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Abstract—Clock-domain crossing (CDC) faults require careful
post-silicon testing for multiclock circuits. Even when robust
design methods based on synchronizers and design verification
techniques are used, process variations can introduce subtle
timing problems that affect data transfer across clock-domain
boundaries for fabricated chips. We integrate solutions for detect-
ing and locating CDC faults, and ensuring post-silicon recovery
from CDC failures. In the proposed method, CDC faults are
located using a CDC-fault dictionary, and their impact is masked
using post-silicon clock-path tuning. To quantify the impact of
process variations in the transfer of data at clock domain bound-
aries of multiclock circuits and to validate the proposed error-
recovery method, we conducted a series of HSpice simulations
using a 45-nm technology. The results demonstrate high incidence
of process variation-induced violation of setup and hold time
at the boundary flip-flops, even when synchronizer flip-flops
are employed. The results also confirm the effectiveness of the
proposed error-recovery scheme in recovering from CDC failures.

Index Terms—Clock domain crossing, error recovery, fault
detection.

I. Introduction

SYSTEM-ON-CHIP integrated circuits today offer diverse
functionality and contain billions of transistors. However,

high-speed communication between cores remains a major
challenge. This problem is exacerbated when cores operate
in separate clock domains and at different clock frequencies.

In multiclock designs, a clock-domain crossing (CDC)
occurs whenever data is transferred between clock domains.
Depending on the relationship between the sender and re-
ceiver clocks, various types of problems may arise during
data transfer. Propagation of metastability, data loss, and data
incoherency are three fundamental problems of multiclock
design, all of which are caused by CDC faults [2].

To reduce the probability of propagating metastability
through the design, designers employ synchronizers at clock

Manuscript received October 13, 2012; revised December 27, 2012 and
March 5, 2013; accepted March 11, 2013. Date of current version August 16,
2013. This work was supported in part by the National Science Foundation un-
der Grant CCF-0903392 and SRC under Contract 1992. A preliminary version
of this paper was presented at the 2012 IEEE/ACM Design, Automation, and
Test Conference in Europe [1]. This paper was recommended by Associate
Editor X. Wen.

N. Karimi was with Duke University, Durham, NC 27705 USA. She is
now with the Department of Electrical and Computer Engineering, Polytech-
nic Institute of New York University, Brooklyn, NY 11201 USA (e-mail:
nkarimi@poly.edu).

K. Chakrabarty is with the Department of Electrical and Computer Engineer-
ing, Duke University, Durham, NC 27708 USA (e-mail: krish@ee.duke.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2255127

boundaries. Moreover, to avoid data loss and to ensure proper
transmission and reception of data in multiclock designs,
designers also rely on appropriate CDC protocols. Data inco-
herency, which mainly occurs where CDC signals reconverge,
is avoided by making designs tolerant of the variable delays
that occur on reconvergent paths [3]. Verification techniques
and commercial verification tools enable designers to check
designs for CDC-associated problems and verify the correct-
ness of functional behavior [4]–[6]. If CDC errors are not
addressed early in the design cycle, many chips are likely
to exhibit functional errors during post-silicon validation. To
address the metastability that occurs in multiclock circuits,
and consequently to increase the mean time between failures
(MTBF), designers typically employ different types of syn-
chronizers, among which the most commonly used is a pair
of flip-flops residing on the clock boundaries.

As we move toward higher integration levels and even
smaller technology nodes, errors that occur due to process
variations, design marginalities, and corner operating condi-
tions are starting to play a more important role in multiclock
circuits. Consequently, circuits that were deemed to be fault
free through CDC analysis during presilicon validation may
exhibit CDC errors after fabrication.

Therefore, the effect of process variations on correct oper-
ation of multiclock circuits must be investigated, and there is
a need for testing techniques for CDC faults. A test-pattern
selection method, for detecting CDC faults, was recently
proposed in [7]. A commercial ATPG tool and a commercial
logic simulator were used to extract, from a pattern repository,
a set of test patterns that detect CDC faults. However, repeated
invocation of the simulator leads to long runtimes. Moreover,
the tests derived in [7] do not target at-speed transfer of
transition of data required between the clock domains; hence,
their effectiveness for high-speed circuits is questionable.

In this paper, we focus on testing of CDC faults and, in
particular, we integrate solutions for detecting and locating
CDC faults, and ensuring post-silicon recovery from CDC
failures. The contributions of this paper, which include a
complete framework to detect, diagnose, and recover from
CDC failures, are:

1) an automatic test-pattern generation (ATPG) method
based on bounded time-frame expansion and logic
constraints;

2) a fault diagnosis method to locate CDC faults
considering the relative clock frequencies of different
clock domains;
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3) an error recovery scheme to handle CDC failures;
4) detailed HSpice simulations to validate the proposed

error-recovery scheme;
5) a comprehensive set of results to demonstrate the

effectiveness of the proposed CDC fault detection,
diagnosis, and error-recovery schemes.

The remainder of this paper is organized as follows. Section
II discusses methods used to resolve metastability. Section III
discusses the need for post-silicon CDC testing. In Section
IV, we introduce the CDC fault models to represent the faulty
behavior of CDC designs in the presence of physical defects.
Section V presents the ATPG algorithm targeting CDC faults.
In Section VI, first we describe our fault diagnosis method, and
based on this technique, we present an error-recovery scheme
to tolerate CDC failures. Results demonstrating the effective-
ness of the proposed frameworks are presented and discussed
in Section VII, and conclusions are drawn in Section VIII.

II. Resolving Metastability

Synchronizers are used to mask the effect of metastability
in multiclock circuits [3]. It is expected that in a design, in-
cluding synchronizers, the output of a flip-flop rarely becomes
metastable, e.g., only once in every MTBFs years, typically,
20 years for clock frequencies of 400 MHz [8]. However, for
faster clocks, the probability of observing metastability at the
outputs of flip-flops increases rapidly, e.g., the MTBF drops
to 1 min for a clock frequency of 1 GHz [8].

To prevent incorrect operation due to metastability, both
asynchronous and synchronous handshaking mechanisms be-
tween different clock domains have been proposed in the
literature. In the asynchronous handshaking mechanism, a
request is first sent from the sender to receiver domain.
After sending the request, the sender sends the data to the
receiver. The receiver sends out acknowledgement to the
sender to indicate completion of data transfer. Upon receiving
the acknowledgement, the sender can send another request to
the receiver. To immunize the handshaking mechanism against
the metastability of the request and acknowledge signals,
synchronizer flip-flops are inserted in the circuit [9].

Although an asynchronous handshaking method is immune
to CDC faults, it suffers from uncertainly and indeterministic
delay of data transfer between different domains. To achieve
higher performance, FIFOs (and particularly two-clock FIFO
synchronizers) are used in multiclock circuits. However, the
size of the FIFO buffers is a concern and what size FIFO to
use can be a difficult design decision. The larger a FIFO is,
the higher is the cost [8].

Synchronizers without handshaking allow us to overcome
the drawbacks of asynchronous handshaking in the transfer
of data between different domains. The use of two flip-flop
synchronizers is common in multiclock circuits [8]. However,
fast clocks, low supply voltages, and extremely low or high
temperatures decrease MTBF and necessitate the use of
additional synchronizer flip-flops. To decrease MTBF in such
cases, four flip-flop synchronizers may be used in clock
boundaries [8].

The flip-flops used as synchronizers must be more robust
to variations in process, temperature, and voltage. Ideally,
the setup and hold time of synchronizer flip-flops should
be zero. However, it is costly to use synchronizer flip-flops

Fig. 1. Generic CDC circuit [13].

with negligible setup and hold time. For example, a nearly-
zero setup time flip-flop presented in [10] requires 66% area
overhead compared to a typical flip-flop.

In state-of-the-art SoCs, thousands of bits of data are trans-
ferred between different clock domains [11]. Due to the timing
uncertainty of asynchronous handshaking as well as the high
cost associated with the use of special synchronizer flip-flops
with zero setup times, it is more practical for multiclock SoCs
to use typical synchronizer flip-flops to transfer data between
clock domains. To control the clocking of different domains in
the multiclock circuits, equipped with synchronizers in clock
boundaries, and to avoid setup and hold-time violations, a
number of dummy cycles are added to each clock domain.
These dummy cycles control the skew required between dif-
ferent clock signals. The number of inserted dummy cycles
depends on the relative phase and frequency of clock signals
in different domains.

III. Impact of Process Variation on CDC Faults

The motivation for our work lies in our observation that
multiclock circuits, even when equipped with synchronizers
at clock boundaries, may exhibit incorrect behavior due to
process variation-induced violation of setup and hold time at
the boundary flip-flops.

In reality, the parameters of fabricated transistors do not
always match design specifications due to process variations.
These variations directly result in deviations in transistor
parameters, such as threshold voltage, oxide thickness, and
W/L ratios, and significantly impact the functionality of
circuits [12].

To evaluate the impact of random process variations on the
transfer of data between different clock domains, even when
synchronizer flip-flops are employed at clock boundaries,
we conducted a series of HSpice simulations under process
variations for a generic CDC circuit, shown in Fig. 1. In this
circuit, flip-flops DFF2 and DFF4 reside in different clock
domains and act as sender and receiver flip-flops, respectively.
Flip-flop DFF3 is employed as a synchronizer.

To determine the effect of random process variation in
the transfer of data between clock domains, we ran several
HSpice Monte Carlo (MC) simulations on the circuit, shown
in Fig. 1, using the 45-nm predictive technology model [14].
Simulations were carried out using the following process-
variation parameters for a Gaussian distribution: transistor gate
length L: 3σ = 10%; threshold voltage VTH : 3σ = 30%, and
gate-oxide thickness tOX: 3σ = 3%. The process variation data
reflects a 45-nm process in commercial use today. First, to
isolate the effect of process variation on data transfer between
different clock domains of the circuit, shown in Fig. 1, and to
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TABLE I

Number of Setup Time Violations for Different Numbers of

Monte Carlo (MC) Simulations

No. of runs with No. of runs with
setup time violation (%) setup time violation (%)

Total no of assuming Gaussian assuming Gaussian
MC runs parameters for DFF3 parameters for all flip-flops

2000 1009 (50.4%) 1016 (50.8%)
4000 2061 (51.5%) 1970 (49.2%)
6000 3061 (51%) 2902 (48.4%)
8000 4050 (50.6%) 3893 (48.7%)
10000 5033 (50.3%) 4899 (49%)

show incorrect behavior of the circuit due to process variation-
induced violation of setup time at the boundary flip-flops,
only the parameters for flip-flop DFF3 are assumed to have
a Gaussian distribution, and the parameters for the other four
flip-flops are assigned deterministic values.

We recorded the number of experiments in which the
setup time of the flip-flop DFF3 were violated under process
variations. The results are shown in the second column of
Table I. We found that in more than 50% of the experiments,
variations of the parameters of DFF3 result in a setup time
violation at the receiver flip-flop, and consequently in incorrect
circuit operation even when synchronizer flip-flops are em-
ployed. Similar results (third column of Table I) were obtained
when we considered the same process variation model for
all the flip-flops in Fig. 1. These results highlight the fact
that due to the effect of process variations, design verification
does not accurately predict silicon behavior for clock domain
crossings and synchronizers do not prevent errors; therefore,
manufacturing testing for CDC faults is necessary.

Transition delay fault (TDF) testing is widely used in
industry to target timing-related defects. Despite their benefits,
current transition ATPG tools are not adequate for detecting
CDC faults because these tools do not model and target
the interaction between logic residing at clock boundaries
when test patterns are generated for TDFs. Path-delay test
methods [15] suffer from the scalability problem for large
designs, and the timing-critical paths that they target do not
necessarily include clock-domain crossings. We show in this
paper that TDF test patterns are not adequate for CDC faults,
and they lead to a coverage gap. Therefore, fault models,
ATPG methodologies, and diagnosis and recovery schemes
need to be developed to specifically target CDC faults.

IV. CDC Fault Model

To be able to screen CDC defects, the faulty behavior
of these defects must be logically represented using a fault
model. In this section, we review a fault model that was
presented in [7].

In a synchronous circuit, the proper operation of a flip-flop
depends on the stability of its input signal for a certain period
of time before (setup time) and after (hold time) its clock edge.
If setup and hold times are violated, the flip-flop output may
oscillate for an indefinite amount of time, and may or may
not settle to a stable value before the next active clock edge.
This unstable behavior is known as metastability. Fig. 2(a)
shows an example of a multiclock circuit in which signal S

is launched by Clk1, and needs to be captured properly by

Fig. 2. Example of a CDC circuit and metastability. (a) CDC circuit.
(b) Metastability on Q2.

Fig. 3. Timing waveforms showing setup and hold-time violations for the
circuit in Fig. 2(a). (a) Setup-time violation. (b) Hold-time violation.

Clk2. As shown in Fig. 2(b), if a transition on S happens very
close to the active edge of Clk2, a setup-time violation occurs,
which may lead to metastability on Q2.

CDC faults mainly occur due to setup and hold-time viola-
tions on flip-flops residing at clock boundaries. If a flip-flop
experiences a setup-time violation, it does not sample a change
in value at its data input. In a hold-time violation, however,
it may incorrectly capture a data change at its input. We next
describe the fault model for each case.

A. Setup-Time Violation

Fig. 3 illustrates sample waveforms for the CDC circuit
of Fig. 2(a). As shown in Fig. 3(a), if signal S experiences
an unexpected delay and its value changes during the setup-
time window of the receiver flip-flop, the receiver flip-flop
may capture the value 0 even though the expected value is
1. Since the output of the sender flip-flop does not change
in the subsequent clock cycle, Q2 gets its expected value
of 1 in the next clock cycle. In this case, the setup-time
violation of the receiver flip-flop can be modeled as a slow-
to-rise fault with a delay of one clock cycle. However, if the
width of the transition on the output of the sender flip-flop
is not long enough, the receiver flip-flop will not capture that
transition, and remains unchanged. In this case, the setup-time
violation of the receiver flip-flop can be modeled by a slow-
to-rise fault with infinite delay. In practice, safe passage of
one CDC signal between two clock domains through a two-
flip-flop synchronizer requires that the CDC signal be 1–1.5
times wider than the receiver clock period [16].

In general, if a value change of a CDC signal S violates the
setup time of the receiver flip-flop, then the faulty behavior
can be modeled as a transition (slow-to-rise or slow-to-fall)
fault with a delay of k clock cycles, where k = 1 if the pulse
observed in signal S is at least 1.5 times wider than the receiver
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clock period. Otherwise, k = ∞. In the rest of this paper, a
CDC fault arising due to setup-time violations will be referred
to as a S-CDC fault.

B. Hold-Time Violation

If a flip-flop experiences a hold-time violation, data changes
on its input may be incorrectly sampled. Fig. 3(b) shows
another sample waveform for the CDC circuit of Fig. 2(a). If
signal S changes during the hold-time interval of the receiver
flip-flop, an incorrect change on the output may be observed.
The receiver flip-flop gets an output value of 1 one clock cycle
earlier than expected. In this case, the hold-time violation at
the receiver flip-flop can be modeled as a transient fault with
a duration of one clock cycle. Similarly, if the output of the
sender flip-flop changes before the next active edge of the
receiver flip-flop, the receiver flip-flop captures the transition
of signal S, and the hold-time violation of the receiver flip-
flop can be modeled as a transient fault with a duration of
one clock cycle. H-CDC faults used to refer to the CDC fault
arising due to hold-time violations. In this paper, we focus on
S-CDC faults and leave the treatment of hold-time violations
for future work.

V. Fault Detection Method

A TDF ATPG tool cannot be used to detect all S-CDC
faults. It typically launches a transition at the fault site and
propagates it to an observable output, i.e., either a scan flip-
flop or a primary output. While these steps are also necessary
to detect S-CDC faults, they are not sufficient. The detection of
S-CDC faults requires fault excitation and propagation through
paths from the sender domain. However, this requirement is
not always met when TDF ATPG tools are used for test
generation.

Launch-on-shift (LoS) and launch-on-capture (LoC) are two
widely used TDF testing methods. In LoS, the second pattern
of a two-pattern test is obtained by a one-bit shift of the first
pattern. However, in the LoC scheme, the second pattern is
obtained from the circuit response to the first pattern. Although
LoS usually provides higher delay-fault coverage and offers
ease of test-generation compared to LoC, it requires significant
design effort to achieve at-speed switching of the scan-enable
signal. Therefore, due to the area overhead and design-time
overhead of the LoS method, LoC is preferred to LoS [17]. In
this paper, we only consider LoC for detecting S-CDC faults.

A. Test Generation Process

In this section, we discuss our test-pattern generation
method, which is referred to as CDC-oriented triple-capture
(CoTC). To describe the testing method to detect S-CDC
faults, we use the simple multiclock domain circuit, shown
in Fig. 4. In this circuit, for the sake of clarity, only the flip-
flops at clock boundaries are shown. Note that throughout this
paper, we consider a single-fault model.

In this paper, no assumptions are made or restrictions are
placed on the clocking scheme. The clock signals are fed either
by different PLL sources, or by a common PLL source but
with different phases and frequencies. We assume that the
frequency of the clock signal of the sender (receiver) domain
is an integral multiple of the clock frequency of the receiver

Fig. 4. CDC example for illustrating the proposed ATPG method.

(sender) domain. Accordingly, the phase difference between
sender and receiver clocks may not lead to any setup and hold-
time violation problem if there is no such violation in the first
few clock cycles. To resolve the violation that may occur in
the first few clock cycles due to the small related phase of
sender and receiver clocks, the use of conflict detectors have
been proposed in literature [8]. A conflict detector identifies
when the sender and receiver clocks are dangerously close to
each other. In the case of imminent problem, the clock signal
of the receiver domain is delayed.

Assume that we want to target the S-CDC fault modeled
by a slow-to-rise fault at the output of the receiver flip-flop
(signal B) in the circuit, shown in Fig. 4. To detect this fault,
first a rising transition must be generated on A, and then this
transition must be propagated to B in the next active edge of
Clk2. Note that the transitions on A and B must be at-speed
with respect to Clk1 and Clk2, respectively.

The clock frequencies of the sender and receiver domains,
FS and FR, respectively, must be considered in CoTC to
generate test-patterns targeting S-CDC faults. We assume that
these frequencies are specified by the designer, and therefore
are known during test-pattern generation. We next describe
the steps for each case. In each step, A and B keep their
values, unless otherwise mentioned. Note that, in this paper,
we consider separate scan-chain for each clock-domain. To
apply detection, diagnosis, and recovery procedures for CDC
faults, we merge all the scan-chains by connecting the scan-
out of each chain to the scan-in of another chain. A small
amount of multiplexing is assumed so that the scan-in and
scan-out signals can be kept separate if the clock domains are
to be tested separately for intra-domain faults. The hardware
overhead is negligible because the multiplexing is done only
for the scan signals and not for the functional I/Os. In addition,
test-mode and test-clock input pins of each scan-chain are fed
by the common test-mode and test-clock signals, respectively.

1) Case 1: FS = FR: The first case deals with test-
pattern generation for multiclock circuits in which the flip-
flops residing in sender and receiver boundaries operate at
same clock frequency, i.e., FS = FR. In this case, to ensure an
at-speed transition on A with respect to Clk1, and an at-speed
transition on B with respect to Clk2, we need to apply four test
vectors instead of the two that are applied by the traditional
LoC method. Steps 2 and 3 ensure that the transitions on A

and B are at-speed with respect to Clk1 and Clk2, respectively.
Fig. 5(a)–(d) shows the active paths highlighted in bold for the
four steps needed to detect the CDC fault.

The four steps in CoTC to target the S-CDC fault modeled
by a slow-to-rise fault on B are as follows.
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Fig. 5. Illustration of all steps to target slow-to-rise S-CDC fault on signal
B (active path highlighted in bold). (a) Step 1. (b) Step 2. (c) Step 3. (d) Step
4.

1) Step 1): Shift vector V1 to the circuit in scan mode such
that A and B both get the value 0 in this step.

2) Step 2): Switch to functional mode and generate vector
V2 such that A and B are both 0.

3) Step 3): Operate in functional mode and generate vector
V3 such that in this step, the values on A and B are 1
and 0, respectively. This step ensures that a transition is
launched at-speed across the CDC.

4) Step 4): Operate in functional mode and generate vector
V4 such that B gets the value 1.

If the flip-flops residing in sender and receiver boundaries
operate at the same clock frequency, the S-CDC fault modeled
by a slow-to-rise fault on signal B can be detected by applying
vectors V1 to V4 (as discussed above) in four consecutive clock
cycles. During scan mode (Step 1), a common shift clock
signal is applied to both sender and receiver domains but in
Steps 2–4; the circuit operates in functional mode and we
apply Clk1 and Clk2 to the first and second clock domains,
respectively. Note that each of vectors V1 to V4 includes two
parts; the first part includes the values of the flip-flops and the
second part includes the values of the primary inputs of the
circuit in each step.

2) Case 2: FR = M · FS: In this case, the frequency of
functional clock Clk2 is an integer multiple of the frequency
of functional clock Clk1.

To target the S-CDC fault modeled by a slow-to-rise fault
on B of Fig. 4, first a rising transition must be generated on
A, and then this transition must be propagated to B in the next
active edge of Clk2. The transitions on A and B must be at-
speed with respect to Clk1 and Clk2, respectively. Therefore,
to generate test-patterns to detect such faults, the following
steps are necessary.

1) Step 1: Shift a vector to the circuit in scan mode such
that A and B both get the value 0 in this step.

2) Step 2: Switch to functional mode and apply one func-
tional clock cycle using Clk1 and M functional clock
cycles using Clk2. A and B should get the value 0 in

these clock cycles. This constraint is ensured using a jus-
tification procedure. Note that in this case FR = M · FS ,
and therefore while an at-speed transition is generated
on A with respect to Clk1, M clock cycles using Clk2

are applied to the circuit as well.
3) Step 3: Operate in functional mode and apply one

functional clock cycle using Clk1 and one functional
clock cycle using Clk2. In this step, the values on A

and B should be 1 and 0, respectively (ensured via
justification).

4) Step 4: Operate in functional mode and apply one
functional clock cycle using Clk2. B should get the value
1 in this step.

3) Case 3: FS = N · FR: The third case occurs when
the sender domain operates N times faster than the receiver
domain, where N is an integer. Similar to the previous cases, to
detect the slow-to-rise S-CDC fault on B of Fig. 4, first a rising
transition must be generated on A, and then this transition
must be propagated to B in the next active edge of Clk2. As
noted above, the transitions on A and B must be at-speed with
respect to Clk1 and Clk2, respectively. The steps taken in this
case are as follows.

1) Step 1: Shift a vector to the circuit in scan mode such
that A and B both get the value 0 in this step.

2) Step 2: Switch to functional mode and apply N − 1
functional clock cycles using Clk1 and one functional
clock cycle using Clk2. A and B should get the value 0
in these clock cycles.

3) Step 3: Operate in functional mode and apply one
functional clock cycle using Clk1. In this step, A should
get the value 1.

4) Step 4: Operate in functional mode and apply one
functional clock cycle using Clk2. B should get the value
1 in this step.

Note that in all the cases discussed above, Step 2 ensures an
at-speed transition on signal A. In practice, if A does not drive
any logic in the sender domain, any delay-fault that leads to
a delayed transition on A will not be detected if Step 2 is not
taken.

In all the cases discussed above, if there is combinational
logic between sender and receiver flip-flops, the test generation
condition is changed based on the type of the gate at the
clock boundary. However, in practice, synchronizer flip-flops
are always embedded at the clock boundaries. Accordingly, in
this paper, we considered a direct connection between sender
and receiver flip-flops. On the other hand, since the clock
frequency of sender or receiver domains are not always equal
(case 2 and case 3), path-delay test methods are not adequate
for detecting CDC faults.

B. Test Application Procedure

To test a multiclock circuit using the test patterns generated
by CoTC, the relative frequencies of sender and receiver
domains should be considered. Similar to the test generation
process that was discussed in Section V-A, based on the values
of FS and FR, different cases may arise for applying the CoTC
patterns. In this section, we discuss the case where the sender
and receiver domains operate at the same clock frequencies.
Other cases can be treated using a similar procedure.
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1) Case 1: FS = FR: To test such circuits using the CoTC
test patterns, the following steps should be taken.

a) Step 1: Set the circuit to scan mode. Scan in the
initialization vector (V1), and set the values on primary
inputs.

b) Step 2: Switch to functional mode. Insert dummy cycles
if needed to give scan-enable (SE) time to flip. Operate
in functional mode and apply three functional clock
cycles using Clk1 and three functional clock cycles using
Clk2. Recall that we applied a total of three functional
clock cycles using Clk1 and three functional clock cycles
using Clk2 during test-pattern generation for this case
(Steps 2-4 of Case 1 in Section V-A).

c) Step 3: Switch to scan mode and shift out the results.
This step can be overlapped with Step 1 to apply another
test-pattern to the circuit.

C. CoTC Implementation Details

To implement CoTC, we leveraged a commercial ATPG
tool. First, full-scan insertion was performed. Next, pairs of
flip-flops residing in clock boundaries (in different clock do-
mains) were extracted. Finally, test generation was performed
under the constraints discussed in Section V-A.

In this section, we deal with the implementation details of
CoTC when the sender and receiver domains operate at the
same clock frequencies (Case 1 in Section V-A). For the other
two cases (Case 2 and Case 3), CoTC can be implemented in
a similar manner.

Consider the case where the sender and receiver flip-flops
operate at the same clock frequency (with same or different
phases). In this case, CoTC requires that the CDC flip-flops
get specific values in four consequent clock cycles. However,
commercial ATPG tools cannot be directly used to generate
test patterns such that all of these requirements are met
simultaneously. Therefore, to generate test patterns that satisfy
the CoTC requirements for a S-CDC fault, we first expand
the circuit in time, and then use a commercial ATPG tool to
generate test patterns targeting that fault in the time-expanded
model of the circuit.

To implement CoTC with one launch and three capture
cycles, we triplicate the combinational logic of the circuit
under test, and then use the triplicated version of the circuit
for test generation. The values that should be considered
for each pair of boundary flip-flops in four consecutive
clock cycles in CoTC, provided as constraints for each time
frame.

Fig. 6(a) shows an example CDC circuit under test. In this
figure, C1 and C2 are combinational blocks. A CDC path
exists between flip-flop DFF1 and flip-flop DFF2. Therefore,
to apply CoTC to detect the S-CDC fault modeled by a slow-
to-rise fault on the output of DFF2, we must ensure that the
outputs of DFF1 and DFF2 get the values 00, 00, 10, and
X1 in four consecutive clock cycles, respectively. Note that X
refers to a don’t care.

Fig. 6(b) illustrates the triplicated time-expanded model
of the circuit shown in Fig. 6(a). In this figure Q1, Q1,1,
Q1,2, and Q1,3 represent the output of flip-flop DFF1 in
consecutive clock cycles. Similarly, the output of flip-flop
DFF2 in consecutive clock cycles is denoted by Q2, Q2,1,
Q2,2, and Q2,3. Table II shows the values required at Q1 and

Fig. 6. Example of a CDC circuit and its expanded model. (a) Example of a
CDC circuit under test. (b) Expanded model (three time frames) of the CDC
circuit.

TABLE II

Values at Flip-Flops Required for Detecting a Slow-to-Rise

S-CDC Fault on Q2Using CoTC

Q1 Q2 Q1,1 Q2,1 Q1,2 Q2,2 Q1,3

0 0 0 0 1 0 X (don’t-care)

Q2 in the three time frames for CoTC to detect the slow-to-rise
S-CDC fault on Q2. The values shown in this table must be
observed in the same clock cycle in the pseudo-combinational
(expanded) model of the circuit under test. Therefore, we can
use a commercial ATPG tool to generate test patterns to detect
the stuck-at 0 fault on Q2,3 in Fig. 6(b), while considering the
values, shown in Table II, as ATPG constraints. We maintain
a scoreboard for each S-CDC fault and the test vectors that
detected that fault. Finally, a minimum set covering algorithm
is used to select a minimal set of vectors that detect all slow-
to-rise S-CDC faults.

VI. Fault Diagnosis and Recovery

If a CDC fault is detected, post-silicon fault diagnosis and
error recovery must be initiated to ensure correct operation.
Fault diagnosis is necessary for the identification of manu-
facturing defects, and accordingly speeding-up yield ramp-up.
Information provided by the diagnosis process is used in the
physical inspections of the circuit. During the failure analysis
process, it is important to locate the cause of failures quickly
and accurately. Fault location may be required to analyze the
defect causing the faulty behavior, reconfigure the circuit to
mask the faulty behavior of the circuit, or replace the faulty
subcircuit [18], [19].

A. Proposed Fault Diagnosis Method

Fault diagnosis methods can be categorized into two groups:
cause–effect and effect–cause approaches [20]. In cause–effect
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methods, a fault dictionary is used for fault location. Effect–
cause methods do not need a fault dictionary. These methods
start from faulty outputs of the circuit under test and reason
back through the logic to identify possible fault candidates.
In this paper, we propose a cause–effect approach for the
diagnosis of S-CDC faults, since it is potentially faster if a
compact dictionary can be generated.

Locating a fault using a fault dictionary requires applying
the vectors included in the fault dictionary to the circuit-under-
test (CUT) and comparing the responses of the observable
outputs with the values stored in the fault dictionary. Full-
dictionaries include the response of CUT to a given test
set in the presence of each fault. Although fault diagnosis
methods that use full-dictionaries provide high resolution,
these methods suffer from the large size and high generation
time of fault dictionaries [21].

To overcome the above problem, pass–fail dictionaries have
been proposed in the literature [22]. A pass–fail fault dictio-
nary contains a single bit for each fault F and test vector
TV pair. This bit shows whether fault F is detectable by
applying test vector TV to the CUT. For large circuits, pass–
fail dictionaries are preferred to full-dictionaries, even at the
expense of some degradation in fault resolution.

1) Fault Dictionary Design: The proposed fault dictionary
includes a set of test patterns, a signature of the expected
response of the CUT to each test pattern, and the CDC faults
that can be detected by each pattern. Obviously, this dictionary
is smaller than a full-dictionary that includes the response of
the CUT to each test pattern in the presence of each fault.

To generate the CDC-fault dictionary, the following steps
should be taken.

a) Step 1: First, CoTC is applied to the CUT and up to 255
test patterns are generated for each detectable S-CDC
fault. Although this method is general for any number
of test patterns, 255 was deemed to be sufficient in our
work. Set Pi (1 ≤ i ≤ N , N: number of S-CDC faults)
includes all patterns generated by CoTC to detect S-
CDC fault fi.

b) Step 2: A subset of the patterns generated in Step 1 are
selected such that by using the selected patterns, any
two S-CDC faults fi and fj are distinguishable from
each other. In this step, Pi,j is generated for each pair of
faults fi and fj and includes all the patterns generated
by CoTC detecting exactly one among fi and fj .

c) Step 3: In this step, a minimum set covering algorithm is
applied to the set of test vectors generated in Step 2 for
each pair of S-CDC faults to select a minimal set that
distinguishes all S-CDC faults from each other. These
patterns are stored in the CDC-fault dictionary.

d) Step 4: For each test pattern selected in Step 3, the
expected response of the CUT is determined by logic
simulation. The response includes the values of all
observable points, including primary outputs and scan
flip-flops.

e) Step 5: To reduce the storage required for the expected
response of the CUT for each test pattern (evaluated in
Step 4), a signature of the expected values of primary
outputs and flip-flops is extracted and stored in the
distinguishable dictionary along with each test pattern.

f) Step 6: Along with each test pattern and the expected

response of the CUT to that pattern, a list of S-CDC
faults that can be detected by that pattern is stored in
the CDC-fault dictionary.

As discussed in Step 5, to reduce the size of the CDC-fault
dictionary, instead of expected outputs of the CUT to each
test pattern, a signature of those values are stored. We use
a 64-bit cyclic redundancy check (CRC) code for response
compaction and encode the sequence of primary outputs and
the sequence of flip-flip outputs related to each test pattern,
separately. The signatures and their related test patterns are
stored in the CDC-fault dictionary.

2) CDC Fault Diagnosis: Using the fault dictionary
generated by the method discussed in the previous section,
all detectable CDC faults can be located. The CDC-fault
dictionary generated for each circuit includes a number of test
patterns (values that should be applied to the primary inputs,
and initial state of flip-flops) along with a signature of expected
values of the observable points of the circuit (primary outputs
and scan flip-flops), while applying each test pattern to the
circuit and the list of CDC faults that can be detected by
applying each test pattern.

To locate a CDC fault, the clock frequencies of sender and
receiver domains should be considered. Based on the values
of FS and FR, different cases may occur. We discuss below
the case where both sender and receiver domains operate at
the same clock frequency. Other cases can be treated similarly
(as in Section V).

To locate a CDC fault, the test patterns included in the
generated fault dictionary should be applied to the CUT, one
after another, until the exact location of that CDC fault is
diagnosed or no other test pattern is left in the fault dictionary.
Before applying the fault diagnosis algorithm to the CUT
to locate a CDC fault, all of the detectable CDC faults are
included in the suspect list and are considered as the candidate
locations. Then the following steps are taken while applying
each test pattern included in the fault dictionary to the CUT.

a) Step 1: Set the circuit to scan mode. Scan in the
initialization vector (V1), and set the values on primary
inputs.

b) Step 2: Switch to functional mode. Insert dummy cycles
if needed to give Scan enable (SE) time to flip. Operate
in functional mode and apply three functional clock
cycles using Clk1, and three functional clock cycles
using Clk2.

c) Step 3: Switch to scan mode and shift out the results.
If the signature of the results matches the expected
signature included in the fault dictionary for this test
pattern, delete all the faults that are diagnosable by this
test pattern from the list of suspect locations. This step
can be overlapped with Step 1 to apply another test-
pattern to the circuit.

As discussed above, all the test patterns included in the
CDC fault dictionary are applied to the CUT, one after
another. While applying each test pattern, if the results
matches the expected results, the faults listed as diagnosable
by that test pattern are excluded from the list of suspect
faults. Note that in this section, we discussed the case
where the sender and receiver domains operate at the same
clock frequencies. Other cases can be treated using a similar
procedure.
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In principle, using the proposed fault diagnosis method, all
S-CDC faults are distinguishable from each other and the exact
location of each S-CDC fault can be determined. However, due
to the limitation of commercial ATPG tool that we employ in
this paper, only a subset of the test patterns detecting each
CDC fault (up to 255 patterns) is generated for that fault
(Section VI-A). Due to this limitation, for a number of CDC
faults, their exact location cannot be determined and instead,
a list of suspect locations is reported. As an example, assume
that set TVi and set TVj includes the set of test patterns
generated by a commercial ATPG tool to detect CDC faults
fi and fj , respectively. The sets TVi and TVj do not include
all the patterns detecting faults fi and fj , i.e., each of TVi and
TVj sets includes up to 255 test patterns. Although both these
faults can be detected by test pattern tk, due to the limitation
of the commercial ATPG tool, tk may only be included in
TVi (not in TVj). Hence, even though CDC faults fi and fj

are considered as distinguishable by applying vector tk, they
cannot be distinguished from each other on the basis of tk.

B. Error Recovery

To recover from errors that result from process variations,
the use of post-silicon tunable-buffers has been proposed in
the literature [23], [24]. These buffers can compensate for the
effect of process variations. We consider such an approach to
recover from CDC errors.

1) Proposed CDC Error Recovery Method: As discussed
in Section III, process variations may result in an incor-
rect transfer of data between different clock domains of a
multiclock circuit. Equipping multiclock chips with clock-
tuning circuits can enhance the reliability of these circuits and
compensate the effect of process variations [25], [26].

As discussed in Section IV, if the setup time of a flip-flop
is violated, its faulty behavior can be modeled as a transition
fault. Accordingly, to recover from the erroneous behavior of
a flip-flop when its setup time is violated, its clock signal can
be delayed.

To recover a multiclock circuit from a S-CDC error, the
receiver flip-flop of the faulty CDC pair should operate under
a delayed clock signal. Therefore, external delay blocks can
be inserted in the clock path of such a flip-flop depending
on the slack-time between it and the flip-flops fed by it.
Fig. 7(a) shows an example multiclock circuit in which the
flip-flop residing in the receiver clock boundary operates under
a delayed-clock signal. In this circuit, by inserting a buffer
in the clock path of the receiver flip-flop (depending on the
propagation delay of BUF1 and the amount of setup-time
violation of that flip-flop), S-CDC errors in the clock boundary
can be avoided.

In general, to equip a multiclock circuit with a CDC error
recovery mechanism, the circuit shown in Fig. 7(b) can be
employed. If by applying the fault diagnosis scheme proposed
in Section VI-A, the pair of flip-flops shown in Fig. 7(b) is
reported as being faulty, A is set to value 1, and accordingly,
Clk2 signal propagates through gate BUF1. Otherwise, A gets
the value 0. As shown in this figure, to retain the timing
relationship between Clk1 and Clk2, another tri-state buffer
is inserted in the Clk1 path.

The circuit shown in Fig. 7(b) includes one flip-flip in
the receiver side of the clock boundary. To equip this circuit

Fig. 7. Example of a CDC circuit (a) with delayed receiver-clock signal and
(b) equipped with an error recovery mechanism.

Fig. 8. Example of a CDC circuit with three flip-flops in the receiver clock-
boundary.

with an error-recovery mechanism, one buffer, one inverter (to
generate A) and two tri-state buffers are inserted in the receiver
domain. In addition, one tri-state is inserted in the clock path
of the sender flip-flop. If the receiver domain includes m flip-
flops out of which n flip-flops reside in the clock boundary,
the error-recovery circuitry includes n buffers, 2n tri-state
buffers, and n inverters. In addition, to reduce the number of
input pins added to the original multiclock circuit, one shift
register (including �log2(n + 1)� registers) and one decoder
(with �log2(n + 1)� inputs) are also employed. One tri-state
buffer is inserted in the sender domain and it feeds the clock
input of all the flip-flops residing in this domain. Another
tri-state buffer is located in the receiver domain feeding the
clock input of all flip-flops other than those reside in the clock
boundary.

Fig. 8 shows another example of a two-clock domain circuit
that includes three flip-flops in the receiver side of the clock
boundary and two flip-flops in the sender side of the clock
boundary. In this figure, for the sake of clarity, only the flip-
flops in the clock boundaries are illustrated and the other flip-
flops have not been shown. Fig. 9 shows this circuit after
insertion of the proposed error-recovery hardware. As shown
in Fig. 9, three out of four outputs of the inserted decoder
are connected to the clock circuitry of the receiver domain.
The other output of decoder (A0) is enabled, while the circuit
is fault free and no CDC fault is diagnosed. Exactly, one of
the three signals A1-A3 get the value of 1 if one of the three
flip-flops in the receiver clock-boundary experiences setup-
time violation and needs to be operated under a delayed
clock signal. The faulty flip-flop residing in the receiver clock-
boundary is identified by the fault dictionary generated using
the method discussed in Section VI-A. This encoded value is
fed to the error recovery circuitry through the Data-in signal.
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Fig. 9. Error-recoverable model of the circuit shown in Fig. 8 with one delay
buffer in the clock path of the faulty flip-flop.

When error recovery is employed, the clock signal of the
faulty flip-flop is delayed for d ns, where d is the propagation
delay of one buffer gate. We can easily extend the proposed
scheme and add more buffers in the clock path of a faulty
flip-flop when insertion of only one buffer is not sufficient to
recover from the CDC error occurred due to the setup time
violation of that flip-flop.

Fig. 10 shows the CDC error-recoverable implementation
of the circuit shown in Fig. 8 with the capability of adding
up to four buffers in the clock path of the faulty flip-flop.
As shown in this circuit, another decoder is inserted in the
receiver domain of the circuit. The outputs of this decoder
determines the number of delay buffers inserted in the clock
path of the faulty flip-flop. As shown in Fig. 10, our error
recovery mechanism is scalable.

Generally, if the receiver domain includes m flip-flops
out of which n flip-flops reside in the clock boundary, the
proposed error recovery circuitry includes 4n buffers, 5n tri-
state buffers, n inverters, and 4n 2-input AND gates, one
shift register (including �log2(n + 1)� registers), one decoder
(with �log2(n + 1)� inputs), and one k-input decoder, where
k = �log2(N)�, and N is the maximum number of delay buffers
added to the clock path of the faulty flip-flop. In addition, one
tri-state buffer is inserted in the sender domain and another
one in the receiver domain to keep the relation of Clk1 and
Clk2 in the error recoverable circuit equal to the relation of
these values in the original circuit.

The proposed error recovery scheme requires that all flip-
flops residing in the receiver side of clock boundary be
equipped with the recovery circuitry during logic synthesis.

For each circuit under test, full-scan insertion is first per-
formed. Next, we extract all connected pairs of flip-flops resid-
ing at clock boundaries. For each extracted receiver flip-flop,
we insert the discussed error recovery circuitry in its clock
path. As discussed, above one tri-state buffer is also inserted
in the sender domain and another one in the receiver domain
to preserve the relationship between the sender and receiver
clock signals in the error-recoverable circuit. However, the

proposed method requires extra input pins. For example, the
circuit shown in Fig. 10 is an error-recoverable design of the
circuit, shown in Fig. 8, with four extra primary input pins
compared to the original circuit.

In general, to equip a multiclock circuit with the proposed
CDC error recovery scheme, k+2 input pins need to be added
to the original circuit, i.e., two extra input pins needed to
feed Clock and Data-in inputs of the shift register feeding
Decoder1 with the specification of the faulty flip-flop, and
k=�log2(N)� input pins required to feed Decoder2, with the
specification of the number of buffers (N) added to the clock
path of the faulty flip-flop.

To avoid inserting extra input pins in the error recover-
able model of a multiclock circuit, the following steps are
necessary. Assume that the CUT includes m flip-flops in the
clock boundary, out of which n flip-flops reside in the receiver
domain.

1) Step 1: Insert all flip-flops of the original circuit in scan-
chain Chain1.

2) Step 2: Add �log2(n + 1)� + �log2(N)� registers to the
CUT and insert these registers in scan-chain Chain2.

3) Step 3: Merge Chain1 and Chain2, i.e., connect the
scan-out output of Chain2 to the scan-in input of
Chain1. In addition, connect the functional/test signal of
these two scan-chains to each other. In addition, connect
the clock signals of these two scan chain to the receiver
clock signal in the functional mode.

4) Step 4: Connect the Q output of each of the registers
included in Chain2 to its D input, i.e., each register in
Chain2 keeps its value in the functional mode.

5) Step 5: Extract all connected pairs of flip-flops residing
at clock boundaries. Then, extract the receiver flip-flop
of each CDC pair and put it in the recovery list R−List.

6) Step 6: Insert the recovery circuitry in the clock path of
each flip-flop included in R−List. As discussed above,
the recovery circuitry includes a set of buffers and tri-
state buffers. There is a tradeoff between the number of
buffers and tri-state buffers inserted for error recovery
purpose and the recovery percentage. Obviously, the
delay imposed to the clock path of the faulty flip-flop
should not exceed the setup time of that flip-flop.

7) Step 7: Insert two decoders in the receiver domain, with
�log2(n+1)� and �log2 N� inputs, respectively. Decoder1

is fed with the first �log2(n + 1)� registers included in
Chain1 and Decoder2 is fed with the remaining �log2 N�
registers of Chain1. The outputs of Decoder1 denote the
ID of the faulty flip-flop (the value of zero is reserved for
the case where no CDC fault is reported). In addition,
the outputs of Decoder2 indicate the number of buffers
inserted in the clock path of the faulty flip-flop.

8) Step 8: Insert one common tri-state buffer in the clock
path of all the flip-flops in the sender domain and another
tri-state-buffer in the clock path of all flip-flops in the
receiver domain other than the one included in R−List.
As discussed above, these two tri-ate buffers are inserted
to preserve the timing relationship between the sender
and receiver clock signals.

To validate the proposed error-recovery method, we applied
it to the circuit, shown in Fig. 1, and repeated the Monte Carlo
simulation experiments. As shown in Table I, in more than
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Fig. 10. Error-recoverable model of the circuit shown in Fig. 8 with up to
four delay buffers in the clock path of the faulty flip-flop.

50% of the experiments for the original circuit, variation of the
parameters of flip-flop DFF3 result in a setup time violation
at the receiver flip-flop. However, by inserting only one buffer
in the clock path of flip-flop DFF3, on an average more than
99.99% of the CDC errors can be recovered. All other CDC
errors can be recovered if two buffers are employed in the
clock path of DFF3. In practice, by inserting one buffer in the
path of Clk2, the number of runs with setup time violation is
reduced to 8 out of 10 000 experiments.

As discussed above, the proposed recovery scheme is based
on the use of tunable buffers [23], [24]. In this paper, we
have extended the use of such buffers by designing a general
low area-overhead circuitry to recover from S-CDC errors in
multiple-clock domain circuits. As discussed, by using this
circuitry, almost all S-CDC errors can be corrected.

2) Applying the CDC Error-Recovery Method: To perform
error recovery, the following steps are taken. First, the fault-
diagnosis scheme discussed in Section VI-A is applied to
the recoverable CUT and the list of suspect locations (S-
List) along with the test vectors detecting them are extracted
from the CDC-fault dictionary. Then, the suspect locations are
considered, one after the other, to determine the faulty location
and recover from the CDC error. For each suspect location,
different configurations of the circuit (insertion of 1 to N

buffers in the clock path of the faulty flip-flop) are investigated.
Finally, the configuration for which recovery from CDC error
is possible, is selected. Upon selecting the configuration that
allows recovery from CDC error, the ID of the faulty flip-flop
as well as number of the buffers needed to be inserted in the
clock path of the faulty flip-flop (Decode2) are stored. These
values are used for reconfiguring the circuit during normal
operation.

VII. Experimental Results And Analysis

In this section, we first provide details of the simulation
setup used to evaluate the effectiveness of the proposed

schemes. Then, we present results on a number of IWLS’05
benchmarks, and discuss our observations.

A. Experimental Setup

To evaluate the effectiveness of the proposed fault detec-
tion, diagnosis, and recovery schemes, we use five different
SIWLS’05 benchmarks that contain multiple clock domains.
They are the WISHBONE AC 97 Controller (ac97−ctrl),
the WISHBONE Memory Controller (mem−ctrl), the USB
function core (usb−funct), the Ethernet IP core (ethernet),
and the WISHBONE rev.B2 compliant Enhanced VGA/LCD
Controller (vga−lcd)[27].

Software to perform scan insertion, CDC-path extraction,
replication, selection of the final test patterns, generating fault
dictionary, inserting error recovery circuit, and evaluating the
results were all implemented using Python. A commercial
ATPG tool was used for test generation and fault simulation.
As indicated in our results, the ATPG tool reported a number
of S-CDC faults to be untestable (or redundant). A commercial
synthesis tool was used for synthesis and evaluating the
effectiveness of the proposed recovery scheme.

To generate a test-pattern set that detects TDFs as well as
S-CDC faults, top-off ATPG was performed after applying
CoTC to meet the fault coverage requirement for TDFs. The
final pattern set for our fault detection procedure, therefore,
includes the CoTC-generated patterns and the top-off ATPG
patterns. Note that top-off ATPG patterns do not detect any
CDC faults beyond the CDC faults detected by CoTC.

All experiments were performed on a dual-processor Xeon
quad-core Intel server running at 2.53 GHz with 64 GB
of memory. The CPU time for CoTC was estimated by
aggregating the times needed for the different steps. For the
test cases in this paper, the test generation time per fault ranged
from a few seconds to 3 min.

B. Experimental Results

In this section, the results of applying the proposed fault
detection, diagnosis, and recovery methods to IWLS’05 bench-
marks are presented and their significance are highlighted.
The results are divided into four sets; the first set deals with
the gate-level specification of each benchmark used in this
study. The second set discusses the effectiveness of CoTC in
detecting CDC faults. The third set evaluates the proposed
fault diagnosis method. Finally, the fourth set evaluates the
effectiveness of our error recovery scheme.

1) Benchmark Statistics: Details of the IWLS’05 bench-
mark circuits used in this paper are shown in Table III.
The benchmarks represent a wide range of application areas,
including memory controllers and IP cores. The ethernet
benchmark has three clock domains, and all other benchmarks
have two clock domains each. Note that in our experiments,
we only considered slow-to-rise S-CDC faults. We expect to
get similar results for slow-to-fall S-CDC faults without any
change in methodology.

2) Fault Detection Results: This section highlights the
effectiveness of CoTC in detecting CDC faults.

The first set of results compares the number of S-CDC faults
detected by CoTC with the number of S-CDC faults detected
by the baseline LoC/TDF method. For each benchmark circuit,
we first extracted all CDC paths of the circuit, and then for
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TABLE III

Benchmarks Statistics

# Pairs of
# # All boundary #

Benchmark Clock domains flip-flops flip-flops Gates
ac97−ctrl 2 2,199 902 28,083
mem−ctrl 2 1,083 3,354 22,015
usb−funct 2 1,746 1,592 25,531
ethernet 3 10,544 4,862 153,948
vga−lcd 2 17,079 3,187 252,302

each pair of the CDC flip-flops, we generated test patterns
by applying CoTC to the time-expanded model of the circuit
under test. The third column of Table IV shows the number of
testable slow-to-rise S-CDC faults in each benchmark circuit.
The fourth column of this table shows the number of slow-
to-rise S-CDC faults detected by CoTC for each benchmark
circuit.

To evaluate the number of slow-to-rise S-CDC faults de-
tected by the baseline LoC/TDF method, we used a com-
mercial ATPG tool to generate test patterns detecting all
slow-to-rise TDFs for that benchmark. Then, the subset of
the generated patterns that satisfied the constraints of CoTC
scheme was extracted, and the number of slow-to-rise S-CDC
faults detected by these vectors were reported (fifth column
of Table IV). For each benchmark circuit, the sixth and the
seventh columns of Table IV show the percentage of the
testable S-CDC faults detected by CoTC and the baseline
LoC/TDF method, respectively.

For the benchmark circuits considered in this paper, on
average, the test patterns generated by CoTC can detect 88%
of detectable S-CDC faults. We expect the fault coverage to
be even higher since many faults that are aborted by the ATPG
tool are most likely to be untestable. However, only 24% of
the S-CDC faults can be detected using the baseline LoC/TDF
method.

We next compare the number of slow-to-rise TDFs detected
by LoC/TDF to the corresponding number for CoTC with top-
off ATPG. The results are shown in Table V. The number of
slow-to-rise TDFs detected by the traditional LoC method,
is nearly equal to the number of transition faults detected
by CoTC and top-off ATPG. Therefore, the proposed method
provides the same coverage for TDFs as the baseline LoC/TDF
method, but with a significantly higher coverage of CDC
faults.

The next set of results compares the number of test patterns
generated by LoC/TDF to the number of test patterns gener-
ated by CoTC with top-off ATPG. As shown in Table VI,
on an average, for each circuit, the number of test patterns
generated by CoTC with top-off ATPG is only 25% more than
the patterns generated by using baseline LoC/TDF method.
Therefore, higher test quality is attained with only a slight
increase in test pattern count. As shown in Table VI, for the
ethernet benchmark, the number of test patterns generated
by CoTC with top-off ATPG is even less than the patterns
generated while using baseline LoC/TDF method.

3) Fault Diagnosis Results: This section evaluates the
proposed fault diagnosis method.

The next set of results evaluates the fault diagnosis rate of
each benchmark while injecting slow-to-rise S-CDC faults. To

Fig. 11. Percentage of S-CDC faults classifying in each class of faults.

generate a CDC-fault dictionary for each benchmark circuit,
we first apply CoTC to the circuit-under-test and extract the
set of patterns detecting each S-CDC fault. Then, applying
the steps discussed in Section VI-A, we generate a CDC-fault
dictionary for that benchmark.

To evaluate the effectiveness of the proposed diagnosis
method, we used the CDC-fault dictionary generated for each
benchmark and simulated the CUT using all test patterns
included in that fault dictionary in the presence of each S-
CDC fault. Then, for each S-CDC fault f, the list of all S-
CDC faults that can be distinguished from the fault f using
the generated CDC-fault dictionary was extracted. The CDC
faults were placed in different classes based on the number of
faults from which they are distinguishable using the generated
CDC-fault dictionary. If fault f is distinguishable from all other
CDC faults, it is placed in Class 1; otherwise, it is placed in
Class i, where i is the number of faults from which fault f
cannot be distinguished using the generated fault dictionary.

Fig. 11 shows distribution of all CDC faults to different
distinguishable classes for each benchmark circuit. As shown
in this figure, on average for each benchmark circuit, 15%
of detectable CDC faults are categorized as Class 1 fault,
i.e., are fully diagnosable (23%, 28%, and 22% of faults
in ac97−ctrl, usb−funct, and ethernet benchmarks are Class
1 faults, respectively. No faults is categorized as Class 1
fault in mem−ctrl and vga−lcd benchmarks). In addition, on
average, in 72% of the cases, a list of two–seven suspicious
locations are reported as the fault location. Note that in the
vga−lcd benchmark, we consider a random sample of 175
faults because the large number of faults in this circuit makes
exhaustive enumeration impractical. (Sampling has been done
for the results shown in Fig. 11 and Table VII)

As discussed in Section VI-A, using the proposed fault
diagnosis method, all S-CDC faults should be distinguishable
from each other and categorized in Class 1. However, due to
the limitation of the commercial ATPG tools used, we cannot
generate all the test patterns detecting each CDC fault. As
discussed in Section VI-A, we limited the number of test
patterns generated by CoTC to detect each CDC fault to 255.
Accordingly, two faults Fi and Fj that are reported as being
distinguishable with test pattern T when the fault dictionary
is generated, may not be distinguishable by that test pattern,
and therefore may be categorized in a fault class other than
Class 1 when the generated CDC-fault dictionary is used for
fault diagnosis.
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TABLE IV

Comparing CoTC and Traditional LoC Schemes in Terms of S-CDC Fault Detection

# Testable # Detected by # Detected by % Detected by % Detected by
Benchmark S-CDC faults S-CDC faults CoTC LoC/TDF CoTC LoC/TDF
ac97−ctrl 902 897 897 121 100 13
mem−ctrl 3,354 2,613 1,631 167 62 6
usb−funct 1,592 1,116 1,060 193 95 17
ethernet 4,862 643 529 391 82 61
vga−lcd 3,187 3,085 3,085 678 100 22

TABLE V

Detected Slow-to-Rise Faults

# Slow-to-rise # Detected by # Detected by % Detected by % Detected by
Benchmark faults LoC/TDF CoTC + top-off ATPG LoC/TDF CoTC + top-off ATPG
ac97−ctrl 40,916 37,154 37,140 90.80 90.77
mem−ctrl 38,086 17,266 17,482 45.33 45.90
usb−funct 40,108 34,718 34,850 86.56 86.89
ethernet 160,454 152,098 152,090 94.79 94.79
vga−lcd 382,927 317,092 317,074 82.81 82.80

TABLE VI

Comparison of Number of Test Patterns

CoTC +
Top-off top-off %

Benchmark LoC/TDF CoTC ATPG ATPG increase
ac97−ctrl 1,591 412 1,468 1,880 18
mem−ctrl 1,094 846 979 1,825 66
usb−funct 2,414 576 2,107 2,683 11
ethernet 10,095 291 9,715 10,006 −1
vga−lcd 11,335 3,083 11,549 14,632 29

TABLE VII

Diagnostic Expectation of CDC-Fault Dictionary

Benchmark Diagnostic Expectation
ac97−ctrl 2.9
mem−ctrl 4.7
usb−funct 2.8
ethernet 4.0
vga−lcd 5.9

Diagnostic expectation is another metric used to evaluate
the diagnostic capability of a test set or test sequence [28].
Diagnostic expectation is the weighted average size of the
indistinguishability classes obtained using a test-pattern set
[29]. The smaller the diagnostic expectation, the higher the
precision of the diagnosis. Table VII presents the diagnostic
expectation of the CDC-fault dictionaries generated for each
benchmark circuit.

We also evaluate the size of CDC-fault dictionary generated
for each benchmark circuit in terms of its pattern count. The
second column of Table VIII represents the test-pattern count
of the CDC-fault dictionary generated for each benchmark
circuit. We compare the number of test patterns included in the
fault dictionary of each CUT with the number of test pattern
generated by CoTC method to detect all S-CDC faults (third
column of Table VI). Results indicate that on average, for
each circuit, the number of test patterns included in the fault
dictionary is only 31% more than the patterns generated using
CoTC.

TABLE VIII

Number of Test Patterns Included in the CDC-Fault Dictionary

Benchmark Pattern count % increase vs. CoTC
ac97−ctrl 549 33
mem−ctrl 1,429 69
usb−funct 732 27
ethernet 376 29
vga−lcd 3,084 0

4) Error Recovery Results: We next evaluate the proposed
error recovery scheme.

To evaluate the effectiveness of the error recovery method
proposed in Section VI-B, we synthesized each benchmark
using a commercial logic synthesis tool and targeting a Nan-
gate 45-nm library. For each benchmark circuit, we considered
the minimum clock frequencies under which the circuit can
operate properly.

By considering the propagation delay of the logic residing
between the output signal of the boundary flip-flops in the
receiver domain and the input of the flip-flops fed by that
signal, we evaluated the number of delay buffers that can be
inserted in the clock path of the boundary flip-flops to mask
S-CDC faults. Table IX shows our results. As indicated in
this table, at least seven delay buffers can be inserted in the
clock path of boundary flip-flops. Comparing the delay of a
buffer element in the target library with the setup time of
the flip-flops in the same library, we find that the number of
permitted delay buffers (seven) always exceeds the number of
delay buffers required to mask CDC faults. Therefore, 100%
of detectable S-CDC faults can be masked in each benchmark
circuit by applying the proposed error recovery scheme.

The final set of results focuses on the cost-effectiveness
of the proposed error recovery method. We synthesized
each benchmark before and after applying our error-recovery
scheme using a commercial logic synthesis tool and targeting
a Nangate 45-nm library. Results are shown in Table X.
The third column of this table shows the total area of each
benchmark, when we insert at most one buffer in the clock path
of the boundary flip-flops. The area overhead numbers shown
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TABLE IX

Number of Delay Buffers That can be Inserted in the Clock

Path of Boundary Flip-Flops to Recover From CDC Errors

Benchmark # of delay buffers
ac97−ctrl 7
mem−ctrl 50
usb−funct 16
ethernet 18
vga−lcd 38

TABLE X

Area Overhead Incurred by Proposed Error Recovery Scheme

Area of
Area of circuit with

original circuit error recovery %
Benchmark (in μm2) (in μm2) increase
ac97−ctrl 35,002.4 10,885.7 31.1
mem−ctrl 23,258.7 6,419.4 27.6
usb−funct 32,151.7 3,311.6 10.3
ethernet 188,493.7 15,644.9 8.3
vga−lcd 307,111.6 1,842.6 0.6

in this table are calculated using data reported by the logic syn-
thesis tool. As shown in this table, on an average, the area over-
head of the error-recovery scheme is 15.5%. The area overhead
is considerably less for the two largest benchmark circuits.

In Table X, the area overhead of applying our error-recovery
method to ac97−ctrl and mem−ctrl benchmarks is more than
the other benchmarks. In fact in these two circuits, nearly 30%
of the flip-flops are in the receiver boundary. In other bench-
marks, less than 10% of the flip-flops reside in the receiver
boundary. As mentioned in Section VI-B, for each circuit with
n boundary flip-flops residing in the receiver domain, the error
recovery circuitry includes n buffers, 2n+ 2 tri-state buffers, n

inverters, one shift register (including �log2(n + 1)� registers)
and one decoder (with �log2(n + 1)� inputs). Therefore, since
the percentage of boundary flip-flops that reside in the receiver
domain for ac97−ctrl and mem−ctrl benchmarks are much
more than that for the other benchmarks, the area overhead of
applying our error recovery method to these two benchmark
circuits is more than the others.

VIII. Conclusion

Even when robust design methods based on synchronizers
and design verification techniques were used, process varia-
tions could introduce subtle timing problems that affect data
transfer across clock-domain boundaries for fabricated chips.
Accordingly, modeling the incorrect behavior of multiclock
circuits in the presence of CDC faults, detecting and locating
such faults, and recovery from CDC failures were necessary.
We presented a test generation method for detecting CDC
faults. Fault diagnosis was performed by employing a CDC
fault dictionary. While a CDC fault was located, its impact
was masked using post-silicon clock-path tuning. We applied
our CDC fault detection, diagnosis, and recovery schemes to
the IWLS’05 benchmark circuits with multiple clock domains.
The results highlighted the effectiveness of the proposed meth-
ods in the recovery of multiclock circuits from CDC failures.
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