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Abstract— The last decade has witnessed remarkable research
advances at the intersection of machine learning (ML) and
hardware security. The confluence of the two technologies has
created many interesting and unique opportunities, but also left
some issues in their wake. ML schemes have been extensively
used to enhance the security and trust of embedded systems
like hardware Trojans and malware detection. On the other
hand, ML-based approaches have also been adopted by adver-
saries to assist side-channel attacks, reverse engineer integrated
circuits and break hardware security primitives like Physically
Unclonable Functions (PUFs). Deep learning is a subfield of
ML. It can continuously learn from a large amount of labeled
data with a layered structure. Despite the impressive outcomes
demonstrated by deep learning in many application scenarios,
the dark side of it has not been fully exposed yet. The inability
to fully understand and explain what has been done within the
super-intelligence can turn an inherently benevolent system into
malevolent. Recent research has revealed that the outputs of Deep
Neural Networks (DNNs) can be easily corrupted by impercep-
tibly small input perturbations. As computations are brought
nearer to the source of data creation, the attack surface of DNN
has also been extended from the input data to the edge devices.
Accordingly, due to the opportunities of ML-assisted security
and the vulnerabilities of ML implementation, in this paper,
we will survey the applications, vulnerabilities and fortification of
ML from the perspective of hardware security. We will discuss
the possible future research directions, and thereby, sharing a
roadmap for the hardware security community in general.
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I. INTRODUCTION

THE past decade has witnessed a rapid advance in
Machine Learning (ML) especially Deep Learning (DL)

algorithms. With their intrinsic capabilities for fast and
efficient data processing, ML solutions have come to the fore
in various domains including computer vision, self-driving
vehicles, Internet-of-Things (IoT), Industry 4.0, healthcare
and cybersecurity. An important facet of ML algorithms is
the amount and type of data used for training. By training a
statistical model adequately for a target application, the trained
model can make predictions and inferences that exceed
human-level accuracy, which shifts fully autonomous decisions
by ML from prospect to imminent reality. In recent years,
ML schemes like Support Vector Machines (SVM), Logistic
Regression (LR) and Deep Neural Networks (DNN) have been
considered as promising solutions in solving conventional
problems for hardware security including detection of
Hardware Trojans (HT) and counterfeit Integrated
Circuits (ICs), assessment of Physically Unclonable
Function (PUF) and investigation of system malware.

With the improvement of Very Large Scale
Integration (VLSI) technology and the shrinking transistor’s
feature size, more complex systems can be integrated in
a single die. The high complexity and cost of IC design
and fabrication have motivated the outsourcing of design
and fabrication to different parties across the globe. The
globalization of IC design flow has given rise to various
hardware security threats. Among which, HT and IC
counterfeiting have received the lion’s share of attention.
HT are malicious modifications to a circuit that are inserted
by malicious entities present in the untrusted IC supply
chain. A HT can be used for various purposes, e.g.,
circuit malfunction, power draining, compromisation of
sensitive information, etc. [1]. Identification and avoidance of
counterfeit ICs are highly crucial for the industry, government
sectors and end-users. This is because even if such an IC
works properly initially, it may have a shorter lifetime,
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thus jeopardizing the reliability of the system in which
it is embedded [2]. The methods presented in [3]–[6] are
but a few examples that benefit from ML approaches in
detecting such security vulnerability. On the other hand,
IC metering schemes, particularly those that exploit Physical
Unclonable Functions (PUFs) for chip identification, have
been used to detect counterfeit ICs [7]. However, PUFs have
been shown to be vulnerable to modeling attacks [8], [9]
in recent years. Through the deployment of ML schemes,
their challenge-response behavior can be predicted to gain
successful authentication. Another area where ML techniques
are widely applied is malware detection through hardware
signatures. With the advantages of high tamper-resistance
and low overhead, hardware signatures-based profiling
techniques have been popularly used for the detection of
malicious behaviors of programs running on general purpose
computing systems as well as resource-constrained embedded
and cyber-physical systems [10], [11]. ML techniques,
which bring significant benefits in building accurate models
and performing effective and efficient classification of
benign and malicious behaviors, have been leveraged
to improve the accuracy of hardware signature-based
detection for various types of malware, such as kernel
rootkits, network attacks, ransomware and cryptomining
malware [12]–[15].

Despite the prominent successes of using MLs in hardware
security [16], the deployed ML models also face a high risk
from evolving threat landscape as ML applications become
pervasive and new use cases emerge. The training data col-
lected from public surveillance, human biometrics, financial,
and medical applications, etc. often contain private and person-
ally identifiable information. Rogue data can also be injected
maliciously to poison the learning or corrupt the output of
a DNN. The hyperparameters and weights of well-trained
ML models are valuable Intellectual Properties (IPs). Their
unauthorized access and disclosure can result in not only
significant revenue loss but also leakage of unprotected assets
for ML models that are deployed for security applications.
The economic gain and tangible incentives have attracted
various hardware attack surfaces on the ML model executed in
both powerful computing platforms in the cloud environment
and resource-constrained edge devices. Early works focus on
studying the effect of attacking ML hardware under simulated
or emulated environments [17]–[19]. Recent fault attacks
show that it is indeed possible to falsify the output and
breach the integrity of MLs on their physical implementations.
Remote attacks can degrade the ML’s prediction accuracy on
a powerful server through malicious manipulation of model
parameters stored in the off-chip memory [20]. On the edge
computing platforms, laser beam interference [21] and glitch
injections [22], [23] have been exploited to tamper the internal
processing of a ML model, resulting in a successful misclassi-
fication of the target input. Other vicious goals such as stealing
or reverse engineering the trained model architecture/weights
and training data are often achieved through side-channel
attacks or a combination of side-channel and fault injection
attacks. Similar to traditional side-channel attacks that target
cryptography, side-channel attacks targeting ML exploit the

correlation between ML assets and certain measurable metrics
of a specific ML implementation, rather than any weakness of
the ML algorithm. Such attack tampers with the privacy and
confidentially of ML assets, such as the input data to a ML
model, and the model structure and/or parameters. Depending
on the computer systems (e.g., Central Processing Unit (CPU),
Graphical Processing Unit (GPU), Field Programmable Gate
Array (FPGA), etc.) on which the ML algorithms are imple-
mented, different types of side-channels have been exploited,
such as power [24], Electromagnetic (EM) [25], cache tim-
ing [26], and memory access patterns [27].

This paper surveys recent advances of the aforementioned
ML applications for hardware security and the security of
ML on hardware implementation. The rest of the paper is
organized as follows. Hardware Trojan, IC counterfeiting,
ML models including SVM, LR and DNN, and hardware
implementation platforms for ML are introduced in Section II.
Section III presents ML techniques for hardware security
enhancement such as circuit abnormality identification, PUF
robustness evaluation and malware detection. The hardware
attack methodologies and countermeasures of deployed ML
models are described in Section IV. A reflection of both sides
of ML in the hardware security arena is further discussed in
Section V. Section VI concludes the paper.

II. BACKGROUND

A. Supply Chain Security Threats

1) Hardware Trojan: Globalization of IC design flow has
jeopardized the security and trustworthiness of ICs and intro-
duced new security vulnerabilities including but not limited to
(1) tampering the circuit to insert malicious circuitry in the
form of HTs aiming at denying services or leaking sensitive
data; (2) reverse engineering the circuit aiming at gaining
information about the design, and consequently stealing and
claiming the ownership of the IPs; (3) cloning and unau-
thorized overproduction by the foundry; and (4) recycling
ICs from outdated systems and utilizing them in the tar-
get systems. Such security threats can impose significant
financial burden on industry, government sectors and end
users, and/or jeopardize their security via leaking sensitive
data, taking control of the system or forcing denial of
service [28].

In practice, malicious modification of hardware in untrusted
fabrication facilities has emerged as a major security concern.
The inserted Trojan may result in hardware malfunction or
leak sensitive information from a chip [29]. A HT can be
inserted into a chip through an untrusted fabrication facility
or by a malicious system integrator or designer. The HTs
inserted are usually stealthy in nature in order to escape
the verification and manufacturing test processes. This makes
their detection highly difficult, especially when there is no
Trojan-free reference to compare with. Design for trust tech-
niques that do not assume a trusted foundry in their threat
model, such as logic obfuscation, has thus been actively
explored. Besides its primary objective of protection against
reverse engineering-based IC piracy, logic obfuscation can
prevent Trojan insertion by untrusted system integrators or
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the manufacturing facilities by altering the signal transition
probabilities or concealing the real functionality of the design
to make fulfilling the stealthy requirement of Trojan insertion
harder. This can increase the chance of Trojan detection during
the manufacturing test process.

A HT mainly consists of trigger and payload circuitries.
It alters the target circuit’s functionality or leaks the secret
data upon activation [30]. The trigger and payload circuitries
can be even as small as one gate. Given that the Tro-
jans are rarely triggered, detecting them via structural and
functional testing is highly challenging [31]. On the other
hand, Trojan detection based on side-channel information col-
lected from ICs, including power side-channel analysis [32],
regional supply currents analysis [33] and path delay inves-
tigations [30], [34], has received the lion’s share of attention
in recent years. However, the fabrication process variations
make such side-channel based Trojan detection schemes more
challenging.

2) IC Counterfeiting: IC counterfeiting is another crucial
security threat that needs to be tackled, and mainly refers to the
production and/or distribution of illegitimate chips. A counter-
feit chip can be recycled, faulty, out-of-spec, overproduced or
cloned circuitry [35]. A recycled IC is obtained from outdated
systems to be embedded in the target system [36]. However,
as the electrical specification of such IC has already been
changed due to aging, it experiences a degraded performance
and ultimately faster wearout [37].

Realizing illegitimate ICs via reverse engineering a fabri-
cated chip through delayering the chip and subsequent imaging
is considered as a major IC counterfeiting threat [38]. Logic
obfuscation and camouflaging techniques can help to mitigate
such vulnerabilities [39]. On the other hand, IC overproduction
without the consent of the design company can result in the
infiltration of unauthentic chips into the market. Such IC
counterfeiting threat is mainly mitigated via logic obfuscation,
split manufacturing [40], and metering schemes [41]. The
latter can highly benefit from deploying Physically Unclonable
Functions (PUFs) to individualize the protection [42], [43].
Thanks to the imperfections of integrated circuits’ fabrication
process, each PUF generates a unique signature for each die.
By embedding a PUF in each fabricated chip, the design
company can trace the realized instances. PUFs are not only
useful for IC metering purposes, but also for generating secret
data such as keys for cryptographic modules. Moreover, PUF
primitives can be deployed for authentication purposes in a
network of multiple nodes such as IoT frameworks [44], [45].

In sum, several approaches have been proposed in the liter-
ature to tackle the supply chain security threats. However, due
to the large size and complexity of the state-of-the-art circuits,
and the versatility and stealthy nature of hardware attacks,
focusing on conventional security-preserving algorithms to
encounter hardware security threats is neither sufficient nor
efficient. Thereby, deploying learning-based schemes, i.e., ML
methods, to leverage the security of the IC can be highly bene-
ficial. Meanwhile, the adversaries also benefit from ML-based
schemes to exploit the vulnerabilities of the supply chain. This
results in a cat and mouse contest between the legitimate and
rogue elements in the supply chain.

Fig. 1. Machine learning algorithms: (a) SVM, (b) LR, and (c) DNN.

B. ML Models

ML models have been demonstrated to improve the domain
of Hardware security in various scenarios, particularly in HT
detection. In this section, we will discuss some fundamental
ML models.

1) Support Vector Machine: SVM is a supervised ML
model that classifies the training data with the help of a
hyperplane, as expressed in Eq. (1) [46]. As shown in Fig. 1(a),
SVM utilizes the regularization parameter to scale down the
error margin that occurs in ML classification by introducing a
region between two classes of data, with a margin of 2

‖w‖ as
shown in Eq. (2). This margin is further optimized with the
creation of nonlinear classifiers by applying a kernel to maxi-
mize the margin of hyperplanes [47]. One of the most common
kernels used in SVM is the Radial Basis Function (RBF).
It is important to fine tune the kernel hyperparameters to
optimize the performance of the SVM classifier. One-Class
SVM (OC-SVM) is a common category of SVM that employs
the training data from one class to develop the model [48].

wT x + b = 0 (1){
wT x + b ≥ 1

wT x + b ≤ −1
(2)

2) Logistic Regression: Similar to SVMs, LR is also a
supervised learning scheme. Eq. (3) shows the linear relation-
ship between the log-odd and the predictor variables xk . The
logistic function is naturally sigmoid, which models the binary
dependent variables along the function. As shown in Fig. 1(b),
the function follows a ‘S’ shape. Input values are combined
linearly using the coefficients to predict a binary output. The
LR classifier determines the optimal coefficient values from
the training data through the maximum-likelihood estimation
approach [49]. Eq. (4) shows the classification equation to find
the best fit β parameters of the model.

logb
a

1 − a
= β0 + β1x1 + β2x2 + · · · (3)

y =
{

0, β1x1 + β2x2 + · · · ≥ 0

1, otherwi se
(4)

3) Deep Neural Network: A DNN consists of several layers,
including an input layer, an output layer, and multiple hidden
layers in between them. Fig. 1(c) shows a neural network with
two hidden layers. The weighted input connection, transfer
function, and output connection generate the fundamental
computational units, called neurons, at each layer, as shown
in Fig. 2 [50]. The outputs of each layer pass through an
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Fig. 2. A simple example of a DNN with 4 layers, where a2 is the 2nd

neuron of layer 2, b3 is the 3rd neuron of layer 3, and the weight between
them is w32.

activation function before they are used as inputs to the
subsequent layer, as shown in Eq. (5). The DNN architecture is
trained through a back-propagation algorithm, which updates
the synaptic weights based on the loss function. Eq. (6)
shows the four fundamental equations that support the back-
propagation. The first equation shows a symmetric product
of the vector �aC and σ ′(zL). δL represents the error of the
output layer. �aC is defined as a vector that contains the com-
ponents of the partial derivatives ∂C/∂aL , where C is the
cost function of the output layer, and aL is the output layer
activation neurons. σ ′(zL) is a vector space measures how fast
all the activation function σ is changing at the output layer’s
weighted inputs zL . The second equation shows a symmetric
product of the error at the current layer δl in terms of the
error in the next layer δl+1, where (wl+1)T is the transpose of
the weight matrix wl+1 for the (l + 1)-th layer. In the third
equation, n is the input layer neuron, and m is the output layer
neuron. In the fourth equation, wl

mn is the weight at the l-th
layer between input neuron n and output neuron m.

bm
l = λ

(∑
k

wl
mnbl−1

n + al
m

)
(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δL = �aC � σ ′(zL)

δl = ((wl+1)T δl+1) � σ ′(zl)

∂C

∂al
m

= δl
m

∂C

∂wl
mn

= al−1
n δl

m

(6)

The most prevalent type of DNNs is Convolutional Neural
Networks (CNN). Majority of the CNNs follow a similar
construction of cascading or stacking convolutional sections.
Each convolutional section can contain multiple convolu-
tional blocks for feature extraction, followed by one or more
fully-connected blocks to compute the class scores. Rectified
Linear Unit (ReLU) is the default activation function for
deep network. Typically, each convolutional block contains
a convolutional layer, a ReLU layer and discretionally a
normalization layer and a pooling layer to reduce the spatial
dimension, and each fully connected block consists of a fully
connected layer and a ReLU layer. A single step of convolution
is implemented by applying a filter to the receptive field of an

input as follows:

y =
K∑

i=1

K∑
j=1

D∑
d=1

wi, j,d × ai, j,d + μ (7)

where K is the filter height/width, D is the filter depth, w is
the filter weight, a is an input element and μ is the bias.

Since y is only an element of the output feature map of a
convolution layer, the total computation cost of a convolution
layer is that of a single step of convolution in Eq. (7) multiplied
by the height, width and depth of the output feature map.

The output features b of a fully-connected layer can be
computed by a matrix-vector multiplication as follows:

b = W z + μ (8)

where z is the input vector and W is the weight matrix.
From Eqs. (7) and (8), the fundamental arithmetic operation

in both the convolutional layer and the fully-connected layer
is the Multiply-and-Accumulate (MAC) operation. In modern
DL models, hundreds of million to billion MACs are exe-
cuted per image before an inference is made. This enormous
computational requirement has posed a great challenge in the
efficient hardware implementation of a trained DNN model.

C. Hardware Platforms for ML

A practical ML system is built beyond the consideration of
modeling and training. When it comes to the deployment of a
ML project, the computing platform is the workhorse to drive
the performance per watt in each inference. This can make a
difference between the success and failure of a ML project.
DNN, as a popular subfield of ML algorithms that revolution-
izes computer vision and speech recognition applications, has
spurred the research and development in both temporal and
spatial architectures for their efficient implementation. This is
because the remarkable accuracy of most DNN applications is
achieved with an enormous amount of computational power
and memories. Three main computing platforms that cater
to the computing and storage requirements of different DNN
models and workloads, and their prospective security risks are
elucidated below.

1) Cloud Servers: Powerful cloud-based servers are usu-
ally equipped with GPU and CPU clusters, which aim
to provide reliable offline model training and responsive-
ness to multi-user concurrent queries. In these platforms,
DNN performance is highly dependent on the Generalized
Matrix Multiply (GEMM) function as both convolutional
layer and fully-connected layer can be mapped to a matrix
multiplication operation. Different optimization kernels can
be implemented for CPU and GPU. For instance, Open
source Basic Linear Algebra Subprograms (OpenBLAS) and
NVIDIA CUDA® DNN library cuDNN are parallelized
backends for GEMM execution on CPU and GPU, respec-
tively [51]. Computational transforms can further reduce the
number of operations and storage requirements for different
model architectures, for example, the layer types, shapes and
sizes. Specifically, Fast Fourier Transform (FFT) [52] can be
adopted if the filter size is greater than 5 × 5 and Winograd
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Fig. 3. Timing behaviours of ReLU and sigmoid functions running on ARM
Cortex-M3 with CMSIS-NN [25].

transformations [53] can be applied for filters of size 3 × 3
and below. Although the computational efficiency can be
improved by mapping and transformation techniques, these
optimizations may unconsciously reveal the key parameters of
the DNN model [26].

The rise of Artificial Intelligence (AI) has also pressur-
ized cloud developers into the investment of expensive and
complex heterogeneous computing resources to satisfy the
fast-growing appetite for data processing. FPGA fabrics have
been added to overcome the von Neumann bottleneck for very
high throughput learning requirements. The run-time reconfig-
urability of FPGA fabrics enables evolutionary development
of multi-tenant storage, applications, and networking, which
creates a new business model of cloud AI resource leasing.
For example, Baidu has recently released an FPGA-based
DNN acceleration service where a single card can provide
three Tera Operations Per Second (TOPS) of fixed-point
computing capabilities [54]. Cloud computing leaders such
as Amazon, Microsoft, Tencent and Huawei have also pack-
aged FPGA computing resources into cloud services on their
multi-tenant servers, which allow the cloud computing users
to purchase FPGA instances for accelerating their specific
learning applications without having to maintain a complex
IT computing system. This emerging trend of heterogeneous
hardware resource sharings for the development of different
AI applications may open up new attack avenues for ML
poisoning and other security threats. For example, some
remote attack vectors like rowhammer from the unprivileged
program [55] can be a lurking danger to DL model deployed
on cloud-based instances.

2) Embedded Processors: Not all DNN applications can
afford the luxury of cloud computing. Owing to connectivity,
energy and privacy reasons, some applications may require
the DNN to be deployed in low-cost embedded systems,
with very limited computing resources and power budget,
including the always-on applications and intermittent energy
harvesting IoT endpoints. For example, some portable and
wearable devices may only have a low-cost low-power micro-
controller. Dedicated mathematical functions developed for
complicated processors like CPU and GPU are too expensive
to be implemented on the embedded processor of these small
devices. Thus, lightweight computation kernels, e.g., ARM
Cortex Microcontroller Software Interface Standard for Neural
Network (CMSIS-NN) [56], optimized for microcontroller

Fig. 4. A general deep learning accelerator with a PE array and separate
clock/power domains for DVFS [23].

have emerged to fill this gap. Single Instruction, Multiple Data
(SIMD) instructions are utilized to compute the neural network
operations in parallel. Meanwhile, activation functions are sim-
plified through SIMD Within A Register (SWAR) for ReLU
activation and table-lookup is used for sigmoid and hyper
tangent (tanh) functions. By concatenating groups of 32 binary
variables into 32-bit registers, SWAR speeds up bitwise oper-
ations by 32 times and only three instructions are required
to evaluate 32 connections. Observing that a straightforward
microcontroller implementation of reduced precision DNN
models produces worse performance and energy efficiency,
a new Ternary weights and Four-bit inputs (TF-Net) pipeline
was proposed in [57] for the deployment of sub-byte DNN
models on microcontrollers. The DNN model is trained with
sub-byte inputs and weights. Direct buffer convolution is used
to amortize the input unpacking overhead and packed sub-byte
multiply-accumulate is used to fuse the MAC operations for
four pairs of inputs and weights into one conventional 32-bit
multiplication instruction. By adding two extended instruc-
tions, Multiply-Shift-Accumulate (MSA) and Unpack (UPK),
to the ARM v7M instruction set architecture, the computation
performance and energy efficiency can be further improved.

It is worth noting that different optimizations on various
neural network layers yield distinguishable input-dependent
timing delays. Fig. 3 shows the timing behaviours of ReLU and
sigmoid functions implemented by CMSIS-NN on an ARM
microcontroller [25]. These timing patterns leave discrimina-
tive traces that can be exploited to identify different types
of the activation function. Furthermore, embedded endpoint
devices that are publicly accessible are also vulnerable to
physical attacks [21], and the firmware on microcontrollers
can be more easily hacked.

3) Hardware Accelerators: For latency and performance-
critical applications and applications that require the inference
to be made on the endpoints where data are generated and
processed locally without a network connection, such as
self-driving car, neither cloud computing nor embedded micro-
controller can fulfil the response time and throughput require-
ments simultaneously. To address these challenges, dedicated
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hardware accelerators for low-latency, high-throughput and
energy-efficient DNN processing have emerged [58]–[60].
Customized dataflow, model compression and Dynamic
Voltage Frequency Scaling (DVFS) are the major and com-
mon optimization techniques used in many DNN accelerators.
The specialized dataflow architecture is used to mitigate the
memory access bottleneck and maximize the reuse of on-chip
data [61]. Model compression and data quantization are effec-
tive methods to reduce the number of MAC calculations [62],
[63] and the computational complexity of each arithmetic oper-
ation [64]. Voltage scaling has been widely implemented to
reduce dynamic power consumption. It exploits the excess pos-
itive slack of non-critical paths and the guard band preserved at
design time to allow the DNN to operate at a lower than rated
supply voltage whenever possible without compromising the
throughput and accuracy [65], [66]. The throughput is usually
boosted by an array of parallel Processing Engines (PE)
running at a higher clock frequency [67]. Fig. 4 depicts a
general architecture of a DL accelerator. The dataflow is
optimized through the data controller and a global buffer.
Each PE is a MAC unit composed of a fixed-point multiplier
and accumulator or a fused multiply-accumulation unit. The
PE array has a separate clock/voltage domain to facilitate
DVFS. Many of these performance optimization techniques,
when implemented aggressively and applied without proper
privileged control, can be vulnerable to side-channel and other
forms of hardware-based attacks. It has been demonstrated that
the unique data access patterns of optimized DNN computa-
tions can leak sensitive structural parameters of the model [27].
Heavy usage of on-chip SRAM can also create reliability
issues, and the performance degradation due to premature
aging of hardware components can be an exploitable security
vulnerability [17]. Moreover, the power management unit, and
separate clock and power domains for DVFS can also be
exploited for fault injection attack [68].

III. MACHINE LEARNING FOR HARDWARE SECURITY

A. Identification of HTs and Counterfeit ICs

1) HTs: Modern IC development is characterized by glob-
ally distributed outsourcing activities to focus on core compe-
tency, gain manufacturing efficiency and reduce design cycle
and turnaround time. By using third-party EDA tools, IPs,
and untrusted foundries, it creates opportunities for malicious
entities to insert Trojan at various stages of the IC design
flow. The malicious modifications of a clean design by HT
may lead to severe consequences, e.g., leakage of secret infor-
mation, denial of service, alteration of major functionalities,
etc.. Therefore, HT has become one of the most critical
threats to IC production for commercial, consumer as well
as military applications [1]. As mentioned in Sec. II-A.1,
a HT typically consists of two parts: the Trojan trigger
and the Trojan payload. The trigger is designed to activate
the Trojan under certain conditions, and the effect of the
Trojan depends on the Trojan payload. The Trojan trigger
is usually designed to be off from the critical path and is
rarely activated. In addition, the Trojan activity is usually
dormant during the normal functional execution of the circuit.

These factors make it extremely challenging to detect the
Trojan due to its stealthy nature. Typically, HTs are classified
based on five attributes: insertion phase, abstraction level,
location, trigger and payload [69], [70]. An attacker can utilize
malicious processors to violate operating system exceptions
and modify the open-source processor to create a malicious
firmware [71]. Prior works have also demonstrated that Trojans
can be introduced during EDA design flow and high-level
synthesis [72], [73]. Additionally, Trojan can be activated
under unexpected conditions or by silicon wear-out [74], [75].
In what follows, we will describe how various ML algorithms
can be used to detect HTs. It is noteworthy to mention that
process drift (i.e., the improvement in fabrication process over
time that is not reflected in the technology models released to
a design house [30]) can affect the accuracy of ML-based
Trojan detection schemes in cases where the model has been
trained using the pre-fabrication data. Therefore, the impact of
such drift needs to be modeled to enhance the Trojan detection
accuracy.

a) SVM: SVM has been applied in many prior works
for detecting HTs. When a golden (Trojan-free) design is
available, on-chip data analysis, gate-level netlist analysis,
and runtime traffic information are utilized as feature vectors
to distinguish between Trojan and Trojan-free chips using
SVM. The on-chip power consumption traces in the frequency
domain are adapted to classify Trojans with a two-class
SVM [76]. An OC-SVM with RBF kernel trained by the
transmission power data collected from on-chip data sen-
sor demonstrates its high accuracy of Trojan detection [77].
Another OC-SVM for Trojan detection was proposed using
the minimum number of gates between the input and output
nets [78]. Features of Trojan attacks are also extracted from
the on-chip traffic to train a SVM for Trojan classifica-
tion [79]. These models can be further updated to include
the latest attacks with Modified Balanced Winnow (MBW)
algorithm [80]. Besides, SVM is chosen to detect Trojans
at run-time based on the hardware complexity analysis of
traffic diversion, route looping or core spoofing attack [81].
When a golden chip is not available, the transient power
supply current samples are collected and classified by mul-
tiple classifiers such as Naive Bayes, Random forests, SVM,
LR [82], Process Control Monitors (PCMs) and Multivariate
Adaptive Regression Splines (MARS). The simulation data of
the golden chip can provide a predicted side-channel signal of
the chip, and are utilized to train an OC-SVM to classify a
trojaned IC [83].

b) DNN: DNN models such as Back-Propagation (BP)
and Multi-layer Neural Networks are used in various Trojan
detection approaches when a golden design is not available.
Direct current measurements of a post-deployment chip can be
performed anytime when needed. A one-class neural network
is trained by the trusted evaluation chip to classify whether
the fabricated chip contains Trojans [84]. BP neural net-
works are used to classify the features of power consumption
traces to detect trojaned designs [85]. By passing the features
through the hidden layers of the neural network, relevant
features will be extracted and used to train the classifier and
enhance the classification accuracy. Multi-layer neural network
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is also applied on gate-level netlist to classify the trojaned
design [86], where several features of the netlist are defined
and used to train the model for detecting the net corresponding
to a Trojan.

c) Others: Statistical learning and Bayesian inference
are used to classify the gate profiles and process variation
collected from the netlists of Trojan-free and Trojan-inserted
chips [87]. A run-time monitoring approach is proposed to
detect HTs in microprocessor cores by utilizing Half-Space
trees (HS-trees) [88]. HS-trees constitutes a one-class classifier
which is trained to provide an early alert of Trojan activation
by detecting anomalies in the data streams. Controllability and
Observability for hardware Trojan Detection (COTD) [89]
uses unsupervised k-means clustering to isolate Trojan sig-
nals based on the controllability and observability analysis
of gate-level netlist. This technique shows its capability in
detecting Trojan with high accuracy and low cost, even in
the absence of a golden design. Clustering-based learning
is also demonstrated to detect Trojan logic by classifying
weakly correlated nodes or functionally isolated gates in the
netlist [90].

2) IC Counterfeiting: The number of ICs used in electronic
systems has increased significantly over the past decades, due
to the enhanced complexity of applications and systems [91].
The fabrication of these ICs is outsourced to reduce the
overall manufacturing cost, which can lead to the presence
of counterfeit IC components. These parts become a crucial
threat to the applications related to defense, aerospace and
medical systems [92]. Since counterfeiting is a rising threat
to the IC manufacturing industry, it is increasingly important
to analyze the vulnerabilities of the IC supply chain. The
most common counterfeit components are analog ICs, micro-
processor ICs, memory ICs, programmable logic ICs, and
transistors [91]. A large proportion of counterfeit ICs are
actually recycled [91]. The detection of counterfeit compo-
nents faces significant challenges, such as a wide variety
of counterfeit types and the difficulty to inspect potential
counterfeit ICs. To improve their detection, it is important
to develop regulation of defects and a unique classification
of counterfeit components. The use of ML for this purpose
is explained as follows. Similar to the case of HT detection,
if the model deployed for identifying a counterfeit IC is built
based on the pre-fabrication chip specifications, the impact of
process variations and process drifts needs to be taken into
account when building the ML-based model.

a) SVM: Local Binary Patterns (LBP) are non-parametric
local features that can be used to train a SVM model in order to
distinguish counterfeit and authentic ICs from their registered
x-ray images [93]. An OC-SVM is used to classify the used
and recycled components from the tests, measurements and
analyses of Early Failure Rate (EFR) [4], [6]. This model
is also used to compare frequency, noticeable performance
degradation, and other quality metrics under certain stress
conditions to identify recycled FPGAs [5].

b) Neural Network: Artificial Neural Network (ANN)
models have been used to provide efficient visual inspections
by classifying images of defective and non-defective ICs with
image processing techniques [94]. A similar strategy is applied

Fig. 5. Examples of strong and weak PUFs: (a) Arbiter PUF with N
multiplexer switches and 2N CRPs; (b) Ring Oscillator PUF with N ring
oscillators and N(N − 1)/2 CRPs.

with X-ray microscopy of an IC die to differentiate counterfeit
from authentic devices with auto-encoder and DNN [93]. DNN
is also used to train water-level parametric measurement to
identify ICs fabricated in different facilities, which makes it
possible to determine if the chips are of the same origin [95].

c) Others: LR is utilized with x-ray 3D imaging to
distinguish authentic and recycled ICs by detecting traces of
delamination of the dies [96]. Path delays due to aging devices
in ICs are leveraged to identify recycled and brand-new
devices by establishing fingerprints of brand-new devices
with Principle Component Analysis (PCA) [97]. Look-up
table characteristics and performance degradation are used
to train k-mean clustering algorithms, where the recycled
FPGAs suffer a higher variation of performance profile [98].
EM fingerprints of ICs are also used in PCA to detect cloned
counterfeit ICs [99].

B. Modeling Attacks on PUFs and Robustness Enhancements

PUFs can be divided into two groups of strong and weak
PUFs according to the size of their Challenge Response Pairs
(CRPs). Strong-PUFs (e.g., arbiter-PUF shown in Fig. 5(a))
support an exponentially large set of CRPs, thus are more
suitable for authentication purposes. Weak PUFs cover a
limited number of CRPs and are more commonly used
for device-specific secret key generation for cryptographic
circuits, logic locking and watermarking. The Ring Oscillator
(RO) PUF (depicted in Fig. 5(b)) is an example of a
weak PUF.

Although PUF primitives are supposed to be unclonable and
their responses are expected to be unpredictable, their security
can be fragile under the ML attacks. In practice, by gaining
access to a subset of the target PUF’s CRPs, the PUF behavior
can be modeled to predict its responses to unseen challenges
with high accuracy.
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Arbiter-PUF and its derivatives (e.g., feed-forward PUF,
XOR-PUF, loop-PUF) that are popularly used in industrial
applications [102] have been shown to be prone to mod-
eling attacks [8], [9]. The PUF model is built based on a
subset of the targeted PUF’s CRPs (via SVM, LR, NN or
other ML schemes) obtained by collecting its used CRPs
or querying the PUF device directly when it is deployed in
the field. This can result in impersonation attacks when the
PUFs are used for authentication purposes, and nullifying
PUF-based IC metering protection schemes if such schemes
are used for IP protection [103], [104]. Due to the lim-
ited number of challenges that can be used to provide the
required freshness against replay attacks, weak PUFs, such
as the RO PUF demonstrated in 5(b), are generally not used
for authentication. As weak PUFs are not directly suscep-
tible to ML-based modeling attacks, we will only discuss
some ML attacks on strong PUFs and their countermeasures
here.

Reliability-based modeling attacks can also jeopardize the
security of PUFs. In such an attack proposed in [105], a subset
of challenges are given to the PUF repeatedly, and the PUF is
modeled based on the similarity/change of the PUF responses
to the same challenge. By revealing the sensitivity of each
PUF element in the delay-chain to noise, the relative delay
of the multiplexers resided in each stage of the arbiter PUF
can be modeled. A PUF may also be modeled using its power
side-channel where the underlying characteristics of the PUF’s
circuitry are discerned by monitoring and sampling the current
drawn by the PUF [106]. The sampled traces are correlated to
the physical specification of the targeted PUF, and can be used
to train a ML model to mimic the PUF behavior. In view of the
vulnerabilities of strong PUFs to ML-based attacks, ML attack
resistance, evaluated under a black-box scenario at least, has
become a prerequisite for new strong PUF proposals.

To tackle ML attacks, different types of countermeasures
have been proposed in the literature, each of which has its
own pros and cons. One group of such countermeasures rely
on using symmetric and asymmetric cryptographic algorithms
to encrypt the PUF response [107] before its transmission.
Another group of countermeasures deploy Hash functions to
encrypt the PUF response [108]. These schemes enhance the
security against ML-based modeling attacks at the expense
of imposing high area overhead. For example, in the scheme
proposed in [109], the target strong PUF receives an encrypted
instead of a plain challenge. The encryption is performed by
an embedded symmetric cipher whose key bits are generated
via a weak PUF resided in the same chip.

Hiding the PUF behavior via concealing the real CRPs by
modifying the challenge bit-stream or the PUF response has
been proposed in the literature to thwart modeling attacks.
The former is mainly referred to as challenge obfuscated
PUFs [110], [111] and the latter can be realized through con-
trolled PUFs [108]. Fig. 6 shows an overview of a challenge
obfuscated scheme presented in [110]. These countermeasures
are resilient against CRP-based modeling attacks but may be
tackled via power side-channel based modeling attacks [112].
Note that the challenge obfuscation can be deterministic,
e.g., [110] or random in nature, i.e., by deploying other PUFs

Fig. 6. Challenge obfuscating scheme [110].

to generate a portion of the challenge bit-stream that feeds the
targeted PUF [100], [113].

An analog counterpart of the arbiter-PUF, called the Voltage
Transfer Characteristics PUF (VTC-PUF) has been pro-
posed [114]. As the name implies, it introduces non-linear
voltage transfer characteristics to the building blocks to
enhance the resiliency of the arbiter-PUF against modeling
attacks. This PUF has been shown to be resilient against ML
modeling attacks but it can be compromised via side-channel
power based modeling attacks [115].

Poisoning the PUF’s response to mislead the adversary is
another approach to prevent ML attacks. One such method
is proposed in [116], where a duplicated or a fake PUF,
is embedded in the chip alongside the original PUF to delay the
adversary from collecting sufficient correct CRPs for training.
It provides fake CRPs for consecutive authentication requests
made within a waiting time to mislead the adversary in
building an incorrect PUF model. The false PUF multiplexing
is fortified against the prediction of waiting time by doubling
the waiting time for every unsuccessful guess. Tackling PUF
modeling attacks via PUF response poisoning can also be
realized via adversarial ML. The approach proposed in [117]
sends the toggled PUF response (instead of the genuine
response) whenever the challenge bit-stream follows a specific
bit pattern or in a periodic manner. In the latter, the PUF
response is toggled for every other N received challenges.
Such a mixture of genuine and toggled responses prevents an
accurate model of the target PUF from being built.

C. Detecting Malware Through Hardware Signatures

Malware detection solutions rooted in hardware bring ben-
efits in lower performance overhead and higher tamper-
resistance, compared with software-based ones. There has
been a long line of research on detecting different types
of malware using signatures based on low-level hardware
events collected from hardware components such as Hardware
Performance Counters (HPCs). The key idea is that the
behavior of a program can be modeled with occurrences of
low-level hardware events during its execution. Behaviors of
malware exhibit unique patterns of hardware events that are
distinguishable from benign ones. Such patterns are identified
as the signatures of the malware. Therefore, building accurate
models to describe the hardware-based signatures of benign
and malicious behaviors is critical to improving the capability
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of detection techniques. Recent research shows that ML-based
techniques have been widely leveraged to improve the effec-
tiveness and efficiency of building models and classifying
hardware signatures in malware detection, as elucidated below.

1) Detecting Malicious Applications and System Software:
It has been almost a decade since the first proposal of detecting
malicious user-level and kernel-level software through hard-
ware signatures. The research from Demme et al. [10] was one
of the earliest studies in this area, and ML methods had already
been leveraged to classify the hardware event traces collected
from the execution of 503 malware and 210 benign programs.
Different classifiers, such as k-Nearest Neighbors (KNN),
Decision Trees, and ANNs were implemented and compared
in terms of the accuracy of the detection. Though the results
were not very promising, it was one of the early attempts to
introduce ML to hardware signatures-based malware detection.
Tang et al. [118] later on proposed an unsupervised ML-based
malware detection technique using OC-SVM. Instead of build-
ing the hardware profiles of different malware, the proposed
technique built the profiles of benign programs. Significant
deviations in the profiles will be flagged as potential malware
exploitation. Singh et al. [12] then extended and expanded the
prior works, demonstrating much better accuracy in detect-
ing kernel rootkits. ML feature selection techniques were
applied in order to determine the most relevant hardware
events for profiling the rootkits’ behaviors. The effectiveness
of four different classifiers, SVM, OC-SVM, Naive Bayes
and Decision Trees, were evaluated for detecting rootkits.
Das et al. [119] performed a comprehensive survey on the
effectiveness of using HPCs for various security applications.
In this work, a case study on ML-based malware classifica-
tion at a fine-grained level was performed. The experimental
results showed that different feature extraction classification
techniques affected the malware detection accuracy as well as
the reproducibility of the findings.

2) Detecting Attacks on Embedded and Cyber-Physical
Systems: Microprocessor-based embedded and cyber-physical
systems are widely used in critical infrastructure components,
and security is becoming increasingly important for those
systems [120]. Hardware signatures-based malware detection
techniques, which have the advantages of low cost and over-
head, have been applied to resource-constrained embedded and
cyber-physical systems [11], [121]. ML techniques were lever-
aged to further reduce the performance/hardware overhead
and improve the detection capability. Wang et al. [122] intro-
duced ML to the HPC-based technique for detecting malicious
firmware running on ARM and PowerPC-based processors.
Unsupervised OC-SVM was used to perform the modeling and
classification, which significantly reduced the storage overhead
when compared with the comparison-based HPC signature
matching. A similar ML method was applied to HPC-based
anomaly detection for multi-threaded and interrupt-driven
processes typically encountered in Programmable Logic
Controllers (PLCs) [123]. To improve malware detection accu-
racy with a limited number of available hardware event coun-
ters, Sayadi et al. [124] proposed a lightweight customized
ML-based malware detection method, where a classifier was
trained individually with characteristics of a specific class of

malware using only four selected HPCs. Enhanced temporal
DL was applied to power-grid controller anomaly detection by
He et al. [125]. The Reconstruction Error Distribution (RED)
technique was added to the temporal DL to achieve a high
detection accuracy (>99.9%) with nearly zero false positives.

3) Detecting Network Attacks, Ransomware and Crypto-
mining Malware: While hardware signatures-based techniques
have been demonstrated to be effective and efficient for detect-
ing network attacks, ransomware and cryptomining malware,
ML as a well-proven method to model and classify hardware
signatures, has also been applied to the detection of such
types of malware. BRAIN [13] combined network statistics
and the occurrences of selected low-level hardware events to
model the behavior of potential Distributed Denial-of-Service
(DDoS) attacks. Unsupervised k-means clustering was used
in the learning and online phases, and the classification was
based on supervised SVM. RATAFIA [14] was an unsuper-
vised ransomware detection framework using DNN and Fast
Fourier Transformation (FFT). It was claimed as an accurate,
fast and reliable solution to detect ransomware based on
hardware signatures collected from HPCs. Mani et al. [15]
proposed DeCrypto Pro, a framework to detect malware target-
ing cryptomining using performance counter data. Depending
on the available computing resources, the proposed frame-
work is able to switch between a lightweight ML clas-
sification model such as Random Forest or KNN, and a
Long Short Term Memory (LSTM) network for behavior
profiling.

IV. HARDWARE SECURITY OF MACHINE LEARNING

A. Deployment Threats of ML Models

ML integrity is a primary pillar for AI trust to ensure that
the ML systems deliver and maintain the desirable quality of
service and are free from unauthorized deliberate or inad-
vertent manipulation of the system throughout the lifetime
of their deployment. Although hardware-oriented attacks on
ML systems are not as rampant as they are on crypto-
graphic processors and generic hardware IPs, exploitation of
hardware implementation weaknesses and flaws can impact
the model integrity and confidentiality of the DL systems.
Moreover, the emerging heterogenous hardware platforms sup-
ported by the new paradigm of “model once, run optimized
anywhere” AI compilers for deploying trained ML models
on edge computing devices and the leasing of AI models
on the cloud also open out an uncharted territory of secu-
rity threats. The threat landscape does not preclude existing
hardware-oriented attacks such as device reliability [17], [126],
[127], malicious attack [19], [21], [22] and side-channel
information leakage [25]–[27] from repurposing for ML
systems.

Running AI applications on edge devices, often referred to
as edge intelligence, raises major concerns about AI model
confidentiality. This is because the design of a superior edge
AI core for a specific task, such as computer vision, speech
processing, natural language processing, etc. requires heavy
investment on large labelled training dataset, human expertise
and enormous computing power. The training datasets may
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consist of private and sensitive information, e.g., medical
records, personal traits, demographic profiles, and political
views, which should be kept confidential. Unfortunately,
the training data are also memorized by the ML models in
their parameters, which can be utilized by the adversary to
extract subsets of the secret training samples [128]. Thus,
a superior and well-trained classifier is not only an IP of
high market value, but also a hotbed of opportunities for
data thieves owing to the pervasiveness and low security
offerings of the edge devices. When the confidentiality of
the AI model is compromised, not only will the DNN IP
design be counterfeited, the security weaknesses can also be
exploited through the extracted model hyperparameters and
neuron weights to sneak out the sensitive and confidential
training data [129], [130]. The exposed private data can also be
leveraged to mount more efficient adversarial attacks towards
the DNN system, through for instance, transferable adversarial
examples [131], [132].

On the other hand, the run-time reconfigurability of FPGA
resources enables users to update data and model structure
dynamically on cloud servers. This provides convenience and
versatility for small-sized business users and even individuals
to quickly iterate their ML models, leading to higher pro-
ductivity and quality of services. However, the convenience
offered by the multi-user FPGA cloud is a two-edge sword.
It makes attacks by hardware Trojan easier. Based on the
dynamic reconfigurability of the FPGA cloud, attackers have
more chances to implement malicious configurations that are
detrimental to the system and cause a series of disastrous
consequences, such as denial of service, hardware overheating,
degraded model performance, and leakage of private informa-
tion. It is not easy for cloud vendors to assure model integrity
merely by identifying the users’ identities. This is because
the attacker needs not to be a legitimate FPGA cloud user in
order to tamper with the configuration scheme and structure
when a legitimate user uploads the data and computations onto
the FPGA cloud. A closely related attack on DL hardware
that leverages outsourced training and transfer learning is
the backdoor attack. A neural network backdoor is a hidden
pattern injected during training. This hidden pattern will not
affect the normal operation, but it can be triggered by a specific
input to cause a misclassification or a dysfunction. If the
hidden backdoor is embedded in the teacher model, owing
to the transfer learning property of DNN model, it can be
activated when the model is customized to identify the target
label. A malicious tenant can exploit the indirect interaction
opportunity with the shared hardware resources of other ten-
ants in a multi-tenant FPGA environment to launch such an
attack. As the training data streamed onto the cloud usually
includes a large amount of sensitive private information, this
may open out unexplored attack surface if a malicious user on
the same cluster of FPGA chips can find an access path to the
secret information of other users. If the malicious user’s codes
are encrypted, the cloud vendors may not have the privilege
to inspect the decrypted codes before they are configured onto
the FPGA fabrics, and it is extremely challenging to detect a
malicious hardware bitstream or a program code in encrypted
form.

B. Hardware-Based Attacks on Deployed ML Model

Threats concerning DNN model integrity reported in
the early stage mainly stem from software-based attacks.
Most of these attacks center around input-based adver-
sarial examples [133], data poisoning [134] and software
Trojan [135]–[138]. An adversarial example is derived by
adding carefully designed perturbations to a target input in
either the digital domain or physical form to cause a misclassi-
fication when it is presented to the DNN [139], Data poisoning
can be achieved by infiltrating carefully crafted samples into
the training dataset to manipulate the behavior of the trained
model at the inference stage [140]. A software Trojan can
be embedded by perturbing the model weights [136]–[138] or
inserting an extra module [135] in the pre-trained network.
The trojaned model can be activated by specific triggers
embedded in normal input data. As opposed to software-based
approaches, hardware-oriented attacks can directly modify the
ML model’s parameters and computation results by tampering
the inference process without manipulating the input sample or
training data. Some of the reported hardware-oriented attacks
are described below.

1) Attacks by Simulation: A number of the attacks reported
in the literature are only emulated or simulated without
physical implementation. Weight manipulation is one of the
attack methods that has been widely evaluated by simulation
or emulation to show that the predicted label of a target
input to a ML model can be changed by subtle alteration of
pre-trained weight parameters. Model weights are stored in
the memory cells, which are susceptible to soft errors [17]
and permanent faults [141]. The effect of hardware reli-
ability issues on DNN processing has been simulated for
CMOS devices [142], [143] and Resistive Random Access
Memory (ReRAM) [126]. In contrast to the passive or delib-
erate aging defects, active malicious fault injection techniques
such as laser beam [144] and rowhammer [145] can be utilized
to modify the weight values stored in Static RAM (SRAM)
and Dynamic RAM (DRAM). If only the effectiveness of an
attack is considered without caring about other practical issues,
Single Bias Attack (SBA) can be achieved by simply saturating
one bias of the last DNN layer [18]. An example of a SBA
is illustrated in Fig. 7. It shows that by enlarging the bias of
the neuron c2, the classification result of any input images can
be forced into the bird category. SBA can also be extended to
the hidden layer with the ReLU activation function, since their
outputs are also linearly dependent on the bias. To cause only
the selected input images to be misclassified, Gradient Descent
Attack (GDA) [18] and fault sneaking attack [146] were sim-
ulated. The latter utilized the Alternating Direction Method of
Multipliers (ADMM) algorithm to minimize the modification
of weight parameters. Rakin et al. [147] introduced a bit-flip
attack by using a progressive bit search method to identify
the most vulnerable bits of the model weights to be flipped.
Albeit effective, SBA, GDA, fault sneaking attack and bit-flip
attack only suggested the values of the weights to be modified
in order to cause a misclassification but they did not provide
a viable means to make these modifications on the physical
hardware implementation of the target DNN model. Other than



238 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 2, JUNE 2021

Fig. 7. An illustration of fault injection attack on DNN’s weight parameters.

Fig. 8. Memory write collision induced short circuit paths in a dual port
RAM cell.

weight interpolation attacks, HT is an alternative approach to
maliciously modify ML model operations. By inserting the
payload circuits into the activation function, especially the
ReLU function, the operation of the neurons can be controlled
by a selected trigger key [19]. Embedding Trojan payload in
the memory controller can cause zeroing of internal features
by identifying the image sequence through the memory traf-
fic [148]. The main limitation of Trojan attacks is that the
payload circuit can only be covertly implanted during the
hardware development phase, usually through rogue insiders,
untrusted foundries, or malicious third-party IP integration.
By contrast, fault injection attacks can be applied directly to
the deployed hardware. The attacks can be made non-invasive
and stealthy without causing a permanent degradation of
prediction accuracy on normal or untargeted inputs unlike
deliberate aging and reliability-based attacks.

2) Attacks on Physical Implementation: Other than simu-
lating or emulating hardware-based ML attacks, rowhammer
was demonstrated physically in [20] to successfully perturb
the model parameters of 19 different DNN models, including
LeNet5 [149] and its variants, AlexNet [150], VGG16 [151],
ResNet50 [152], DenseNet161 [153] and InceptionV3 [154].
The attacked models were implemented in a high performance
computing cluster that has 488 nodes. Each node is equipped
with an Intel E5-2680v2 2.8GHz 20-core processor, 180 GB
of RAM, and 40 of which have two Nvidia Tesla K20m
GPUs. The vulnerabilities of different DNN models were
evaluated for their severity of discriminative damages by
comparing the classification accuracies of the pristine and
corrupted models using the respective image classification
dataset, MNIST [149], CIFAR10 [155] or ImageNet [156],
on which they were trained. The reported rowhammer results

indicated that severe accuracy degradation can be inflicted in
a surgical attack scenario where specific bits can be flipped.
The attacks can still succeed even in a blind attack scenario
without any control over the locations of the victim bits in the
memory. The attacks revealed that susceptible bits exist widely
in common DNN models with 32-bit data representations. This
observation gives rise to a potential vulnerability, which is
transfer learning can be exploited for a surgical attack on the
parameters in the layers that a unknown victim model has in
common with a public model.

Besides attacks mounted on powerful server-level comput-
ing hardware, Ram-jam [157], a fault injection attack, was
demonstrated to successfully attack a pretrained CNN for
handwritten character recognition application implemented on
Xilinx 7 series Artix-7 (XC7A100T-CS324) FPGAs within a
Nexys 4 DDR trainer board. Ram-jam makes use of the write
conflict created by writing opposite bit values concurrently
into the dual-port RAM cells of the same addresses [157].
The write-conflict is illustrated in Fig. 8. By setting both
word lines (WL1 and WL2) to VDD, and writing logic
high (VDD) and logic low (“0”) on the bitlines BL1 and
BL2, respectively, short circuit current paths indicated by the
dash lines are formed. By repeatedly triggering the memory
collision, a significant amount of transient current is drawn
from the power distribution network of the FPGA, which
creates a momentary voltage drop on the affected components.
The voltage underfeeding can produce bit-flips on the weights
stored in memories or cause a timing violation on the Finite
State Machine (FSM) that controls the activation function for
the transitions between the output classes [157]. It is worth
noting that the RAM-Jam attack on FSM is activation function
agnostic, and it can be launched remotely. Besides causing
misclassification, such fault-injection attack can reduce the
performance and reliability of ML systems. In other words,
RAM-jam is effective even on typical fault-tolerant neural
network implementations [158].

Another fault injection attack was demonstrated by using
the laser beam to inject faults into commonly used activation
functions in the hidden layers of the neural network [21].
The attack was mounted on a simple 3-layer neural network
implemented on an ATmega328P microcontroller chip, with
sigmoid, ReLU and tanh as the activation function for the sec-
ond layer and softmax as the activation function for the last
layer. A diode pulse laser of 1064 nm wavelength and 20 W
pulse power was used for the fault injection. A 20× objective
lens was used to reduce the spot size to 15 × 3.5 μm2, which
also lowered the pulse power to 8W. The package of this
chip was opened to expose the back-side silicon die to the
laser. The laser activation time was precisely controlled by a
specific delay added after a trigger signal was generated on the
commencement of a computation. The chip area is 3 × 3 mm2

and the sensitivity area to the laser is ≈ 50 × 70μm2. A laser
power of 4.5% was sufficient to cause an instruction skip of
the activation function. A reasonably good success rate in label
misclassification was obtained by perturbing about 50% of the
neurons in the chosen layer.

Recently, a more stealthy fault injection attack was
demonstrated on nine DNN models pre-trained on Imagenet
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Fig. 9. Clock glitch injection attack module on FPGA-based DNN acceler-
ator [23].

Fig. 10. Timing waveforms of glitch injection attack [23].

dataset, namely Inception v1 to v4, MobileNet v1 and v2,
DenseNet121, ResNet50 and VGG16, implemented on a
Xilinx ZYNQ UltraScale+ MPSoC device [22]. Instead of
targeting conventional temporal and instruction set based
architectures or memory array, this attack exploits the separate
clock domain used for DVFS and the DNN dataflow for
abstracting the pre-trained models into the FPGA overlay of
DNN hardware accelerator. Fig. 9 and Fig. 10 illustrate the
clock glitch injection module and the corresponding timing
waveforms on the FPGA-based DNN accelerator, respectively.
The clocking wizard generates the 90◦ phase shifted clock
(clk f _90) for multiplexing into the fast digital signal processing
clock (clk f ). The clock counter controls the trigger signal,
which determines how frequent and how many glitched clock
cycles (Tglitch) to be injected into clkmux of the Deep Learning
Processing Unit (DPU). By perturbing the clock signal of the
DPU, it affects only the calculation of the PE array but not
other functional modules. The clock buffer with multiplexer
enables a glitch to be produced when the trigger signal is high.
The intermittent clock glitches can corrupt the intermediate
computations of the hidden DNN layers. The errors aggregate
as they propagate to the inference layer to cause a misclassifi-
cation of the target. Once the glitch has subsided, the correct
timing will be restored, leaving no trace for detection [22].
With no knowledge about the models, this attack can achieve

Fig. 11. Examples of two target objects from ALOI dataset, and the attack
success rates of LGA and SLA on ResNet50, Inceptionv4, MobileNetv2 and
VGG16 DNN models.

over 98% of successful target misclassification on eight out
of nine models with only ten percent glitches launched into
the total computation clock cycles of one inference. Given the
model details and inputs, all the models can be successfully
attacked regardless of model size, computation latency and
original classification accuracy.

Most of the existing hardware-based attacks [20]–[22],
[157] on DNN focus on static inputs without considering
the object and scene variations. In real-world applications,
live captured images are easily affected by multiple factors
including object viewing angles, light sources and object
distances from the camera. Physical adversarial examples
attempt to tackle this problem by extending the software digital
input adversarial examples to the physical objects. These
adversarial examples are specially crafted shapes or colored
stickers [159], [160] that can be attached onto the target object
or synthetic shapes generated by 3D printing [161] to fool the
DNN classifier in the real scene. What make these adversarial
attacks impractical are that they require a decent number of
pristine samples of a target to be drawn from different realistic
scenarios for generating a physical adversarial example and the
generated adversarial example either has a large perturbation
area or nonobjective shape [162]. Recently, the clock glitch
injection technique [22] was extended to achieve stealthy and
robust misclassification for target with variational viewpoints
by deriving the attack patterns from only one sample of the
target object in a fixed scene [23]. Two attack modes, namely
Least Glitch Attack (LGA) and Sensitive Layer Attack (SLA),
were derived. They differ in the applied glitches defined by
the timing patterns of the trigger signal in Fig. 9. A profiling
procedure is performed to extract a set of prospective attack
patterns on each layer of the deployed DNN to cause a label
change of the target. Then, the pattern that has the least
glitched cycles on an applied layer is selected as the LGA
pattern. The LGA incurs fewer signal transitions in computa-
tion and is more covert. On the other hand, the SLA selects
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a pattern with the most glitched cycles on the most suscep-
tible layer that has the most prospective patterns. With more
glitched cycles injected, the SLA is more robust. The effec-
tiveness of LGA and SLA was demonstrated on ResNet50,
Inceptionv4 [163], MobileNetv2 [164] and VGG16 models
implemented on the DPU of the Xilinx ZCU102 board. Fig. 11
illustrates the attack scenarios and the corresponding attack
success rates of LGA and SLA. 118 objects were selected
from the Amsterdam Library of Object Images (ALOI) [165]
that captured the sensory variations in object recordings.
The attacks were evaluated for different target objects under
comprehensive combinations of object-scene variations that
include 25 viewing angles (−60◦ to 60◦), 24 illumination
directions and 12 color temperatures. Some of the attacked
image samples are shown in Fig. 11. The LGA achieved 55.1%
∼ 71.7% attack success rates with only two glitches injected
into ten thousand to a million clock cycles of one inference.
The attack success rates of the more robust SLA on all the
four evaluated models were higher than 96% in any tested
combinations of object-scene variational conditions [23].

C. Side-Channel Attacks on ML

With the rising in popularity of Machine-Learning-as-
a-Service (MLaaS), protecting the privacy of ML systems
becomes more important. Typically in a ML system, model
and data are two main targets of privacy attacks [166]. Among
various attacks that tamper with ML privacy, some of them
mainly exploit algorithmic level property to compromise ML
privacy, such as membership inference attacks [129], [167],
[168] and model inversion attacks [130], [169], which mainly
utilize ML Application Program Interfaces (APIs) provided by
MLaaS vendors to collect information. Unlike these attacks,
there are a set of side-channel attacks utilizing vulnerabil-
ities of particular ML hardware implementation to extract
confidential information during the ML process. Similar to
traditional side-channel attacks, side-channel attacks target
measurable ML specific attribute(s) (e.g., power consumption,
EM emission, timing, memory access pattern) during either
training or inference, and leverage the correlation between ML
assets and the selected attributes to deduce the secret. The rest
of this subsection will discuss side-channel attacks targeting
ML in detail. They are categorized based on the types of assets
being leaked.

1) Model Extraction: This type of attack compromises
ML model IP privacy by reverse-engineering the structure
and parameters of the model to replicate the model. The
target assets include the number of layers, type of activation
function, connection between layers, parameters of layers,
etc. Hua et al. [27] proposed one of the first attacks uti-
lizing side-channel information to infer the CNN structure.
In the threat model, the CNN accelerator is executed in an
isolated environment (e.g., FPGA), so the attacker is not
able to observe its internal state. The data are encrypted
while being transferred between the CNN accelerator and
the off-chip memory. It assumes that the attacker can still
probe the memory access pattern, including the address and
type (read/write). Similar to a typical known-plaintext attack

against cryptography, the attacker can feed known input data
to the model, observe output from the model, and keep
collecting memory access patterns (with timestamp) during
inference. It is reported that information of network structure
(e.g., boundaries between layers, size of the input/output
feature map and filters of each layer, etc.) can be revealed
through analyzing the memory access patterns. Furthermore,
the attacker is able to reduce the search space of other
structural parameters based on a set of design constraints and
execution time property. To reveal the network weights, this
attack exploits an additional side-channel brought by dynamic
zero pruning, which is an optimization technique to eliminate
read/write with zero values [170]–[172]. This information is
utilized to partially reveal the information of the weights.

Batina et al. [25] introduced a power/EM side-channel
attack to reverse-engineer model parameters from neural net-
works. It has been shown that various information of the
network can be revealed from the collected power/EM traces.
Using Correlation Power Analysis (CPA) with Hamming
Distance (HD) leakage model, the weight of each neuron can
be recovered without much precision loss. The number of
neurons and layers can be discovered by combining Simple
Power Analysis (SPA) and CPA. The type of activation
function being used can be identified by comparing the timing
pattern of the collected traces against the profiled pattern of
each possible activation function. The attack was validated on
8-bit and 32-bit micro-controllers. Dubey et al. [24] have also
demonstrated an attack that can successfully reveal the para-
meters of Binarized Neural Network (BNN) using Differential
Power Analysis (DPA). DeepEM [173] reverse engineers the
model structure of BNN through the EM side-channel of the
FPGA accelerator. It exploits the synthetic dataset generated
by Random, FeatureAdversary and FeatureFool algorithms to
recover the binarized weight parameters.

Recently, there has been a set of attacks utilizing timing
side-channel to extract DNN architecture [26], [174], [175].
Yan et al. [26] proposed cache telepathy attack based on
the observation that DNN heavily utilizes GEMM, which
is vulnerable to cache timing side-channel attacks. There-
fore, an adversary that co-locates at the same processor
as the victim process is able to perform Flush+Reload
and Prime+Probe attacks to leak the metadata of GEMM
functions. This attack can largely reduce the search space
of DNN architectures to facilitate other ML privacy
attacks [129], [130]. Hong et al. [175] proposed an attack that
allows the attacker, who shares instruction cache with the
victim running DNN, to perform Flush+Reload attack and
infer instructions being used by the victim and further infer
the number and types of layers. Duddu et al. [174] showed that
the execution time of CNN is correlated with the parameters
(e.g., stride, kernel size, and the number of filters) of each layer
and the number of layers. Linear regression and reinforcement
learning are used to reconstruct the model using the execution
time information of queries.

Besides FPGA and general purpose CPU, models trained
in GPU are also targeted victims of side-channel attacks.
Naghibijouybari et al. [176] presented an attack that utilizes
Multi-Process Service (MPS) feature provided by Nvidia
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GPUs to allow the adversary kernel to be co-located with
the victim kernel on the same GPU core. The adversary
kernel can measure the contention of the victim kernel using
GPU performance counters. It was shown that the number of
neurons can be revealed through this attack. However, this
attack can only get coarse-grained information from GPU
performance counters because MPS scheduling makes the
victim kernel much faster than the adversary kernel [177].
To obtain more fine-grained information, Wei et al. [177]
proposed to run multiple adversary kernels on the same GPU
with the victim and without the MPS feature, which will force
the victim to slow down due to context switching. With these
settings, not only the number of neurons, but also the filter
size, filter number, and stride can be revealed through the side-
channel. In [131], Hu et al. introduce a generalized framework
called DeepSniffer to perform model extraction attacks using
architectural hints. Unlike previous works, which are not able
to identify the dynamic run-time layer sequences due to the
architectural and system noises [26], [27], [176], DeepSniffer
can perform run-time layer sequence identification to predict a
layer execution sequence that is closed to the ground-truth. The
framework was demonstrated on a GPU platform using archi-
tectural hints, e.g., kernel execution latency, kernel r/w access
volume, etc., obtained from either EM-based side-channel or
PCIE bus snooping.

2) Leaking Inference Data: Besides the model, input data
to inference engine is another victim of side-channel attacks.
The input data may contain private information (e.g., medical
information) of the Inference-as-a-Service (IaaS) users, so it is
important to protect the privacy of the data. Wei et al. [178]
proposed an attack to recover input images of an inference
engine from power side-channel information. The attack was
performed on an FPGA-based CNN accelerator, using an
oscilloscope with a sampling frequency of 2.5GHz to collect
the power traces per cycle. For a passive adversary who
can only monitor the power trace without the capability
of triggering the inference, the foreground and background
of the recovered image can be distinguished. For an active
adversary who can further profile the inference engine with
arbitrary inputs, the input images can be recovered with higher
resolution.

D. Defenses and Countermeasures

The reported hardware vulnerabilities and successful attacks
raise increasing concerns that shatter the trustworthiness of
ML systems. As opposed to mitigation approaches developed
for software-oriented attacks [179]–[181], defense methodolo-
gies against hardware-based ML attacks are still in the nascent
stage of development. Edge devices such as smartphone,
automobiles, robots, drones, cameras, etc. that are endowed
with the capability to perceive, reason and act autonomously
by running the ML algorithms, are particularly challenging to
protect due to their large attack surface, model-specific imple-
mentation weaknesses, limited security primitives and design
space on edge devices for security-performance trade-offs
exploration. Offline analyses motivated by relevant methods to
detect adversarial examples and HTs, and custom ML-specific

approaches have been proposed to mitigate the threats on ML
hardware systems. These proposals can be broadly classified
into four categories. The first two categories address the
integrity threats. The other two categories are related to model
confidentiality protection.

1) Data Type and Model Enhancement: To prevent the dra-
matic accuracy loss caused by bit-flip of model parameters and
in MAC operations, low-precision data representations [20]
and bound-constrained dynamic range compression [17], [141]
are suggested to limit the error propagation and aggregation.
By quantizing the data from 32-bit to 8-bit or even down to
1-bit precision, the proportion of vulnerable parameters due to
a single bit error injected into a five layer DNN model running
on a high performance server drops from 49% to 0∼2% [20].
On the other hand, clipping the activation output to a bound
data range offers around 69% average improvement in clas-
sification accuracy of VGG16 running on a GPU workstation
at 10−5 fault rate [141]. These methods improve ML model
robustness on general purpose computing hardware with 32-bit
floating point data format. Low-precision fixed-point data type
has been a common practice of existing DL accelerator design
although the motivation is more on increasing the throughput
and energy-efficiency for local inferences in edge applications.
To defend against bit-flip attacks targeting quantized model
weights, binarization-aware and piece-wise clustering meth-
ods [182] are used to train the DL classifier. Binarization can
mimic bit-flip noises on the weights, while piece-wise cluster-
ing can add fixed single bit-width constraint during the training
process. These two training methods can improve the robust-
ness of ResNet-20 and VGG-11 trained on CIFAR-10 dataset
by 19.3× and 480.1× respectively, compared to their nor-
mally trained counterparts [182]. Weight reconstruction [183]
mitigates the effect of bit-flipping by averaging the errors over
a grain of weights followed by quantization and clipping of the
weight values in a grain. This can minimize the perturbation
or error diffusion to the neighboring parameters. It is reported
that weight reconstruction can maintain the accuracy of the
ResNet-18 model trained on ImageNet dataset at 60% as
opposed to the accuracy drop to below 1% of the baseline
model under bit-flip attacks. In contrast to conventional data
quantization, defensive quantization [184] can further mitigate
the error amplification effect of a quantized model during the
forward pass of the neural network. The Lipschitz constant in
the model training phase is constrained to limit the sensitivity
of the input-to-output mapping to white-box L2-bounded input
perturbations. Since this method constrains only the magnitude
of the adversarial noise during inference without necessitating
any adversarial training [185]–[189] or adaptation of weight
matrices, the robustness of the prediction can still be assured
even for the unseen test samples. Such defensive quantized net-
works that are inspired by the theoretical sufficient condition
of non-expansiveness are known as L2-Nonexpansive Neural
Networks (L2NNNs) [190]. Specifically, defensive quantiza-
tion is effective in defending against white-box adversarial
attacks for quantized models with 5-bit precision and below.
Besides, it is shown in [158] that adding more neurons in
the hidden layers with restrictions on the parameters’ range
can further increase the robustness of the model. However,
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Fig. 12. Word masking and bit masking for fault recovery [172].

Fig. 13. Block diagram of TE-drop mitigation [191].

the FPGA implementation showed that adding more neurons
resulted in significant area/delay overhead.

2) Resilient Hardware: Building error-resilient hardware is
an intuitive and direct approach to mitigate the impact of hard-
ware fault attacks. Triple Modular Redundancy (TMR) [192]
is a traditional technique to improve the reliability of hardware
components against soft errors. As it requires three copies
of the functional circuits and a majority voter to correct and
mask the faults in any of the copies, the resource and energy
overheads incurred are unacceptably high. Reagen et al. [172]
introduced a DNN accelerator which can tolerate SRAM read
faults under voltage variations. Two mitigation techniques,
namely word masking and bit masking, are proposed to round
the faulty bit(s) towards zero. The difference between these
two methods is illustrated in Fig. 12. Word masking resets the
whole data word to zero if any bit-flip is detected, whereas
bit masking only replaces the flipped bit(s) with the sign bit.
With bit masking, 4.4% of the SRAM bitcells can be faulty
without causing a prediction error on the DNNs tested on
five datasets including MNIST, Forest [193], Reuters [194],
WebKB [195] and 20NG [196]. As opposed to making SRAM
cells fault-resilient, TE-Drop [191] is an error-tolerant design
for the MAC units. It employs an active fault detection module,
i.e., Razor flip flops [197], to detect the timing errors in the
MAC unit. Instead of correcting the error, it drops the erro-
neous computation results. This technique is founded on the
observations that the worst case timing violations are rare and
the omission of partial intermediate results is inherently tol-
erable by many DNN algorithms. The circuit implementation
of TE-Drop is illustrated in Fig. 13. An additional multiplexor
and shadow flip flop (marked as blue blocks in Fig. 13) are
placed after the MAC unit and in parallel with the original

Fig. 14. Hardware architecture of key-dependent accumulator [199].

flip flop, respectively. The shadow flip flop operates with a
delayed clock (clk + 
) while the multiplexor is controlled
by the error signal from an XOR gate. Once the error signal
is asserted, TE-Drop steals the next clock cycle from its
successor MAC unit (shown in the area bounded by the blue
dashed box in Fig. 13) to correctly update its own partial
sum, and bypass the successor MAC’s update. With TE-Drop,
the voltage can be scaled down, resulting in 34%-57% of
energy savings, and yet introducing only less than 1% of model
classification accuracy loss. The results of both masking [172]
and TE-Drop [191] were obtained by simulation. Other design
fortifications, including hardening selective memory cells [17]
and applying modular redundancy on sensitive weights [198],
have also been proposed to counteract soft errors in DNN
computations.

3) IP and Privacy Protection: Hardware root-of-trust can
safeguard DNN IP cores and sensitive user data even in
an untrusted environment. Chakraborty et al. [199] proposed
an obfuscation framework that utilizes hardware-assisted IP
protection scheme for DL models. A key-dependent back-
propagation algorithm is employed to train the neural net-
work model. Some neurons of the network are locked by
the key. During the inference stage, only the trustworthy
hardware device with the embedded on-chip key can recover
the correct functionality of the model. The hardware design
of a key-dependent accumulator [199] is depicted in Fig. 14.
The 16 XOR gates for each accumulator take the 16-bit
multiplier result and a secure on-chip key bit for a neuron
as inputs. The accumulator is assumed to be implemented
by a full adder chain (FA1 to FA16). If the key bit of a
neuron, key = 0, its MAC unit executes normal updates of
that neuron by performing a sequence of additions in the
accumulator circuit. Otherwise, if key = 1, the MAC operation
is converted to a two’s complement addition for executing a
sequence of subtractions. Unauthorized usage of such obfus-
cated DNN models has led to 73.22% to 80.17% accuracy
drop in Fashion-MNIST [200], CIFAR-10 and SVHN [201]
datasets based on the simulation results. The notion of Trusted
Inference Engine (TIE) and an associated architecture was
introduced in [202]. The idea is to use the Pseudo Random
Number Generators (PRNG) and PUF to perform decryp-
tion/deobfuscation of the obfuscated and encrypted DNN mod-
els stored in off-chip memory. A decoder and Programmable
Usage Controller (PUC) are required for the key retrieval.
Recently, a secure DNN accelerator based on a specific
instruction set and memory interface was proposed to protect
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user data and model parameters [203]. It includes a memory
encryption engine that encrypts the data in DRAM, and an
Integrity Verification (IV) engine that detects unauthorized
changes on the data read from the external memory. Based on
the FPGA prototype, the scheme can preserve the privacy of
LeNet, AlexNet, VGG, GoogleNet [204], and ResNet models
with less than 2% performance overheads. However, physical
side channels were not considered in the threat model.

4) Side-Channel Leakage Mitigation: The unique timing,
memory, power/EM and cache patterns in DNN inference
execution can expose the structure and weights of a pre-trained
DNN model. Internal operation shuffling and computation
masking were suggested in [25] to thwart power analy-
sis attacks. Shuffling permutes the order of execution of
independent sub-operations to modify the scheduled time of
these operations from one execution to another. Thus, it can
reduce the success rate of classical differential power/EM
attacks. Computation masking assures that sensitive com-
putations are tainted with random values to remove the
dependencies between the actual data and the side-channel
signatures. If each neuron is individually masked with an
independently drawn uniformly random mask for every iter-
ation and every neuron, the attacks reported in [25] can be
thwarted. Dubey et al. [24] proposed an augmenting masking
technique including masked adder trees and ReLU for the
fully-connected layers and activation functions, respectively
of a three-layer BNN trained on MNIST dataset. The adder
tree is masked by splitting each input pixel ai into two
branches, ri and ai − ri , where ri is a unique random
number. The final summations of each branch combine and
create the original sum. To decorrelate the sign bit from
the input, Wave Differential Dynamic Logic (WDDL) [205]
is applied to compute the sign bit of the adder. A masked
Look Up Table (LUT) [24] is proposed for the carry bits
of the binary sign activation function. The MaskedNet [24]
inference engine integrates PRNGs into the masked adder
tree and activation function to protect the BNN against DPA
weight recovery attacks. The first-order attack succeeds at
around 200 power traces on the unprotected design. With
MaskedNet, the first-order attack fails even with 100k power
traces while the second-order attack can only succeed with
around 3.7k collected traces. The overheads of MaskedNet
are 2.8×, 2.7×, 1.7× and 1.3× on latency, LUTs, flip flops
and block RAMs, respectively. Another masking design called
BoMaNet [206] utilizes a gate-level Boolean masking method
to split the secrets and decorrelate the statistical relation
between computations and power side-channels. Both linear
and non-linear computations of the BNN are converted into
a sequence of AND and XOR operations to complete a fully
masked hardware implementation. It can resist the first-order
attack with up to 2M traces at the cost of 3.5× latency and
5.9× area overheads [206].

The weight matrices leaked by cache access patterns can
be mitigated through data quantization. This method is par-
ticularly effective to safeguard the last few layers of a CNN
with smaller filter size [26], but it cannot protect layers with
large matrices. Alternatively, cache partitioning can be utilized
to assign different ways of the last level cache to different

applications. The aim is to block the cache interference
between the attacker and the victim [207]. The side-channel
leakage from context-switching penalties can be mitigated by
reducing the precision of the hardware profiler such as the
CUDA profiling tools’ interface and the frequency of preemp-
tion by suspicious applications [177]. To reduce side-channel
leakage through timing and memory patterns, Oblivious RAM
(ORAM) [208] or Memory-Trace Obliviousness (MTO) [209]
can be utilized. ORAM can conceal its access pattern by
continuously shuffling and re-encrypting the data. A practical
path ORAM protocol [208] was demonstrated on a secure
processor using FPGA in [210]. GhostRider [209] proposed an
ORAM-capable processor architecture through a new compiler
with an on-chip scratchpad and encrypted RAM. Fake memory
accesses can also be created in the TIE for obfuscating the real
footprints [202]. Memory timing side-channel attack on GPU
can be mitigated by randomizing the width of the coalescing
unit and merging transactions across different warps [211].
Besides, GPUGuard [212] prevents side-channel leakage on
GPU platform by detecting the spy programs with a decision
tree method. Nevertheless, all these mitigations come with a
nontrivial area or performance penalty.

V. REFLECTION AND FUTURE DIRECTIONS

A. On ML Applications in Hardware Security

ML security represents a cat-and-mouse game that is gain-
ing momentum in the AI age. ML-assisted methods on phys-
ical silicon security will continue to evolve. For instance,
deploying ML schemes to model the PUFs’ behavior via their
CRPs has been extensively investigated in the literature and
several device-level and protocol-level countermeasures have
been proposed to tackle such an attack. However, less attention
has been paid to the PUF modeling attacks through their power
side channel. There is a need for resilient countermeasures
against attacks that are realized via monitoring power and
EM emanations in PUFs through ML schemes. In practice,
to decrease the area and power consumption of delay-based
PUFs, instead of implementing multiple PUF circuitries each
generating one bit of response, one PUF instance is imple-
mented, and it is queried multiple times to generate a multi-bit
response. This can ease the power-based modeling attacks.
Thereby, one possible countermeasure to tackle such an attack
is increasing the number of PUF instances that are active
simultaneously. ML and DL algorithms have been used in
collaboration with side-channel attacks. In [213], DL was used
to perform cross-device side-channel attacks. 256 devices were
used to execute an AES-128 encryption algorithm to generate
the power traces. The proposed DL-based methodology was
able to achieve 99% accuracy in identifying the various devices
in a few seconds.

Another observation is previous ML-assisted HT detection
methods were explored mainly via SVM and DNN through
extracting design and operation features at various develop-
ment stages. Design netlist, on-chip sensor and data traffic are
used to provide classification features to identify whether the
design contains Trojan. SVM and DNN are also applied to
detect counterfeit IC by inspecting defects in IC images and
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analyzing chip performance to identify recycled components
and authentic devices. However, in both fields, most ML
approaches require the golden design to establish supervised
learning. When the golden design is not available, it is difficult
for a design house to verify the authenticity of third-party
devices via ML methods. Hence, detection approaches via
unsupervised learning, which can still maintain high reliability
and accuracy even in the absence of a golden model, is an
active research area. For ML-based malware detection through
hardware signature, one of the challenges is to determine the
most relevant hardware events and suitable classifier for detect-
ing different types of malware. For example, previous works
have shown that the selection of hardware events (features)
and the classifiers for effectively detecting kernel rootkits
and side-channel attacks can be quite different [12], [214].
Without knowing the specific type of malware, it is challenging
to employ a universal model and classifier to perform an
effective detection. To tackle this issue, Sayadi et al. [215]
proposed to use a two-stage ML-based approach. The idea is
to first classify the applications into one of the known malware
classes, such as virus, rootkit or backdoor, using Multinomial
Logistic Regression (MLR). In the second stage, a specialized
ML classifier is selected based on the predicted malware class
from the first stage to perform a more accurate classification.

Current security practices follow a form of human intel-
ligence called “deductive reasoning”, while on-going secu-
rity focus on ML approach to increase security level is
more inclined towards “inductive reasoning”. In inductive
reasoning, a conclusion is drawn based on evidences and
observations obtained by generalization, statistics, sampling,
analogy, trend or causal inference. The conclusion is stronger
with more observations and evidences. However, over-reliance
on inductive reasoning can lead to logical fallacy because
alternative explanations for the assumptions have not been
explored. Consequently, a fresh attack which appears for the
first time is less likely to be detected by a pre-trained model.
Thus, periodic retraining of the ML model with new data
is necessary to prevent concept drift, which refers to the
accuracy degradation of ML due to the changes in context of
the target variable. Deductive reasoning differs from inductive
reasoning in that a specific conclusion is reached from a broad
observation (universal premise) instead of a broad conclusion
is established from known instances (specific premises). It is
envisaged that future secure systems will feature a hybrid
of deductive, inductive and abductive reasoning. The latter
is drawn from two premises, a universal major premise and
a specific minor premise with an element of probability.
By combining learning with efficient abductive reasoning
structure, explainable ML [216] is a plausible direction for
future ML-based approach to security enhancement.

B. On Security of Hardware Acceleration of ML

Hardware acceleration for ML applications cuts both ways.
Compared with early works that simulate hardware vulnerabil-
ities on ML applications, recent studies demonstrated realistic
hardware attacks on deployed classifiers. Software simulation
frameworks provide the flexibility and quick turnaround time

to evaluate ML implementation vulnerabilities but lack authen-
tic circuit-level information such as transistor switching and
gate delay. On the other hand, spice-level simulation is time
consuming, and it is infeasible to simulate the actual hardware
that runs complex ML models. Given the inevitable tradeoff
between the accuracy and complexity of any simulation meth-
ods, more attention should be put on evaluating attack vectors
for a diversity of ML models and AI applications on real-world
ML hardware. The risks and vulnerabilities of existing ML
accelerators exposed by deliberate fault injection attacks are
practical. They demonstrated that a flawless mapping of a
DL model into silicon can make an otherwise secure system
vulnerable. Their exploitation is better addressed by new
hardware-oriented countermeasures. A foreseeable major chal-
lenge in developing the countermeasure comes from its hard-
ware overheads and throughput penalty. In so far as the design
of most fault resilient DNN hardware is concerned, the aim
is to recover the classification accuracy from uniform errors
induced by soft errors [17], [198] or sparse faults caused by
voltage instability [66], [172], [191], [217]. However, the faults
induced by adversarial attacks are typically neither uniform
nor random. From this perspective, the effectiveness of current
fault-resilient ML hardware designs against malicious attacks
has not been fully attested.

For IP-theft attacks on ML hardware implementations,
reverse engineering on model structure and hyperparame-
ters via side-channel information leakage has been reported.
Weight recovery on simple and small model architecture
has been attempted on edge DNN platforms. Nevertheless,
accurate extraction of full ML weights on deployed hard-
ware systems is still a challenging problem. CPU and GPU
attacks [26], [177] on conventional shared computing plat-
forms have also been successfully demonstrated recently.
Therefore, it is reasonable to believe that these emerging
techniques may be adapted for model stealing attacks on
FPGA virtualization when multiple users deploy their learning
models onto the FPGA cloud. In the multi-tenant FPGA cloud
scenario, the biggest barrier is the inability to directly access
the victim hardware platform, and the input and output data
of the target model. Hence, conventional power side-channel
analysis methods are not applicable. The attackers will have
to leverage on some backdoor implanted into an instance
together with shared power/clock domain to extract the unique
hardware traits of the ML model. This is by no means easy
due to the huge search space of different compositions of
hyper-parameters and layers.

C. On Trust of ML for Electronic Design Automation

Very recently, some new ML models and methodologies
like Graph Neural Network (GNN) [218] and point cloud as
well as machine learning techniques like Deep Reinforcement
Learning (DRL) [219] and domain adaptation have trans-
formed the way chips are being designed. NP-complete prob-
lems are common in Electronic Design Automation (EDA).
With the exponentially growing scale of IC, traditional empir-
ical choices or brute-force search methods are inefficient
in handling the state space explosion problem. Using ML
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methods to accelerate solving of EDA problems has the advan-
tage of knowledge accumulation. The learnt high-level features
can be reused to avoid repeating the complicated analysis.
According to the comprehensive survey conducted in [220],
ML techniques found applications in almost all the stages of
an IC design flow. The surveyed ML methodologies in EDA
focus merely on accelerating the design space exploration,
increasing the efficiency of testing and validation processes,
and improving the accuracy of performance prediction and
workflow of black-box optimization. Security properties and
confidential assets were not incorporated into the predictors,
design rules and policies for learning. Trust assurance is
a missing piece of the puzzle for the role of ML-based
automation in different levels of the IC design hierarchy. With
the broad adoption of ML into EDA tool chains, we envisage
that more active research will be directed towards enhancing
the trust and reliability of the ML-based EDA tools.

At the opposite end, the valuable insights and knowledge
gained from the use of ML in EDA flow can also be leveraged
to aid adversarial attacks. For example, to improve the search
engine for solving EDA problems, NeuroSAT [221] trains
a GNN to classify Boolean Satisfiability (SAT) problems
and it is simplified in [222] to guide the search process of
an existing SAT solver. However, SAT solver can also be
utilized as an oracle-guided attack to break logic locking
by finding discriminative input patterns to quickly prune the
search space of the secret key. In addition, several popular
ML models used recently for solving EDA problems such
as GNN, Recurrent Neural Networks (RNN) [223] and DRL
are seldom considered for ML-based hardware attacks and
countermeasures. GNN is useful for input data organized in
the form of graphs, RNN is good for sequential data such
as texts while DRL incorporates DL into the reinforcement
learning paradigm for unstructured input data. Comparing with
CNN which is more useful for extracting features from grid
structure data like images, the inputs to these ML models are
closer to the descriptors and representations used for hardware
abstraction. These emerging ML models may suggest new
insight and opportunities for overcoming the limitations of
existing attacks and defenses. For example, GRANNITE [224]
is a GPU-accelerated novel GNN model used for fast and
accurate RTL power estimation. By representing gate-level
netlists as graphs, it possesses good transferability among
different designs. This may be exploited for ML-based power
side-channel analysis.

VI. CONCLUSION

ML is an approach to realize AI by learning from experience
and making decisions based on sensory data instead of algo-
rithms. Propelled by the hardware technology advancement
to support its efficient implementation, ML has now become
an indispensable tool for overcoming the dilemma of the
growing amount of data and shortage of expertise in many
different fields. One notable diversion of ML application from
its original goal of mimicking human cognition is its use
for hardware security. Rising concerns are also raised about
the security of the deployment of ML algorithms on various
hardware platforms. On one hand, ML can aid in solving

commonly encountered regression, prediction and classifica-
tion problems in hardware security. On the other hand, adver-
saries can also leverage ML to achieve nefarious objectives
with reduced time and effort. This paper fills the missing
space in a remarkable body of surveys on ML research by
reviewing the ML journey for hardware security applications,
ML hardware implementation vulnerabilities and related coun-
termeasures. We first present the methods for detecting HTs
and counterfeit ICs based on SVM, LR and other ML-based
approaches. ML-based schemes for detecting malicious appli-
cations, firmware, network attacks, ransomwares and cryp-
tomining malwares are introduced along the line. We also
expose the other side of the coin by revealing the deployment
threats, hardware attack vectors, reverse engineering of model
parameters and inference data recovery on cloud and edge
ML implementations. As a hardware root-of-trust, strong PUF
is singled out for discussion in the light of its susceptibility
to ML-based modeling attacks. Recent efforts in developing
resilient and trustworthy ML hardware and their limitations
are also presented and discussed. Finally, we provide some
critical reflections on the challenges, open problems and
potential future research directions of ML-assisted methods for
hardware security and ML-assisted trusted hardware designs.
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