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Abstract
Hazards or intentional perturbations must be identified in safety- and security-critical applications. Digital sensors have 
been shown to be an appealing approach to detect such abnormalities. However, as any sensor technology, digital sensors 
are prone to mis-calibration. In particular, even if the digital sensor initial calibration is correct, the rate of false and missed 
alarms might increase when the sensor is aged. In this paper, we thoroughly study the impact of aging-induced false and 
missed alarms. Indeed aging relates to the usage time, and a priori model (historical data for environmental variation) for 
predicting the aging is unrealistic for digital sensors as tracking the usage time with related temperature and voltage variation 
imposes high overhead. Accordingly, we propose an alternative approach where not one but two sensors are deployed. In 
practice, one sensor is used to detect environmental deviations, while the second one is used as the reference. In this respect, 
the second sensor is only operated seldom, mostly to re-calibrate the active sensor when aged. From this dual input (unaged 
and aged sensor), corrective models are derived. We account for two methods, namely simple but effective offset correc-
tion, and adjustment based on machine-learning. We conduct extensive characterizations (both pre-silicon simulations and 
post-silicon measurements on FPGA) which quantitatively confirm the applicability and high sensitivity of digital sensors.

Keywords Digital sensors · Calibration · Missed & false alarms · Device aging · Anomaly detection · Machine learning · 
Device recalibration

1 Introduction

Ensuring reliability and security of integrated circuits is a 
growing challenge in industry due to the rising competition 
in the production market as well as the increasing demand 

for high-quality electronic goods. Optimized-performance 
and reduced-power demands resulted in shrinking the fea-
ture size and in turn enabled a single chip to include billions 
of transistors. Ensuring the reliability and security of such 
complex circuitries is of utmost importance [1, 2].

Practically, during the chip design phase, well-defined 
environmental conditions in which a chip can operate with-
out experiencing any failure and/or compromising its secu-
rity is drawn [3, 4]. These conditions relate to the proper 
range of operating temperature, voltage, and manufacturing 
process so-called PVT altogether. Accordingly, the found-
ries set out the PVT corners [5] under which the circuit can 
operate nominally.

Although chips are designed to work under nominal con-
ditions, they may be exposed to different pressures, such 
as very high/low temperatures or over/under power supply 
where the intended PVT that has been defined for the chip 
at the design time is violated. Such violation can be uninten-
tional or intentional. For instance, unintentional violations 
can occur in the circuitries residing close to the explosion or 
electric engine in automotive products. Another example is 
that of mission-critical chips operating in space or nuclear 
power plants where they are exposed to high magnetic fields 
or various irradiations.
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In contrast, an intentional violation can be due to a mali-
cious attack [6, 7] aiming at a denial of service, malfunc-
tioning, or even leaking sensitive data [8]. Attacks can be 
either realized with a physical access to the targeted chip or 
remotely if the chip has a remote login facility [9–11]. For 
example, remotely hijacking the chip operation, running a 
malicious code forcing the core to increase performance for 
raising its temperature beyond the Temperature (T) corner, 
and operating the DVFS management system in turbo mode 
(that is: “over-clocked”) possibly with decreased Voltage 
supply (V) all can violate VT corners. CLKSCREW [12–14], 
PlunderVolt [11], VoltJockey [15], V0LTpwn [16], FPGA-
hammer [10], RAM-Jam [9], and VoltPillager [17] are some 
representative examples of such attacks.

An attack’s impact can be highly catastrophic for the 
mission-critical chips [18], e.g., for the chips used in medi-
cal applications as they may lead to a life loss situation. As 
another example one can point to the malicious PVT viola-
tions on cryptographic devices that may result in sneaky 
information leakage [19, 20]. Indeed, the cryptographic 
chips are leveraged to preserve the security of sensitive data. 
However, they can leak the secret information, e.g, keys, by 
fault analysis [21] related to the PVT violations [8]. Con-
sequently, it is necessary to sense the operating conditions 
such as voltage and temperature for optimized performance 
as well as tracking (preventing in some cases) the anoma-
lies, malfunction, and malicious attacks. In practice, embed-
ded sensors are used to notify the users by raising alarms 
while chips are operating out of specification violating the 
PVT corners [2], thus enhancing the chips’ reliability and 
security.

Conventionally, analog sensors have been broadly used 
to sense the operating conditions and to raise alarms when 
defined VT is not met. However, such sensors suffer from 
different shortcomings such as costly post-fabrication cali-
bration due to process variation, difficulty for adaptation 
to new technology nodes, low portability to thinner tech-
nologies, and most importantly high false alarm rate. As an 
example, brownout sensors only detect lower than expected 
power supply, but might not react to transient power glitches 
or combination of power and clock glitches. Therefore, a 
suitable replacement for analog sensors is needed. On the 
other hand, due to their low-cost design, effortless and easy 
adaptation to the advanced technology nodes, high portabil-
ity, and optimized performance digital sensors have received 
the lion’s share of attention in the recent years and have been 
shown as a promising solution [1]. Indeed digital sensors 
were presented in low-power literature (e.g., for fine-tuning 
the Dynamic-Voltage-Frequency-Scaling [22]), and in the 
security-related literature [24, Fig. 14, page 189] in 2011. 
Thereafter, they were adopted by the industry [23] and gov-
ernment sectors.

Instead of measuring physical quantities (such as temper-
ature and voltage) separately, digital sensors are intended to 
detect functional unintentional and/or malicious failures [25] 
by sensing different operating quantities such as Process 
(P), Voltage (V), and Temperature (T) altogether without 
precise knowledge about each. This results in fewer false 
alarms raised by digital sensors compared to their analog 
counterparts [1]. Although digital sensors seem a promising 
solution to detect anomalies when the device is new, they 
suffer from taking the device aging effects into account [3]. 
Such phenomena that occur during the circuits’ operation 
over time results in missed or false alarms, i.e., inability to 
detect an existing anomaly or raising alarms in the absence 
of anomalies, respectively.

In this paper, we consider the device aging effects and 
propose two low-cost calibration schemes that can be used 
during the circuits’ run-time to decrease the number of 
false/missed alarms. We named the first one as Differential 
Calibration (DC) and next one as Machine Learning Based 
Calibration (ML-DC).

The first scheme, Differential Calibration (DC) is per-
formed with a low-cost differential method benefiting from 
a digital sensor and its replicated counterpart where the rep-
licated sensor turns on rarely, thus is affected much less by 
aging. Using the differential output across the main sensor 
and the replicated one, the outcome of the main sensor is 
calibrated during the runtime to take the aging impacts into 
account

To enhance the performance of the proposed Differential 
Calibration (DC) scheme and to reduce its missed alarm 
rates even more, we deploy Machine Learning Based Cali-
bration (ML-DC), which uses Machine Learning (ML) tech-
niques, and in particular Linear Regression (LR) scheme, 
due to its low overhead, in our second approach. Here, we 
use the DC scheme on top of the targeted ML scheme to find 
a more appropriate value to be used for calibration of the 
main sensor during runtime. In this method, the last N read-
ings (N is as low as 4 in our experiments) of the main and 
replicated sensors are used during the calibration process. 
The contributions of this research are as follows.

– A run-time differential calibration scheme to reduce 
aging-induced missed/false alarms in the targeted digital 
sensor over time;

– A hybrid approach that combines our differential calibra-
tion scheme with machine learning methods to enhance 
the accuracy of the sensor in detecting anomalies and 
attacks during the runtime;

– Thorough investigation of the tradeoffs on characterizing 
sensors;

– Hardware implementation of the sensor characterisation 
and the alarm-rising circuitry;
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– Detailed HSpice simulations to investigate the effect of 
aging on the original sensor versus the sensors equipped 
with the proposed run-time calibration schemes;

– Investigation of the outcome of the targeted sensor in the 
FPGA fabrics.

Outline. The rest of the paper is organized as follows. Sec-
tion 2 discusses the threat model and the motivation of this 
research. Section 3 presents the preliminary backgrounds 
on digital sensors and aging mechanisms. Section 4 gives 
a description of the digital sensor targeted in this study and 
its characterization. Section 5 presents our proposed calibra-
tion techniques. Section 6 details the hardware implemen-
tation of the sensor characterization and the alarm-raising 
circuitry. Experimental setup and results are discussed in 
Sect. 7. Our FPGA implementation and the related outcome 
are discussed in Sect. 8. Finally, the conclusion and future 
directions are summarized in Sect. 9.

2  Threat Model and Motivation

2.1  Threat Model

From a historical perspective, secure chips used to be of 
“smartcard” form factor, where sensitive signals (clock, 
reset, power) were provided externally, via dedicated pins 
(recall ISO/IEC 7816-2). Thus attackers could easily manip-
ulate those signals to disrupt the secure chip normal opera-
tion, respectively through overclocking, partial DFF reset, 
and underfeeding.

Modern systems are embedded as systems-in-package 
(SiP), and the current trend is even for a tighter integration 
in a systems-on-chip (SoC). In SoC architectures, the clock 
is filtered through internal Phased-Lock Loops (PLLs). This 
means that attempts to introduce surreptitious glitches on the 
external clock happen to be filtered out by the PLL, acting 
as a low-pass filter. The same situation happens with the 
reset line, which is controlled by a Power-On-Reset (POR) 
system that aims at preventing glitchy resets. As far as power 
supply is concerned, local decoupling capacitances (spread 
on the PCB and even on the chip) contribute to maintain an 
operational voltage despite some brownout show up. For all 
these reasons, attack vector arising from fast varying inputs 
are less and less likely to happen in SoCs.

Indeed, all attempts to change in a slow manner the chip 
“operational environment” (power, temperature, clock, etc.) 
are likely to be reflected within the SoC. In particular, the 
recent “DVFS abuse” attacks (listed in the introduction 
Sect. 1) are crucial. Their common point is that they move the 
chip from a safe to a dangerous operational state inconspicu-
ously. For instance, regarding the power, it is well-known that 
with nowadays very low core voltages (usually < 1 V  ), any 

IR drop is seen as an aggression. Therefore, the threats we 
consider in this paper are those which consists in slightly drift-
ing apart from nominal PVT conditions. In addition, we also 
consider more brutal threats, which (all of the sudden – albeit 
in the “slow motion” pace discussed above) alter the power/
temperature/time reference. For instance, PlunderVolt does 
lead (step by step) to unexpected system-level IR drops. In 
general, all recent “DVFS attacks” consist in placing the chip 
slightly out of bounds, and happen to be successful.

As a motivating example, NIST FIPS 140-3  [26, 
Clause 7.7.4.3] mandates tests within (stable) temperature 
range of [−100◦C,+200◦C] , which is by far a larger inter-
val compared to even the most stringent corners in consumer 
applications.

Notice that fast and local attacks, can be produced by 
focused lasers shots. Nonetheless, we notice that SoCs are 
themselves inserted in SiP. Typically, applicative SoCs are 
sandwiched between FLASH memory (on the one side) and 
RAM memory (on the other side). Shooting a focused laser 
through FLASH/RAM in a reproducible manner is considered 
bespoke as of today, hence such accurate and fast attacks are 
simply not considered in our threat model.

In sum, our threat model considers the cases in which the 
voltage (power), temperature, or the internal clock is changed.

2.2  Motivation: Impact of Aging on Digital Sensors

In practice, sensors are deployed to detect the deviation from 
the nominal operating conditions. But when a digital circuit 
is used for a while (i.e., aged), its electrical specifications 
change. Accordingly as will be discussed in Sect. 3.3, its 
underlying components become slower. Similarly, the digital 
sensors we target in this paper are affected by device aging. 
This results in inaccuracies in firing alarms, i.e., an aged 
sensor may raise an alarm in cases that are not supposed to 
(the so-called false alarms) or may not raise an alarm when 
it should (the so-called missed alarm). Both missed alarms 
and false alarms must be carefully taken into account. The 
former influences security and the latter triggers availability 
issues. Accordingly this paper targets the discussed digital 
sensors and opts to improve their accuracy in raising alarms 
by decreasing the rate of false and missed alarms during the 
run-time.

3  Preliminary Backgrounds

3.1  Background on Digital Sensors

Delay-based digital sensors are realized via artificially 
inserting a critical path in the target system. Such path is 
monitored regularly (ideally at every clock cycle) regard-
ing setup time violation. The absence or presence of such 
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violation reveals information about the current environmen-
tal condition as the gate delays are impacted by these condi-
tions. Such sensing applies clearly on the sensor logic itself, 
but by extension also to its surrounding logic. This is at the 
gist of digital sensors: what they sense represents a compa-
rable status compared to the neighboring gates (which make 
up the part protected by the digital sensor). Such assumption 
is safe in practice, as it is for instance the basic hypothesis in 
“bundled-data” asynchronous circuits [27]. Indeed, in such 
circuits, the control and the data paths are also expected to 
track in terms of timing.

3.2  Digital versus Analog Sensors

Analog sensors have been used for a long time as transducers 
that quantify the ambient conditions of electronic devices. 
These sensors, however, suffer from various flaws that have 
received considerable attention in recent years [1, 2]. On the 
other hand, digital sensors have appeared as highly qualified 
counterparts concurring such drawbacks. What follows dis-
cusses the benefits of digital sensors compared to the analog 
alternatives.

Analog sensors require complete custom layout design 
and an expensive calibration phase after manufacturing [28]. 
Digital sensors, on the other hand, are composed entirely 
of digital standard cells and do not require costly calibra-
tion [24, Fig. 14, page 189]. Their customized structure 
makes the analog sensors less portable while digital counter-
parts, thanks to their underlying standard cells, are conveni-
ently portable. As the Physical Design Kit (PDK) hardware 
is revised, analog sensors need revalidation by new simu-
lations. In contrast, digital sensors merely require simple 
recalibration in each of these cases by adjusting the length 
of the delay chain.

Digital sensors are mainly optimized benefiting from the 
optimization process during the RTL and gate-level synthe-
sis via commercial EDA tools whereas analog alternatives 
usually experience manual dimensioning. Analog sensors 
rely on “always-on” logic gates while digital sensors are 
more controllable, benefit from clock gating, and only con-
sume power during toggling [29]. Digital sensors can be 
calibrated to work in different Dynamic Voltage/Frequency 
Scaling (DVFS) configurations.

The digital sensors are sensitive to supply voltage and 
temperature altogether without precious knowledge of each. 
This makes digital sensors much smarter; producing fewer 
false alarms compared to the analog counterparts that con-
sider the physical quantity of supply voltage and temperature 
separately and thus fail to consider that the effect of high 
temperature may be compensated in high voltages [1]. Both 
digital and analog sensors suffer from process variation and 
dynamic noise. While analog sensors counter ambiguities 
in defining a threshold for nominal vs abnormal situations, 

the digital sensors resolve this issue via electrical level 
discretization [30].

In practice, as digital sensors detect environmental 
changes fast, they are suitable for both slow-stress (e.g., 
global perturbation [31]) and transient attacks (e.g., glitches, 
or local electromagnetic field/laser light injections).

3.3  Background on Aging

To measure abnormal environmental conditions different 
digital sensors have been proposed in recent years, e.g. [24, 
Fig. 14, p. 189], [33, Fig. 3, p. 441], [32] all of which share 
the property of being realized only by simple digital gates 
including D Flip-Flops (DFFs), buffers, etc, and of having 
maximal activity, thereby (as a drawback) being especially 
prone to aging.

Aging mechanisms result in performance degradation 
and eventual failure of digital circuits over time. Among 
aging mechanisms, Negative Bias Temperature-Instability 
(NBTI) and Hot-Carrier Injection (HCI) have been shown 
to be more prominent in CMOS technologies [34], resulting 
in increasing switching and path delays.

NBTI Aging: NBTI affects PMOS transistors. Indeed, a 
PMOS transistor experiences two phases of NBTI depend-
ing on its operating condition. The first phase, the so-called 
stress phase, occurs when the transistor is on ( Vgs < Vt ). 
Here, positive interface traps are generated at the Si-SiO2 
interface which lead to an increase of the threshold volt-
age of the transistor. The second phase, the so-called recov-
ery phase, occurs when the transistor is off ( Vgs > Vt ). The 
threshold voltage drift that occurred during the stress phase 
will partially recover in the recovery phase. Threshold volt-
age drifts of a PMOS transistor under stress depend on the 
physical parameters of the transistor, supply voltage, tem-
perature, and stress time [36, 37]. The last three parameters 
(so-called external parameters) are used as acceleration fac-
tors of aging process. Figure 1 shows the threshold voltage 
drift of a PMOS transistor that is continuously under stress 
for 6 months and a transistor that alternates stress/recovery 
phases every other month. As shown, the NBTI effect is high 
in the first couple of months but the threshold voltage tends 
to saturate for long stress times.

HCI Aging: HCI mainly occurs in NMOS transistors 
when hot carriers are injected into the gate dielectric during 
transistor switching and remain there. HCI is a function of 
switching activity and degrades the circuit by shifting the 
threshold voltage and the drain current of transistors under 
stress. HCI-induced threshold voltage drift is sensitive to 
the number of transitions occurring in the gate input of the 
transistor. In fact, HCI has a dependency on temperature, 
clock frequency, usage time, and activity factor of the tran-
sistor under stress, i.e., the percentage of cycles in which the 
transistor is switching [34].
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4  Target Sensor and its Characterization

4.1  Digital Sensor Preliminaries

The target digital sensor is realized via inserting an artificial 
critical path, referred to as “Delay Chain” hereafter. The tim-
ing conditions of such a path are affected by the operating 
conditions thus can be leveraged to ensure if the underlying 
circuitry is operating under the PVT specifications it is sup-
posed to. This delay chain (shown in Fig. 2) is fed by a rising 
or a falling transition and is verified if such an edge manages 
to propagate at the considered clock frequency to the end of 
the chain ([24, Fig. 14]). The inability to do so is indicative of 
environmental disruption or exploitation. During an irregular 
process, the setup time violation happens in the very first 
place on the artificial critical path and is monitored by the 
digital sensor by raising an alarm to call for proper action to 
be taken. To be able to sample the delay chain and character-
ize the amplitude of the timing violation and thereby digitize 
the amount of stress added to the circuit, a number of flip-
flops are introduced into various parts of this delay chain.

Figure 2 illustrates the digital sensor architecture imple-
mented in this study [38]. It includes n0 + n1 buffers where 
the last n1 buffers are connected to individual D flip-flops 
for sampling the timing from the delay chain. All flip-flops 
are operating at the frequency of F. A periodic signal with a 
frequency of F/2 is generated by a Toggle flip-flop (T Flip-
Flop) feeding the first buffer, and is propagated through the 

delay chain. The outputs of the included flip-flops are col-
lected (internally) to characterize the sensor outcome. When 
timing requirement is not met the sensor raises an alarm. 
Note that the timing requirement and sensor’s design (num-
ber of buf fers and flip-flops) varies with the operational 
range of the sensor. Indeed, chips are commonly manufac-
tured in multiple temperature classes (e.g. consumer, auto-
motive, military, etc.) depending on their uses, each consid-
ering a particular temperature range under which the chip is 
supposed to be usable. The digital sensor design methodol-
ogy and the process to architect the sensor, i.e., deciding 
about the number of flip-flops and buffers during the sensor 
design procedure, is discussed in details in [1].

4.2  Preliminaries on Characterization

The advantage of the digital sensor is that its output depends 
on the voltage and temperature quantities as a whole, and 
not their individual quantities. This is important since for 
example increasing the temperature beyond the expected 
range may be compensated with a higher voltage [4]. Indeed, 
deviation of voltage and temperature from their nominal 
range altogether can affect the timing requirement of the 
delay chain embedded in the digital sensor, and in turn can 
manifest intentional or unintentional operating failures.

To characterize the digital sensor shown in Fig. 2, a 
parameter so-called Average Flip-Flop Number (AFN) is 
used [3]. In each voltage and temperature combination, 
noted as (V, T) hereafter, the AFN is derived based on the 
flip-flops’ outputs. Indeed, depending on the voltage and 
temperature quantities, the delay chain’s propagation delay 
varies, thereby different sets of values are captured by the 
flip-flops in different (V, T) configurations.

As this sensor is supplied with the a0 periodic signal, in 
each clock cycle ( CCi ) the first FNi − 1 flip-flops would be 
in phase A (say for example 0 → 1 → 0 ) and the remain-
ing flip-flops would be in the complementary phase A (say 
1 → 0 → 1 ), where FNi corresponds to the flip-flop index at 
which step A begins in the clock cycle CCi . Note that this 
FNi index changes in different (V, T) configurations. For 
characterization, the average of all FNi values (each related 
to one clock cycle) is evaluated. This average is called AFN. 
It is noteworthy to mention that the AFN value would be 
lower when the circuitry (as well as the delay chain) operates 
slower (under a high temperature and/or low voltage). The 
AFN tends to higher indexes when the circuit operates faster 
(under a low temperature and/or high voltage). An alarm is 
raised when the circuit operates out of the specifications it 
was designed for, i.e., when the circuit operates slower or 
faster than expected. Such conditions result in an AFN value 
that is out of bound (lower than the minimum AFN or higher 
than the maximum AFN related to the circuit operating con-
ditions based on its specifications.)

Fig. 1  Threshold-voltage shift of a PMOS transistor under NBTI 
effect [35]. Values on Y axis are not shown to make the graph generic 
across different silicon foundries and technological nodes

Fig. 2  Targeted digital sensor architecture
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For the digital sensor shown in Fig. 2, sample waveforms 
for various combinations of voltage, temperature and process 
variations are depicted in Fig. 3 where the sensor consists of 
n0 = 9 leading buffer followed by n1 = 43 buffers each feed-
ing one flip-flop. Figure 3e reports the AFN values related 
to all cases depicted in Fig. 3a–d. Note that when comput-
ing AFN we ignored the first 2 clock cycles as the circuit is 
not stable initially. As expected, temperature increase results 
in lower AFN (comparing Fig. 3a, c). Similarly, comparing 
Fig. 3b, c confirms our previous discussion on the increase of 
AFN in faster operating conditions (higher voltage). Finally, 
the AFN value is slightly affected by process variations; 
changing from 31 to 31.5 (in Fig. 3a, d) when operating under 
V = 1.2V  and T = 27◦ C for 2 different Monte Carlo simula-
tions. Note that as shown in Fig. 3b, an operating condition 
may result in multiple phase changes in one clock cycle. In 
this figure, in each clock cycle the first change occurred in 
flip-flop indexed as 13 (so the AFN = 13) and the second 
change occurred in flip-flip indexed as 37.

The inference from the above observations is that AFN is 
a promising metric to reflect the environmental conditions 
under which a chip is operating. In fact, AFN can be used 
for implicitly detecting system’s failure by checking if the 
operating conditions (e.g., temperature, voltage and clock 
frequency) are out of spec or not. To do so, we consider two 
thresholds for AFN so-called AFNl and AFNh . During the 
runtime, the current AFN is compared with these threshold 
values and based on the outcome of such comparison an 
alarm is raised or not (more details are given in Sect. 4.4). 
Accordingly, We assume that a sensor is embedded in the 
target chip along with the target circuitry, and its AFN value 

can be leveraged to represent the circuit’s operating condi-
tion at runtime.

4.3  Trade‑offs in AFN Calculation

The value of FNi may not be identical in all clock cycles. 
For example in Fig. 3c, the first phase change occurs either 
in the flip-flop indexed as 15 or as 16, thus resulting in 
AFN = 15.5. In practice, the index of the flip-flop that 
observes the first phase-change in each clock cycle can 
be altered for different reasons as discussed below. First 
of all, during the runtime depending on the operation of 
the actual chip, the operating voltage and temperature of  
the chip may change, e.g. running a heavy code may raise  
the temperature in an accelerated manner. In that case, the  
FNi can differ in the relevant clock cycle (CC). Secondly,  
the FNi for a 0 propagation and a propagation of 1 might 
be different. On certain technological nodes, the propaga-
tion of 0 is quicker than the propagation of 1 across the  
buffer chain. Here the sensor can experience a lower FNi  
when the delay chain is exper iencing A )  and 
 a higher FNi when the delay chain is experiencing A (say 
1 → 0 ), because a discharging for 1 → 0 might be faster 
than charging for 0 → 1 . Thirdly, various operations can 
increase noise in the system resulting in a varying FNi . In 
addition, an attack launched on the chip can change the 
FNi dramatically.

In the light of the above cases, it is necessary to gather 
the information in consecutive clock cycles. To do this, we 
need to collect the FN for a few CC and compute the average 
of the obtained values. The average of the considered FNs 

(c)

(a) (b)

(d) (e)

Fig. 3  Waveforms of Fig. 2 in different operating conditions. Voltage, Temperature and Process are displayed with their initial letter V, T, and P, 
respectively

658 Journal of Electronic Testing (2021) 37:653–673



1 3

is then used in the digital sensor characterization discussed 
in Sect. 4.2. However, the number of clock cycles that we 
consider during the AFN measurement is an important factor 
in the precision of our digital sensor. The basic principle is 
that the higher the amount of CCs considered in calculating 
AFN, the more details we obtain during the AFN measure-
ment, thus making the sensor characterization more stable 
during the operation of the chip. However, the hardware 
overhead will increase by averaging more FN values (will 
be discussed in details in Sect. 6). In addition, if the number 
of CCs considered for calculating AFN is too high, some 
timing-based attacks or environmental modifications that 
occur in only a few CCs can be skipped.

As mentioned earlier, for AFN calculation we gather 
the FNi values and find their average. In order to do this, 
we require an accumulator and a divider. As a divider can 
impose a lot of hardware overhead, we suggest observing a 
power of 2 CCs . This lifts the need for a divider circuitry as 
in this case the sum of FNi s is simply shifted based on the 
number of considered clock cycles to find the AFN value. 
In our simulation, we considered the cases of 2, 4, and 8 
for CCi.

As FNi value may change slightly by noise, averaging 
these values gives a more stable characterization metric to be 
used for raising an alarm if needed. Indeed by such averag-
ing, the variance of FNi s due to noise is eliminated. Figure 4 
depicts a sample waveform related to the case in which oper-
ating voltage has been changed at runtime. This figure has 
been extracted for the fixed temperature of 27◦ C where the 
voltage changed in different points of time. As shown, for 
clock cycles 3 to 5 ( CC3−5 ), FNs are 31, The FNs change to 
30 for CC6−7 . Finally, it changes to 31, 32, 31, and 32 in the 
following clock cycles for voltage 1.20V, 1.25V, 1.20V and 
1.25V, respectively. This demonstrates the need to eliminate 
the noise effect during runtime by averaging FNi s, and con-
firms the need for using AFN for sensor characterization. 
Note that voltage variation is presumably much slower in 
practice, owing to P/G network capacitive load. However, in 
case of attack, the voltage may change gradually or abruptly 
by the adversary.

As mentioned, averaging FNi s under a high number of 
clock cycles may result in skipping an attack without detect-
ing it or in environmental manipulation. For example, if the 
FNi is decreased due to a fault or an attack, higher FNi s in 
the next clock cycles can compensate for it and the AFN 
value may still remain in range. Accordingly, the chances 
of such exploitations increase if the number of clock cycles 
under which AFN is calculated is increased. Therefore, 
the number of CCs must be carefully chosen based on the 
application. Moreover as will be discussed in Sect. 6, our 
sensor generates an Error signal when the difference of two 
consecutive FN values (computed during runtime) exceeds 
a predefined threshold. This signal can also help to detect 

an abrupt changes in environmental conditions; thus giving 
hints about possible attacks.

4.4  Raising Alarm Based on Operating Conditions

As mentioned earlier, in this research, we deploy the sen-
sor’s AFN to predict whether the system operates out of 
specification and an alarm is raised if so. During the runt-
ime the AFN quantity is calculated in each clock cycle and 
this value which represents the current operating condition 
is compared with the lowest and highest acceptable AFN 
values ( AFNl and AFNh ) that have been decided by the 
designer based on the spec referring to the worst and best 
case conditions.

The alarm will notify the user when the circuit is oper-
ating slower or faster than the nominal situations. In this 
paper, we consider the nominal case as Vdd = 1.2V  and 
temperature 75◦ C. Our simulations (in Fig. 5) show that 
in this operating condition, for our sensor shown in Fig. 2 
AFN=22. Then we consider a trust spectrum around this 
AFN to ignore negligible changes in operating conditions 
and measurement noise; we call it the confidence range. In 
this paper, without loss of generality, we consider the con-
fidence range of [-5,+5], i.e., any measured AFN between 
22±5 is considered as acceptable, while an alarm is fired 
otherwise. Here we refer to 17 as the AFNl and 27 as the 
AFNh.

In practice, it is necessary to recognize a slower state 
(the conditions with AFN values lower than the accepted 
range) since the system’s timing criterion is not fulfilled in 
slower situations. Thus, the device would sample a wrong 
value during an operation and it may induce ultimate failure. 
In comparison, faster conditions (denoted with AFN values 
higher than the accepted range) can also result in incorrect 
sampling generating failures in some applications (e.g., 
when the attacker increases the internal clock frequency or 
inserts a clock glitch in case of fault injection attacks.)

Fig. 4  Waveform of digital sensor with varying voltage and fixed T= 
27◦C

659Journal of Electronic Testing (2021) 37:653–673



1 3

Figure 5a illustrates the AFN in different voltage and 
temperature combinations in our sensor. As expected, AFN 
is lower for the conditions in which the underlying circuit 
operates slower, i.e., in low voltages and high temperatures, 
while its value increases by moving towards lower tempera-
tures and higher voltages. In this figure, the parts shown in 
red depict the operating conditions under which an alarm 
is raised, while the grey area displays the conditions con-
sidered as safe (based on the confidence interval we dis-
cussed earlier). Note that the upper red part denotes to the 
conditions in which circuit operates slower, while the lower 
red portion points to the conditions in which circuit oper-
ates faster than expected. For example, as depicted when 
Vdd = 1.0V  and Temperature= 100◦ C, AFN is 15, thus an 
alarm is raised due to a slow operation ( AFN < 17 ). Simi-
larly, under Vdd = 1.3V and Temperature= 30◦ C, AFN is 31. 
Here an alarm is fired due to operating faster than expected 
( AFN > 27 ). In contrast, when Vdd = 1.2V  and Tempera-
ture= 80◦ C, no alarm is raised as AFN is 20. To show the 
impact of process variations, Fig. 5b presents the AFN val-
ues for the same sensor design, realized via Monte-Carlo 
simulations in HSpice. Comparing this figure with Fig. 5a 
confirms that process variations have a slight impact on the 
AFN value extracted in each (V,T) pair.

4.5  Impact of Aging on Raising Alarms

As mentioned earlier, aging results in the increase of the 
threshold voltage of the underlying transistors, and makes 
the related gates slower over time. This results in inaccura-
cies in raising alarms as the AFN quantity that is extracted 
in a (V,T) pair may change due to aging. Thus comparing the 
runtime AFN with the preconsidered AFNl and AFNh (i.e., 
the confidence interval) may result in missing an alarm or 
raising an alarm when not necessary thus jeopardizing the 
security or availability of the chip.

To depict the aging impacts on AFN values, Fig. 6 dis-
plays the AFN quantities for the same sensor used through-
out of this study in each (V,T) combination when the sen-
sor has been used for 6 months. Comparing this figure with 
Fig. 5a (the fresh counterpart) shows that in some operating 
conditions the aged version fires an alarm while the new 
one does not, e.g., in case of Vdd = 1.2V  and Temperature= 
90◦ C the AFN was 18.5 for the new device while decreased 
to 16.5 in the 6-month old device. This is a false alarm and 
should be avoided. On the other hand, for example, when 
Vdd = 1.3V  and Temperature= 40◦ C, the AFN was 28 for 
the new sensor (an alarm is raised) but decreased to 26.5 
in course of 6 months which doesn’t fire any alarm. Such 
missed alarm situations should be also lifted.

Comparing Figs. 5a and 6 shows that due to aging, the 
AFN confidence interval has shifted to the right. Indeed, for 
the operating conditions with an AFN close to but higher 
than AFNl (17 in our case) in the new device, aging shifted 
the AFN from the gray area to the red area thus resulted in a 
false alarm. Similarly, for the cases close to the AFNh border 
but with a higher value, due to the aging the alarm is missed, 
i.e., it is not raised. Figure 7a, b depict the (V,T) pairs that 
result in a false or missed alarm after aging for 6 months 
and 1 year, respectively. This shows that the rate of false and 
missed alarms increases during the digital sensor’s lifespan. 
This calls for proper actions. Section 5 presents our proposed 
schemes to diminish the false and missed alarm rates.

Fig. 5  Contour graphs depicting AFN variations in different PVT 
conditions for two fresh sensors (age:0) both realized from the same 
design while experiencing different process variations. The parts 
shown in red depict the operating conditions under which an alarm is 
raised, while the grey area displays the conditions considered as safe

Fig. 6  Contour graphs depicting AFN variations in the 6-month old 
Sensor 1 (recall Fig. 5a)

660 Journal of Electronic Testing (2021) 37:653–673



1 3

To have a better observation of the aging-induced false 
and missed alarm rates, Fig. 8 depicts the percentage of 
missed and false alarm rates over the course of 7 years 
in every 2 months of usage. As shown, both false and 
missed alarm rates increase with aging. These rates are 
higher at the beginning and tend to saturate after some 
time of usage. In particular, the false alarm rate increases 
to 21.88% in the first 2 years, while 36.93% in 7 years. 
Similarly, 15% of alarms are missed after 2 years of usage 
and 22.85% are missed after 7 years. These findings con-
firm that we need a tuning or calibration system that will 
reduce the false and missed alarm rates, ensuring reliable 
alarm generation over the device lifespan.

5  Sensor Calibration

As discussed earlier, the rate of false and missed alarms 
increases when the sensor is aged. This results in inac-
curacies in sensing environmental conditions and jeopard-
izes the availability and security of the system in which 
the sensor is embedded. One may think of characteriz-
ing the aging effects on the sensor and tabulate it for 
calibrating the AFN value based on which alarm rais-
ing decision is made. However, firstly, embedding such 
a memory in our lightweight sensor is too much costly 

in terms of hardware overhead and, secondly, we need to 
have information about the time during which the sensor 
was ON (thus aged), as well as the exact operating condi-
tion during that time (i.e., the exact value of voltage and 
temperature). Accordingly, this solution is not feasible for 
the designed sensor.

In order to have an accurate and reliable value of AFN 
during the course of sensor’s lifetime, we propose to dupli-
cate the embedded sensor. The sensor and its duplicated 
counterpart both have the same design yet their specifica-
tions may be slightly different due to process variations. 
Note that both sensors are placed next to each other so they 
sense the same temperature and both are fed with the same 
voltage. We use the second sensor to calibrate the AFN 
value extracted from the other sensor during the runtime. 
In this section we propose two methods for such calibra-
tion, namely Differential Calibration and Machine Learning 
Based Calibration.

5.1  Proposed Run‑Time Calibration Schemes

5.1.1  Differential Calibration

The idea behind the Differential Calibration (DC) is simple 
but effective. As mentioned we embed two similar sensors 
in the chip. The second sensor is rarely turned on (we call 
it Rarely-on Sensor or R-Sensor). Indeed, it is always OFF 
except in the points of time that we need to extract the cali-
bration values. We refer to these points of time as Calibra-
tion Time (TC) hereafter. Note that even at those points of 
time, the R-Sensor gets ON for a short time so it doesn’t get 
aged (for example it would be ON one time per month only 
for a couple of clock cycles). Thereby, its AFN value ( AFNR ) 
would be similar to the AFN value it would represent when 
it was new under the same (V,T) combination. Indeed in this 
method, we leverage the AFN extracted from the second 
sensor ( AFNR ) at time TCi (when it was ON) to calibrate the 
first sensor (Always-on Sensor or A-Sensor) whenever the 
R-Sensor is not accessible, i.e., the R-Sensor is OFF.Fig. 7  Missed and false alarms in different aging conditions

Fig. 8  Effect of aging on missed and false alarms
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Note that the R-Sensor may get ON in a periodic man-
ner or ad hoc (albeit rarely). Also, there is a possibility 
that both sensors are OFF simultaneously for some time, 
e.g., when the system in which the sensors are embedded 
is unplugged from power supply. This does not affect the 
efficacy of the proposed methodology, and in all such pos-
sible scenarios, our proposed calibration method works 
well.

In practice, we need to calibrate the extracted AFN of 
the main sensor (A-Sensor) in each (V,T) condition such 
that it represents the AFN for that (V,T) condition when 
the sensor was new. To do so, we need to know the amount 
that the A-Sensor’s AFN decreased due to aging to com-
pensate for such a difference. We use the R-Sensor’s AFN 
each time it gets ON to find that difference approximately. 
As the R-Sensor was rarely ON, its AFN represents the AFN 
of a new sensor. Although the value of AFNR-AFNA is not 
exactly similar in all (V,T) combinations, our experimental 
results show that its variance across different (V,T) pairs 
are not significant. Thus, such a difference can be found any 
time that the R-Sensor is ON ( TCi ) to be used to calibrate 
the A-Sensor’s AFNs in the time duration between TCi and 
TCi+1 where TCi refers to the ith time the R-Sensor gets ON 
during its lifetime.

It is noteworthy to mention that the value of AFNA gets 
lower and lower over time, albeit in the same (V,T) com-
bination, as aging makes the circuit slower. Thereby AFNA 
needs to be calibrated as mentioned to represent a fresh 
sensor. The experimental results shown in Sect. 7 confirm 
the efficiency of the DC scheme in decreasing the rate of 
false and missed alarms over time.

Figure 9a shows the overview of the process performed 
in calibration time of TCi . Here, the calibration time refers 
to the time when both sensors are ON. In the calibration 
time the AFN value of both sensors are extracted and their 
difference is calculated (as shown in Eq. 1). The chip con-
troller should configure the Adder/Subtractor mode in sub-
tract mode to find this difference ( � (in Fig. 2). On the 
other hand, during the runtime so called operating time, 
the � value is used to calibrate the AFNA , and finding Cali-
brated-AFNA (C-AFNA ) whose value is used by the system 
to decide if an alarm should be raised or not. As shown 
in Fig. 9b, the value stored in the memory is added to the 
AFNA at any point of time between [TCi, TCi+1] . At TCi+1 
the R-Sensor gets ON again and the � value is updated. 
Thus, in the operating time, The chip controller should 
configure the Adder/Subtractor to the addition mode.

Note that in this paper the calibration process is performed 
in hardware (using one Adder/Subtractor and a memory ele-
ment), however it is possible to conduct it in the software 

(1)� = AFNR − AFNA

level if there is supervisory software with an interface 
with chip. In both cases, it is clear that the imposed cost is 
negligible.

5.1.2  Machine Learning Based Calibration

To diminish the rate of aging-induced false and missed 
alarms even more, we augment our DC method with a 
Machine Learning (ML) scheme to have a more accu-
rate calibration during the runtime. We use a supervised 
machine learning scheme, with calibrated AFN as its 
labels and previous readings of AFN as its feature. Indeed, 
the concept of calibration is compatible with the regres-
sion problem in machine learning as we have an almost 
continuous change of AFN due to the operating condition 
variations (albeit in absence of attacks). Thereby, in the 
Machine Learning Based Calibration (ML-DC), among 
available ML schemes such as Neural Network (NN), Sup-
port Vector Regression (SVR), Linear Regression (LR), 
etc. We selected LR to compensate the aging-induced AFN 
changes as LR is lightweight. This results in much lower 
overhead if we want to implement it on hardware, and also 
it does not have any hyperparameter for tuning (in standard 
version as we used in this paper).

By using LR, a relation between current AFNA , and 
a few previous readings of AFNA as well as AFNR at the 
time points when both sensors were ON simultaneously is 
found. This relation is presented with a first-degree poly-
nomial whose coefficients are tuned during the training 
phase conducted beforehand as discussed below. The first 
degree polynomial has been considered as the aging impact 
is almost linear in average after a few weeks of aging. The 
results presented in Sect. 7 confirm this hypothesis. The 
model is used during the runtime to infer the current aging-
compensated AFNA.

Figure 10 shows an overview of the ML-DC approach in 
the calibration time. In this method, we add a small buffer 
(more precisely a shift register) in the chip to always store 
the last M − 1 readings of AFNA and AFNR quantities when 

Fig. 9  Differential Calibration Method. C-AFN
A
 is used to decide if 

an alarm should be raised or not. In the calibration time both sensors 
are ON and in the operating time only A-Sensor is ON
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both sensors were ON (related to the TCi−M+1 to TCi−1 time 
points). Our experimental results show that with an M as 
small as 5, we can get high accuracy. Then at time TCi when 
again both sensors are ON, the current value of AFNA along 
with the 2M − 2 values stored in the shift register are used 
to infer the aging-compensated AFNA which we call AFN′

A
 . 

Ideally, this value should be the same as AFNR at the same 
point of time but due to the ML approximating nature as 
well as the effect of process variations, they can be slightly 
different. We find their difference ( � ) as shown in Fig. 10 and 
use this value during the operating time when only A-Sensor 
is ON in order to calibrate its extracted AFN (i.e., AFNA).

Similarly, during the operating time (i.e., runtime), when 
only A-Sensor is ON, the current value of AFNA along with 
the values stored in the shift register are used to assess the 
AFN′

A
 which is added up with the � value computed at time 

TCi in order to find the calibrated AFNA (i.e., C-AFNA ) based 
on which alarm rising decision is made.

Training the model is done offline in software and then 
the model is embedded in the chip that includes the sen-
sors. As we use LR for training, the model is low cost and 
the hardware overhead is not significant. The details on 
overhead are discussed in Sect. 7. The training data can 
be either obtained from simulation or from the fabricated 
chips. In the former case, we use the simulation data of 
K sensor pairs when they are new as well as when they 
are aged for different aging durations. This approach has 
two advantages. Firstly, training the model using the data 
related to multiple sensor pairs results in mitigating (or if 
the dataset is large enough removing) the effect of process 
variations in the sensor’s outcome. This is due to the fact 
that the model learns the process variation effects gradu-
ally during the training with multiple sensor pair data, and 
benefits from such learning in inferring � value which in 
turn used for finding the C-AFNA . Secondly, conducting 
Monte Carlo simulations relieves us from the need for 

multiple fabricated-chips data. To do so, we can conduct 
Monte-Carlo aging simulations (e.g., via HSpice) in differ-
ent voltage and temperature conditions using aging aware 
technology libraries. The second option is scarifying a few 
chips to extract the data needed for training the model. In 
this case, we use K (K can be as low as 1 as our results 
confirm) chips after fabrication and place them in a climate 
chamber to accelerate aging under high temperature and 
voltage. We setup the chip such that the A-Sensor is ON 
and the R-Sensor is OFF when the chip is under stress. In 
regular time intervals, we make both sensors ON and per-
form AFN measurements. Such gathered data can be used 
for training the LR model.

Note that we consider a constant time interval between 
the calibration times (the time that both sensors get ON) for 
training the model. However, the time intervals between the 
calibration times can be variant during the chip usage. This 
is a realistic assumption as the data gathering (for training 
the model) is not performed during the chip usage and so 
it is completely under the control of designer (in case of 
simulation) or the fabrication facility (in case of using chips’ 
data as mentioned above). However, during the chip-usage 
the user may decide to turn off the whole system, and in 
turn both sensors at some point in time. Therefore, the cali-
bration may not be performed in fixed time intervals. The 
results discussed in Sect. 7 have been extracted with such 
an assumption and confirm the robustness of the proposed 
scheme even in such conditions.

5.1.3  DVFS Management

DVFS is very often implemented in modern chips because it 
allows to control at software level the power vs performance 
tradeoff, which plays an important role in User Experience. 
In practice, application specific chips only feature few DVFS 
valid configurations, such as 2 or 3 (e.g., fast & power-
hungry, slow and power-efficient, etc.). Notice that more 
complex chips that allow to configure the DVFS in an arbi-
trary manner become vulnerable to PlunderVolt and sibling 
attacks [9, 10, 15–17]. We thus assume that the system limits 
the number of DVFS conditions to a small number. The digi-
tal sensor shall adapt to those conditions. In practice, each 
of those conditions is decided on the basis that the system 
remains equally safe. Therefore the thresholds need only be 
adapted, albeit marginally. This can be implemented through 
a reconfiguration of the digital sensor threshold saved in a 
given non-volatile (and immutable) memory. To conclude, 
our perturbation detection method with digital sensors can 
apply equally well in various DVFS conditions, provided 
there is a means to carry out small reconfigurations upon 
DVFS changes.

Fig. 10  Deploying the ML-DC method to extract the � value in the 
calibration time when both sensors are ON to be used for updating 
the AFN

A
 value during the operating time when only A-Sensor is ON. 

DC is applied on top of LR. Here M = 5
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6  Hardware Implementation of the AFN 
Calculator and Alarm Generation 
Circuitries

Figure 11 depicts the hardware implementation of the cir-
cuitry used to assess the AFN value of each of the R-sensor 
and A-sensor in each clock cycle. In this figure, our digital 
sensor (recall Fig. 2) is shown in green. Let say it is the 
A-Sensor. In each clock cycle ( CCi ), the values stored in 
the sensors’ embedded flip-flops (i.e., O1,O2,… ,On1

 ) are 
given to the “Position Detector” circuitry in order to extract 
the index of the first flip-flop that experiences a phase shift 
to be used for sensor characterization (recall Sect. 4.2). The 
“Position Detector” can be as simple as a priority encoder. 
This index ( FNi ) is an integer value in [1, n1 ] where n1 refers 
to the number of flip-flops the sensor is composed of. The 
averaging of FNi over N = 2SEL clock cycles evaluates the 
AFN value where SEL is a primary input to the sensor cir-
cuitry. This architecture is also used to detect an “error” that 
corresponds to a significant change (called THR) between 
two consecutive FNi . This is necessary because the AFN is 
an averaged number, so it can filter out abnormal cases when 
there is a short duration disturbance.

The AFN Calculator module evaluates the AFN quantity 
based on the values of the FNi in the last N = 2SEL clock 
cycles stored in a buffer (in particular shift register) in this 
module. Indeed such shift register keeps the last N values 
of FNs and its content is updated in every clock cycle when 
a new FN value is shifted in. Without loss of generality, 
Fig. 12 shows this implementation for the case where SEL 
is a 2-bit input. Here, we can configure the hardware dur-
ing the runtime to decide about the number of clock cycles 
based on which we want to take the average and compute 
AFN, i.e., based on the application, we may want to com-
pute AFN for the last N clock cycles (where N ∈ {1, 2, 4, 8} 
in Fig. 12). This can be controlled by the “SEL” signal. In 

each clock cycle, the “SUM” signal represents the summa-
tions of all FNi s during the last N cycles which are used to 
find the AFN.

In this implementation, averaging is as simple as shifting 
the SUM value to the right. As shown, SUM keeps the sum 
of the last N readings of FNi and is updated in each clock 
cycle i by adding the last FNi value and subtracting the old-
est one ( FNi−N ). Thereby our run-time AFN calculation cir-
cuitry overhead is small and the AFN is calculated in every 
clock cycle. Indeed SEL is given as a primary input to the 
sensor circuitry (Fig. 11) and N = 2SEL shows the number of 
clock cycles used in AFN calculation. This enables the user 
to decide the number of clock cycles for AFN calculation 
during the run-time. Note that SEL and thus N should be 
fixed during the operation, and changing its value requires 
resetting the AFN calculation circuitry. The AFN value is 
not valid in the first N clock cycles after resetting.

Note that the shift register shown in Fig. 12 gets reset 
when the Reset input signal is asserted. Moreover, in each 
clock cycle, the calculated AFN value is extracted, and then 
calibrated using either the DC or ML-DC schemes (dis-
cussed earlier) to be used in each clock cycle to make deci-
sions on raising alarms based on Eq. (2) where as discussed 
earlier AFNl and AFNh refers to the lowest and highest 
acceptable AFN values, respectively. As discussed earlier, 
AFNl and AFNh are decided based on the acceptable range 
of operation for each application.

(2)Alarm =

{
“0” when AFNl ≤ AFN ≤ AFNh

“1” otherwise.

Fig. 11  Hardware implementation of sensor peripherals
Fig. 12  Hardware implementation for AFN calculation. The AFN 
calculator is shown for the case where SEL is 2 bit (thus 0 ≤ SEL ≤ 3)
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The Error Checker block in Fig. 11 looks for hard errors 
occurring during the runtime or the attacks that drastically 
change the FNi value from one clock cycle to the following 
one. Indeed if the difference of FNi and FNi−1 is higher than 
a predefined threshold THR, an error signal is asserted to 
show the abrupt change of the sensor’s outcome (Eq. 3). 
Such an error can be due to an intentional or unintentional 
voltage glitch or clock glitch. The value considered for THR 
depends on the application.

7  Experimental Setup and Results

The sensor circuitries we implemented in this research include 
n0 =9 leading buffers followed by n1=43 buffers and flip-flops 
(refer to Fig. 2). This sizing has been determined in order 
to have at least one phase change for all the PVT corners, 
for the range of (V, T) we considered in this study. The sen-
sors were implemented at the transistor level using 45 nm 
NANGATE technology [39]. For transistor-level simulations, 
we used Synopsys HSpice and the built-in HSpice MOSRA 
Level 3 model to evaluate the impact of NBTI and HCI aging.  
The sensors’ output were extracted under different voltage and  
temperatures and for different aging durations; up to 7 years of 
operation in steps of one month. The sensors were simulated 
for temperatures between −10◦C and 130◦C with 1◦C steps, 
and for the voltage source (Vdd) betwee n 0.75V and 1.4V with  
0.05V steps. We realized 5 different sensor pairs using Monte 
Carlo simulations to evaluate the efficiency of the proposed 
schemes in different process variations. The DC method is not 
affected by process variations as in this method each sensor 
pair uses its own data for calibration. Note that the effect of 
process variations in age=0 (when the device is new) results 
in a � value that is used for calibration of A-Sensor in all of its 
readings till the next point of time when the R-Sensor is also 
ON (after 1 month in our experiments).

To investigate the impact of process variations for the 
ML-DC scheme, we trained our model (linear regression) 
with the AFN values from “one” sensor pair (A-Sensor and 
R-Sensor) and used the model to infer the AFN values for 
another sensor pair. The results are promising confirming 
the negligible impact of process variations in the ML-DC 
scheme. For our investigations, we conducted 5 Monte Carlo 
simulations using a Gaussian distribution: transistor gate 
length L: 3� = 10% , threshold voltage VTH : 3� = 30% , and 
gate-oxide thickness tOX : 3� = 3% . As mentioned earlier for 
ML-DC we used a linear regression scheme due to its low 
cost and at the same time high precision in our case.

(3)
△FN = |FNi − FNi−1|

Error =

{
“1” when△ FN > THR,

“0” otherwise.

7.1  Impact of Aging in the Sensor’s Characterization

The first set of results depicts the impact of aging on the 
AFN value extracted for different (V,T) combinations. Recall 
that AFN quantity is used for characterizing the target sen-
sor. The graphs shown in Fig. 13 depict the AFN values in 
each considered (V,T) after 1, 2, 3, and 4 years of aging. 
These results have been extracted for the same sensor whose 
AFN values in different (V,T) combinations when the sen-
sor was fresh (not-aged) were shown previously in Fig. 5a.

Comparing Fig. 5a with the graphs shown in Fig. 13 con-
firms the impact of aging on the AFN values. In particular, 
as expected the device gets slower with aging and thus the 
setup time violations occur in the flip-flops in lower indexes 
when it is aged, thus resulting in lower AFN values. Such 
shifts can be clearly observed in the graphs shown in Fig. 13. 
The higher the age, the more decrease of AFN value in the 
same operating condition.

The takeaway point from these observations is that as 
the AFN value changes with aging, deciding about raising 
alarms solely based on AFN during the run time may result 
in inaccuracies in firing alarms. This confirms the need for 
an efficient calibration scheme to decrease such inaccuracies 
and justifies the calibration schemes proposed in this paper.

7.2  Missed and False Alarm Rates in the Sensors 
Equipped with DC and ML‑DC Schemes

Differential based Calibration (DC): Figure 14 illustrates  
the false and missed alarm rates with and without DC 
calibration. In these experiments the R-Sensor is ON for 8 
clock cycles per month and its AFN is used to calibrate the 
A-Sensor in the following month (till the next reading of 
R-Sensor). Thereby, the R-Sensor is not affected much by 
aging, and the rate of the aging-induced false and missed 
alarms in the R-Sensor is almost 0. When there is no calibra-
tion, we just have one sensor (i.e., the A-Sensor).

The results shown in Fig. 14a have been extracted for 
the first sensor pairs (lets say A − Sensor1 and R − Sensor1 
in case of calibration and A − Sensor1 only in the original 
case with no calibration). As depicted if the sensor is not 
equipped with DC calibration, the false alarm rate would be 
17.5%, 23%, 30%, and 38% after 1 year, 2 years, 4 years, and 
7 years of usage, respectively. Similarly, 13%, 16.5%, 21%, 
and 23.5% of alarms are missed after 1 year, 2 years, 4 years, 
and 7 years of aging, respectively when no AFN calibration 
scheme is deployed.

As observed in Fig. 14a the rate of false and missed 
alarms decreased tremendously when using DC. In par-
ticular, we can see that false alarms would be as little as 
1% in some cases and less than 5% in almost most cases 
when using DC. Similarly, the missed alarm rate reduced to 
below 5% in most of the age instances. That is known to be 
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a reliable edge case for the application of a sensor. Few picks 
are observed in missed and false alarm rates in Fig. 14a, e.g, 
at 33 or 40 months of aging in these experiments. This is 

because in the DC method, the R-Sensor turns on specific 
times (once per month in these experiments), and based 
on the (V,T) condition in that specific point of time, the 

Fig. 13  Contour graphs depicting AFN variations in different aging conditions

Fig. 14  False and missed alarms with and without sensor calibration via DC method
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calibration value is decided. Thus such selection follows a 
random nature.

Figure 14b displays the false and missed alarm rates 
related to both an original and a post-calibrated digital 
sensor for another process variation ( A − Sensor2 ). Here, 
R − Sensor2 was used for calibration. As shown in this fig-
ure, similar to the case shown in Fig. 14a, DC calibration 
tremendously enhances the accuracy of alarm generation, 
i.e. both false and missed alarm rates are reduced.

To depict the impact of process variations in more details, 
we performed DC calibration on 5 different sensor pairs real-
ized from 5 Monte Carlo Simulations. Table 1 shows the 
average false and the missed alarms over the course of 7 
years. As depicted, with DC calibration, the rate of false and 
missed alarms in Sensor1 (referring to A − Sensor1 ) drops 
to 3.30% and 5.33% from 26.70% and 18.13% in case of no 
calibration, respectively. The other sensors show a very simi-
lar result. For example, the Sensor5 ’s false and missed alarm 
rates would decrease from 27.68% and 18.23% to 4.57% and 
4.99% on average in the course of 7 years after DC calibra-
tion, respectively. Based on these results, almost all sensors 
experience the same rate of improvement in accurately rais-
ing alarms. we can conclude that using the DC calibration 
process, we were able to resolve 84.15% of the false alarms 
and 70.53% of the missed alarms. The takeaway point from 
these observations is that DC scheme works very efficiently 
regardless of process variations.

Machine Learning based Differential Calibration 
(ML-DC): Figure 15 illustrates how the false and missed 
alarm rates reduce when the ML-DC calibration scheme is 
deployed. In these experiments, as also mentioned earlier, 
the R-Sensor is ON for 8 clock cycles per month. To show 
that the impact of process variations is negligible in our 
results, we only used data from sensor pair 1 to train the 
linear regression model and tested the model for the other 
4 sensor pairs.

For training the LR model, we randomly selected 1000 
data points (in total). Each data point includes the AFN 
values of the A − Sensor4 and R − Sensor4 (in a randomly 

selected time TCi which is between 1 and 84 months, and 
under a randomly selected voltage and temperature condi-
tion) along with the last 4 readings of the AFN values of 
these sensors when both sensors were ON (under other ran-
domly selected (V,T) conditions). The model built during 
the training phase was then tested against all data points of 
the other 4 sensor pairs(> 165, 000 points related to differ-
ent (V,T) combinations in different aging durations for each 
sensor).

Note that in  real applications the data used for train-
ing can be either attained via aging simulations (e.g., via 
HSpice) in different voltage and temperature conditions 
using aging aware technology libraries, or via scarifying 
only one chip after fabrication to use its data for training 
the model. The victim chip is placed in a climate chamber 
to accelerate aging under high temperature and voltage, and 
it is setup such that the A-Sensor is ON and the R-Sensor 
is OFF when the chip is under stress. Note that although 
a constant time interval between the calibration times (the 
time that both sensors get ON) is considered for training the 
model, the time intervals between the calibration times can 
be variant during the chip usage. The results shown for the 
ML-DC scheme are based on such assumptions.

Figure 15 depicts the false and missed alarm rates for 
Sensor pair 1 and Sensor pair 5 when ML-DC is used assum-
ing that Sensor pair 4 was used for training the model. As 
shown in both cases miss alarm rate decreased more com-
pared to the case when DC was used. Table 2 shows the 
effect of process variations in more details. Here, the average 
of the false and missed alarms over the course of 7 years 
are shown when the model was trained using the data from 
Sensor pair 4. As depicted, with ML-DC calibration on aver-
age, over the course of 7 years, the rate of false and missed 
alarms are 4.68% and 2.82%. Comparing these results with 
the results reported for DC in Table 1 shows that miss alarm 
rates decreased significantly ( ≈ 2.42% more). The false 
alarm rate in ML-DC is very slightly higher than DC (on 
average 4.68 compared to 4.36). Note that as mentioned also 
earlier, to ensure security missed alarms should be low. In 
practice, false alarms are more related to the availability of 
the device.

The takeaway point from these observations is that 
ML-DC can decrease the missed alarms considerably, thus 
is a promising solution when security is taken into account.

7.3  Effect of Process Variation on the Calibration 
Schemes

To illustrate the process variation effects more clearly, we 
present the distribution of the alarms raised by our sensor 
when no calibration scheme is deployed as well as when 
DC or ML-DC was used. The heatmaps depicted in Fig. 16 
illustrate how many of the 4 target sensor pairs will raise 

Table 1  The average rate of false and missed alarms over the course 
of 7 years for 5 sensor pairs when DC is deployed and the R-Sensor is 
ON for a few clock cycles per month

Sensor Pair No. False Alarm (%) Missed Alarm (%)

Original DC Calibrated Original DC Calibrated

1 26.70 3.30 18.13 5.33
2 27.77 4.14 17.58 5.19
3 26.96 3.77 17.25 5.39
4 28.48 5.13 17.75 5.30
5 27.68 4.57 18.23 4.99
Average 27.51 4.36 17.78 5.24

667Journal of Electronic Testing (2021) 37:653–673



1 3

alarms in each (V, T) combination when the original sensor 
is new and no calibration scheme is used (Fig. 16a), when 
the original sensor has been aged for 42 months but no cali-
bration scheme is used (Fig. 16b), as well as when DC or 
ML-DC were used for a 42 month old sensor (Fig. 16c, d). 
Since in ML-DC, one sensor pair is used for training and 
the other 4 sensor pairs are used for evaluation, for the sake 
of comparison we also show the results of 4 sensor pairs for 
the cases shown in Fig. 16a–c.

As shown in Fig. 16a, for the new sensors without cali-
bration in 94.73% of conditions either no sensor raised an 
alarm or all of them raised an alarm. A very similar trend 
is observed when the device is aged for 42 months, i.e., 
in almost all cases either none or all of the sensors raise 
an alarm in a (V,T) combination. However, as shown and 
also discussed earlier, due to the aging the AFN values are 
changed (comparing Fig. 16b with Fig. 16a) and so some 
of the situations where none or all of the aged sensors 
raise an alarm, can be related to the cases where all missed 
raising an alarm or all raised a false alarm, respectively.

As depicted in Fig. 16c, d, when DC and ML-DC cali-
bration is used respectively, again in most of (V,T) condi-
tions either no or all sensors give alarm but comparing 
these figures with Fig. 16a shows that the rate of missed 
and false alarms has been reduced significantly when using 
these 2 calibration schemes. A few cases that result in 1-3 

sensors raise an alarm is unavoidable due to process vari-
ations but as shown those cases are very infrequent.

The takeout point from these observations is that both 
calibration methods performed well on generating alarms 
in aged devices regardless of process variations as in 
almost all cases all 4 sensor pairs resulted in an alarm or 
none of them raised any alarm and the rate of missed and 
false alarms has been reduced significantly when these cal-
ibration schemes are used. Also, we observed that ML-DC 
was shown more efficient in missed alarms reduction, and 
in case of false alarm, DC and ML-DC are comparable, 
yet the reduction comparing to the original is substantial.

7.4  Overhead Imposed by DC & ML‑DC Schemes

As mentioned earlier, the overhead of applying the pro-
posed calibration techniques is insignificant. In particular, 
as depicted in Fig. 9, to realize DC, only one adder/subtrac-
tor and a memory cell is needed. On the other hand, based 
on Fig. 10, for ML-DC an adder/ subtractor, a memory cell 
and a shift register to keep the last N readings of each of the 
two sensors are needed. As our results shows with N as low 
as 4, ML-DC can considerably decrease the rate of false and 
missed alarms. In addition, in this case, we need 5 multipli-
ers and 4 adders to implement the LR scheme in hardware. 
Note that the training is performed in software level and the 

Fig. 15  False and missed alarms with and without calibration via ML-DC method. Sensor Pair 4 was considered as baseline for training in both 
cases
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wights for the LR model are fed to the chip. For calibration, 
we duplicate the sensor (insert the R-Sensor). However, this 
replication is insignificant considering the fact that the sen-
sors are mainly used in large systems and not small chips. 
As the sensors and in turn their calibration circuitries are not 
in the critical path of the main circuitry (they are separate), 
they impose no delay overhead to the circuit. Moreover, the 
power overhead is negligible as in the normal situation the 
environment is steady (no change in temperature or voltage 
or clock frequency). Thus the sensor circuitry does keep the 
same values (AFN) most of the time.

7.5  Security of the Sensor Against Side‑Channel 
Attacks on Protected Chips

It is clear that the data sensed by the raw digital sensors is 
very sensitive. Indeed, it allows for the chip self power moni-
toring. This is the premise of the PlunderVolt side-channel 
attack. As this attack definitely belongs to our threat model 
(recall Sect. 2.1), it shall be mitigated.

Clearly, sensors do bring sensitive information (a side-
channel or even a subliminal communication channel). 
Therefore, environmental sensing shall be considered sen-
sitive and shall not be outputted.

A same usage practice regarding sensors is therefore to 
restrict their usage to privileged processes, implementing 
the DVFS strategy. User processes are denied access to the 
sensors, since we have no means to distinguish a licit user 
from an attacker.

8  FPGA Implementation of the Deployed 
Digital Sensor

This set of experiments have been realized by implement-
ing our sensor on a Xilinx Spartan 6 FPGA resided on a 
SAKURA-G board. The layout is shown in Fig. 17. We 

Fig. 16  Effect of process variation on the raised alarms in 4 sensor pairs. The figures show how many of the 4 sensor pairs raised an alarm in 
each of (V,T) conditions

Table 2  The average rate of false and missed alarms over the course 
of 7 years for four sensor pairs when ML-DC is deployed and the 
R-Sensor is ON for a few clock cycles per month. Sensor pair 4 has 
been used for training the model

Sensor Pair No. False Alarm(%) Missed 
Alarm(%)

1 4.51 2.82
2 4.83 2.88
3 4.48 3.06
5 4.90 2.53
Average 4.68 2.82
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implemented 8 sensors, shown in red, in 2 rows (on a single 
FPGA) each with 22 leading buffers along with 20 sampling 
flip-flops and their related buffers. Here, the AFN value is 
computed based on the flip-flop outcomes in 8 consecutive 
clock cycles. In these experiments, we didn’t change the 
voltage and temperature, rather we show how the change 
of the system clock frequency can be caught by our sensor 
resulting in raising an alarm when the circuit operates out 
of spec.

Along with our sensor, we have implemented a round-
based AES core (shown in blue in Fig. 17). The AES module 
has been implemented close to the sensor modules. The AES 
cipher used as a proof of concept and it can be replaced by 
any other target system. Here we want to show if the sensors 
can detect the clock manipulation in AES.

Sensors and AES all are fed with the same clock signal. 
We implemented 8 sensors as a proof of concept to inves-
tigate the impact of process variations in the sensors’ out-
come. The sensors were synthesized using Xilinx ISE and 
we performed place and route by ISE FPGA editor manually 
to make hard macros such that all sensors are similar in 
terms of placement and routing of the underlying compo-
nents. Then the hard macros were instantiated throughout 
the FPGA yet close to the AES module. UART communi-
cation is used to communicate with the FPGA and the PC.

We used our AFN based sensor characterization to detect 
and report the fault attack realized by clock manipulation. 
Our attack model assumes that the attacker tries to force 
denial of service in AES by increasing the clock frequency 
beyond the highest limit, thus resulting in the circuit mal-
function. Accordingly, we fed the AES with a random plain-
text and ran the circuit at various clock frequencies. In each 
case, we collected the sensors’ outcome (AFN value) along 
with the AES ciphertext to check if AES works properly at 
each of the considered frequencies or not.

The clock frequency was regulated in steps of 2 MHz 
from 70 to 100 MHz. We observed that AES will fail at 
clock frequencies beyond 86 MHz. In our experiments, this 
value was related to AFN=8.5 in our first sensor (Sensor-1) 
and very similar value in the other 7 sensors. Note that both 
AES and sensor operate under the same clock.

Figure 18 depicts the AFN variations in each of the 8 sen-
sors when the circuitries operate at various frequencies. As 
shown the higher the frequency, the lower the AFN value. 
The parts shown in red in this figure relate to the conditions 
under which an alarm should be raised (AFN <8.5). In con-
trast, the grey areas denote the safe conditions. Note that we 
showed this outcome as a proof of concept confirming the 
usability of AFN characterization and the deployed sensor 
in detecting fault attacks.

Another observation that can be made from Fig. 18 is 
the similarity of the sensors’ outcome confirming that the 
impact of process variation is negligible given that the sen-
sor designs and placement and routing of the components 
embedded in each sensor are similar. In practice, to sense 
the voltage and temperature of the target circuitry the sen-
sors should be placed close to the targeted circuits (AES in 
our case). Indeed in real industrial applications, multiple 
sensors are used and placed all over the chip to better sense 
the operating conditions of each part of the circuit. This is 
illustrated in Fig. 19 on the example of a security system-on-
chip; the use-case is that representative of Common Criteria 
Protection Profile 0084 [40].

Indeed, the above experiment validates our digital 
sensor’s ability to detect timing violations at the hard-
ware level. Furthermore, we discovered that the sensor’s 

Fig. 17  The layout of the 8 sensors implemented on a single Spar-
tan 6 FPGA resided on a SAKURA-G board

Fig. 18  AFN variations for 8 sensors implemented in an FPGA fabric 
when the circuit operates at different clock frequencies

Fig. 19  Multiple digital sensors are instantiated, each in the vicinity 
of a sensitive resource; this allows for a large coverage of the chip 
various assets
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characterization did not change dramatically in hardware as 
a result of process variation, with the overall range of AFN 
deviation being within 0.5 in the majority of cases. The key 
takeaway points from these observations is that the sensor 
can quickly detect timing violations caused by clock fre-
quency manipulations in hardware, and the process variation 
has a minimal impact on its characterization.

9  Conclusion and Future Directions

In this paper we showed that digital sensors do age and 
the effect of such aging incurs a drift in the fault detection 
thresholds. Therefore, digital sensors require recalibration 
dynamically. Indeed, sensible deviations which can cause 
abnormal false positive and false negative shall be fixed in 
digital sensors. However, the prediction of such problems is 
difficult. In this respect, we proposed a very simple method 
to quantify the amount of such deviation: an idle sensor is 
instantiated, and the differential status between the func-
tional and the idle sensor reveals the amount of discrepancy 
imposed by aging.

We proposed two calibration schemes. The first one is 
rather immediate: the active sensor thresholds are translated 
according to the observed difference between the idle and the 
active sensors. The second one relies on a more sophisticated 
approach, i.e., leveraging machine learning techniques. Both 
methods allow to successfully alleviate the effect of aging, 
hence to maintain low levels of false and missed alarm rates.

As a perspective, we intend to quantify the reliability of 
our both approaches, under the prism of safety. Indeed, for 
mission-critical applications, it is required to model accu-
rately the FIT (“failure in time”) rate as defined in the func-
tional safety standard IEC 61508.
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