diagnosed. However, if the fault lies in
other locations in the RoD, a binary search within the RoD is
employed for diagnosis. For example, if a SA0 fault lies in the
same row/column as the addressed memory cell, the overhead
to diagnose the fault is six read operations. If the fault lies in
a memory cell diagonal from the addressed memory cell, two
read operations are required to diagnose the fault. Deep and
coupling faults have a small RoD that does not extend to the
memory cells diagonal to the addressed memory cell.

To evaluate the total overhead for diagnosis, we assume
a defect rate (number of defective cells in a crossbar) of
1% and 5%. We assume that all defects have an equal prob-
ability of occurring and injected at random locations on the
crossbar, with a constraint that no more than two defects can
exist within a single RoD. As shown in Table VIII, the average
diagnosis time reduction, compared to the March sequence, to
perform complete diagnosis (differentiate between all faults) is
31.96% for a 1% defect rate, and 26.77% for a 5% defect rate.

To estimate the diagnosis overhead for the hybrid diagnosis
technique we assume a defect rate of 1% and 5% as before.
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TABLE VIII
FAULT DETECTION TIME FOR MARCH VERSUS SNEAK-PATH TESTING. DIAGNOSIS OVERHEAD OF SNEAK-PATH

AND HYBRID DIAGNOSIS COMPARED TO THE MARCH TESTING

All defects have an equal probability of occurring, and may
also occur in clusters (with multiple faults in each RoD). The
hybrid testing method offers a diagnosis time reduction of
∼28% compared the March test.

VIII. CONCLUSION

We introduced new fault models for multilevel metal-
oxide memristors that covers a range of parametric defects
unique to the device and unique to multilevel applications of
the device. We also developed an efficient test scheme that
detects these faults by leveraging sneak-paths to test multi-
ple memory elements simultaneously. We show that by using
sneak-path testing we can reduce the test time by ∼24% com-
pared to March tests. We also developed a BIST scheme that
implements sneak-path testing.
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