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firstname.lastname@umbc.edu firstname.lastname@telecom-paris.fr firstname.lastname@secure-ic.com

Abstract—The silicon primitives known as Physically Unclon-
able Functions (PUFs) are used for various security purposes
including key generation, device authentication, etc. Due to the
imperfections in manufacturing process, PUFs produce their
unique outputs (responses) for given input signals (challenges)
fed to identical circuitry designs. Although PUFs are deployed
to preserve security and are assumed to be unclonable, their
functionality may still be compromised by modeling attacks.
However, such attacks only target one single PUF aiming at
reversing its behavior (based on a subset of its challenge-
response pairs), and are not useful for attacking other PUFs.
Moreover a subset of the target PUF’s response has to be
known by the attacker. This paper moves one step forward
and investigates the possibility of Cross-PUF attacks in which a
particular PUF’s power fingerprints can be used to break another
PUF’s security. In these Cross-PUF attacks, the attacker has at
his disposal a reference PUF, and uses its power side-channel
to train a machine learning model which can be deployed to
attack other identical PUFs. The experimental results show the
high success of the proposed attacks even in presence of noise
and temperature differences between the target PUF and the one
used to train the model. We target arbiter-PUFs but we deduce
that the findings extend to all its derivatives, e.g., XOR-PUFs
and Feed-Forward-PUFs.

I. INTRODUCTION

With the increasing concern about the security of Integrated
Circuits (ICs), Physically Unclonable Functions (PUFs) are
broadly deployed to provide a unique signature for each IC.
A PUF signature can be used for device authentication or
generating secret keys in cryptographic devices. PUFs generate
unique signatures despite having identical circuit designs due
to the random process variations, related to a normal distri-
bution of inadvertent technological perturbations [1]. Using a
PUF avoids storing keys in digital memory, thereby enhancing
the security of the systems in which they are embedded.

With the distribution of IC design and manufacturing pro-
cess all over the globe, IC overproduction becomes a major
threat. To address such a threat, PUFs can be used in order
to perform authentication or unlocking of approved devices
for regular use. PUFs are also being postulated as an au-
thentication mechanism to prevent nefarious activities in the
communication and operation of autonomous vehicles [2].
Thanks to their small size and unclonability, PUFs have found
their way into the resource constrained Internet of Things (IoT)
devices [3]. Due to the efficacy of using PUFs in cryptographic
key generation, they are also being considered for securing
cryptocurrencies [4]. PUFs are also particularly well suited
for low-cost devices such as smart cards [5], [6].

A PUF’s signature corresponds to its input and output pairs,
so-called Challenge-Response Pairs (CRPs)—c.f. ISO/IEC

20897. For each PUF, the CRPs are registered once after the
PUF fabrication and during the enrollment phase. However,
when the PUF is used, corresponding to the reconstruction
phase, its CRPs can be erroneous due to measurement noise.
To increase the reliability of PUFs, it is necessary to have a
high signal-to-noise ratio (SNR), or perform post-processing
relying on error correcting codes. SNR can be improved in
delay-PUFs [7] where n elements are chained, and the total
delay of the chain is measured. In this paper, we focus on
an emblematic type of delay-PUFs, the arbiter-PUF, which is
broadly studied for device authentication.

Another problem with the PUF usage is its sensitivity to
attacks. Although PUFs are deployed to preserve security and
are assumed to be unclonable, even the so-called strong PUFs,
such as the arbiter-PUF, may be compromised by modeling
attacks [8], side-channel attacks [9], or a combination of
the two [10]. In the modeling attacks an adversary collects
extensive number of CRPs and uses them to predict the PUF
response for other challenges based on statistical methods
including Machine Learning (ML) techniques [11].

Targeting a PUF using its power traces is of great interest for
ML attacks as once the chip is enrolled and the response is not
accessible anymore (generally this is cut by an anti-fuse), the
only adversarial way to observe the response is by indirect
side-channel captures. Therefore, one can imagine an ML
attack scenario where the attacker registers a training dataset
(including power traces) during enrollment and perpetrates the
attack when the PUF is in use with unseen challenges.

This paper extends the scope of PUF modeling attacks
and further investigates the effectiveness of such attacks by
successfully attacking one implementation of a PUF with a
model created by another implementation. In other words,
attacking one PUF using the power traces of a reference PUF
implemented on the same wafer i.e. via similar GDSII file.
We refer to these attacks as a Cross-PUF attacks hereafter.

The contributions of this paper are as follows:
• Successful attacks of one PUF based on a model created

from a different PUF instance (i.e. Cross-PUF), even in
the presence of temperature mismatch and noise;

• Assessment of the susceptibility of the deployed PUFs
against Cross-PUF attacks targeting either their arbitra-
tion latch or their response bit sampling Flip-Flop.

II. PUF MODELING SCHEMES

Typically modeling attacks are launched by intercepting a
set of CRPs of the target PUF. Using such a set, an ML
model is trained such that the response of any unobserved

Short Paper
978-1-7281-9113-3/20/$31.00 ©2020 IEEE

INTERNATIONAL TEST CONFERENCE 1

20
20

 I
E

E
E

 I
nt

er
na

tio
na

l T
es

t C
on

fe
re

nc
e 

(I
T

C
) 

| 9
78

-1
-7

28
1-

91
13

-3
/2

0/
$3

1.
00

 ©
20

20
 I

E
E

E
 | 

D
O

I:
 1

0.
11

09
/I

T
C

44
77

8.
20

20
.9

32
52

41

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 14,2021 at 16:33:35 UTC from IEEE Xplore.  Restrictions apply. 



challenge is predicted [8], [12]. These attacks aim to glean
several responses from corresponding challenges, and attempt
to characterize function F in the equation: r = F (c), where
r is the response and c is the challenge of the target PUF F .

Attacking a PUF through its CRPs has two issues. The first
is the excessive number of CRPs required to model a PUF. The
second is the accessibility to the portions of the circuit that
would reveal the CRPs as those areas are rendered inaccessible
after enrollment through anti-fuses [13]. With respect to the
proposed Cross-PUF attacks, CRPs are unique for each in-
stance of PUF realized from the same GDSII file, hence it is
impossible to launch Cross-PUF attacks using PUFs’ CRPs.

A more realistic modeling attack on PUFs is performed
via monitoring the power consumption of the underlying
device over time [14]–[16] where the current drawn by
the PUF is monitored during the time it is queried with
challenges and the related traces are recorded. These traces
are correlated to the physical specification of the target
PUF and can be used (instead of challenges) to train an
ML model to mimic the PUF behavior. This model can then be
used to infer the PUF responses.

Since the power traces reveal the underlying characteristics
of the PUF’s design, we use them to launch Cross-PUF
attacks, i.e., building a model created on one PUF to attack
another PUF realized from the same wafer/GDSII file.

III. THREAT MODEL

In this paper, we consider a threat model in which the adver-
sary does not have access to the response of the target PUF, but
has at his disposal a reference PUF. In addition, he can observe
the target’s PUF activity via its power consumption traces.
The proposed Cross-PUF attacks are non-invasive “profiling”
attacks which allow the attacker to predict the response of the
target PUF via its power consumption traces through the model
trained by the reference PUF’s power traces. This differs from
previous research where the PUF that was used for training
the model is the very targeted PUF [10], [15].

As different PUF instances behave differently, it seems para-
doxical to attempt to learn from another instance. However,
the motivation is that even though the responses to a given
challenge are intrinsic to one PUF instance, the side-channel
leakage of an instance is highly correlated to its response (at
least close to the arbiter, in time). We show in this paper that
this relationship does exist and can be exploited. In addition,
we address a more complex threat model where the adversary
is not aware of the operating temperature of the target PUF to
align the temperatures of the two PUFs.

In this paper we target arbiter-PUFs. An arbiter-PUF is
composed of a pair of delay chains and generates one response
bit per challenge, in a single query [17]. It operates based on
the process-variation induced race between the two identical
paths (top and bottom paths shown in Fig. 1). The arbiter can
be realized by a simple S-R latch (easy symmetric layout).

Note that a full implementation of the PUF, embedded in
a chip for generating keys or authentication purposes, would
contain some sort of storage mechanism following the PUF’s
output such as a Flip-Flop for storing the response bits before
the downstream components use the PUF response. As we will
show these system components create power leakages that play

Fig. 1: Structure of an arbiter-PUF [5]. This includes the PUF
structural components as well as the system components.

an important role in the overall power consumption of the PUF,
and affect the total power consumption of the chip [9].

IV. PROPOSED ATTACK METHODOLOGY
In practice, there are two components in the arbiter-PUF

(Fig. 1) that can be targeted for the Cross-PUF attacks:
the Latch arbiter and the embedded Flip-Flop. Specifically,
the latch is intrinsic to the arbiter-PUF as it carries out the
arbitration, while the Flip-Flop is extrinsic to the PUF as it
depends on the system which uses the PUF output. Therefore,
when considering the PUF as a primitive, the leakage of latch
has to be evaluated, while after the PUF is embedded in a
system, the leakage of the Flip-Flop has also to be assessed.
In particular, one advantage of targeting the Flip-Flop is that
it is sequential, synchronized and heavily loaded compared to
the PUF’s latch. This facilitates a side-channel attack on the
Flip-Flop. Figure 2 shows the power traces when the query
propagates through the deployed latch and Flip-Flop.
Targeting the Latch: At the point of time when the latch is
queried, the power traces are highly distinct from each other.
This point of time is crucial in distinguishing the output as it
is when the delays of the related paths are compared and the
PUF’s response is decided for each challenge [18]. Due to the
process variations, the latches being active at slightly different
times. Thereby, to increase the success rate of the attacks, the
traces are first shifted or aligned1 appropriately (as shown in
Fig. 2b), and then these aligned traces are targeted. Indeed, it
was observed that the Cross-PUF attack was not successful
when the power traces were not aligned (as shown in Fig. 2a).
Targeting the Flip-Flop: Similar to the latch, the Flip-Flop
output is also a good target for attacks. As shown in Fig. 2a,
due to the load on the Flip-Flop output, the power traces
related to ‘0’ and ‘1’ responses are clearly separated from
each other in the point of time when the Flip-Flop is queried.
Accordingly, the response can be determined without the use
of modeling techniques in the absence of noise. Due to the
clock synchronization no alignment is necessary for the attack
of the Flip-Flop. We also study the leakage from the latch stage
(this leakage cannot be avoided) due to the fact that the latch
is a part of the PUF, which could be an IP Core that is utilized
across multiple designs thus making the attack more portable.

We launch the attacks which take advantage of the ML
algorithms consisting of two phases: training and evaluation.
(Note that this occurs after the aforementioned alignment
required for attacking the latch). In the training phase, we build
the model based on the power traces of the reference PUF

1In this paper, the alignment means shifting all power traces of a PUF by
a fixed distance, e.g., all traces of PUF5 are shifted left by 75 samples in
Fig. 2b to align with PUF1 on the latch. The values for shifting depend on
PUF instances, which can be observed easily from the traces, e.g., in Fig. 2a.
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(a) Full traces of two PUFs.

Aligning on the latch

(b) Zoomed in traces after alignment (by shifting) on the latch.

Fig. 2: Superimposing 50 traces of PUF1 and PUF5.

Fig. 3: Timing of the sample window used to collect the power
traces of the PUFs.

and the corresponding responses. Finally, in the evaluation
phase, unseen inputs (power traces in our case) are tested to
investigate if the model correctly classifies the response. In
this paper the Support Vector Machine (SVM) [11] scheme is
used to launch the modeling attacks.

V. EXPERIMENTAL SETUP

We implemented the targeted arbiter-PUF shown in Fig. 1
(with a load capacitor of 250 fF), at the transistor level
using a 45 nm technology from the NANGATE library [19].
Using Synopsys HSPICE, we conducted five Monte-Carlo
simulations, each representing one 16-stage PUFi where i ∈
{1, 2, 3, 4, 5} using a Gaussian distribution: transistor gate
length L: 3σ = 10%, threshold voltage VTH : 3σ = 30%,
and gate-oxide thickness tOX : 3σ = 3%. All five of the
PUF result sets are independently identically distributed. We
utilized PUF1 as the reference PUF and the other PUFs for
validation of the Cross-PUF attacks. To study the effect of
temperature misalignments in the success of the Cross-PUF
attacks, we also simulated PUF1 at 60◦C.
Data Extraction: The entire cycle for querying the PUF is
5 ns. The PUF is fed with a rise transition 2.5 ns after applying
each challenge.The PUF’s current is sampled 1000 times
between the time that the PUF is fed with the rise transition
and the time that the response becomes stable (< 1 ns after the
input edge). The Flip-Flop’s clock period is 5 ns with a rising
transition on its clock signal 1 ns after each transition of the
PUF input, to register the response. Figure 3 shows a set of
collected traces, sampled within the aforementioned window.
Adding Noise: To account for the noise effects occurring
in real silicon experiments, artificial noise was added to the

power traces post simulation. Four different levels of Gaussian
noise N , with σ ∈{2.5e-4, 16e-4, 32e-4, 64e-4}, were added
to the original power traces X to obtain the noisy traces Y :

Y = X +N where N ∼ N (0, σ2).
To compare the level of the noise added in our experiments

with the state-of-the-art research, one can refer to [16] which
targets a real arbiter-PUF using power traces. The metric used
in [16] for leakage detection is the ratio of inter-variance and
intra-variance. This ratio is in fact the SNR [20, § 4.3.2] which
is commonly used in side-channel analysis.

Let L be one sample point in power traces, then all traces
can be categorized into two classes L0 and L1, where the
subscripts correspond to two responses of a PUF. Hence,

SNR =
Var(Signal)
Var(Noise)

=
Var([Mean(L0),Mean(L1)])

Mean([Var(L0),Var(L1)])
. (1)

The maximum SNR in [16] is estimated to be 1.81 whereas
in our cases, as shown in Table I, the maximum SNR of PUF1

when targeting the latch or Flip-Flop is much lower.
TABLE I: The maximum SNR for the traces related to the
PUF1’s latch and Flip-Flop.

σ = 2.5e-4 σ = 16e-4 σ = 32e-4 σ = 64e-4
Latch 0.235314 0.009083 0.002350 0.001593

Flip-Flop 12.320019 0.308742 0.079990 0.022701

VI. EXPERIMENTAL RESULTS

A. Attack Success Rate
In these experiments, we used 200 power traces to train the

model and 11,000 traces to test it. The accuracy was calculated
based on the correctness of response prediction.

1) Self-PUF Attacks: Here we target each PUF using its
own power traces, so-called Self-PUF attack hereafter, and
use it as a baseline for the Cross-PUF attack results.

Targeting the Latch: This set of results investigates the success
of the modeling attacks on the target PUF when the power
traces are monitored at the point of time the latch is queried.

With as low as 40 training traces the targeted PUF can
be modeled with a high accuracy (≈97%) using the SVM
algorithm. The modeling accuracy increases to 99% by using
200 training traces. These full Self-PUF attack results are
shown in the bolded diagonal of Table II.

Targeting the Flip-Flop: Attacking the arbiter-PUF using its
own power traces by targeting its embedded Flip-Flop result
in 100% accuracy. This can be easy observed in Fig. 2a. As
shown, the power traces led to responses ‘0’ and ‘1’ are highly
distinct from each other in the point of time when the Flip-Flop
is queried. Such distinction leads to 100% modeling accuracy.

The takeaway point from these observations is that an
arbiter-PUF can be modeled using its power traces at the point
in time when either the latch or Flip-Flop are queried. The
latter, is more strong as the power traces are highly dependent
to the PUF response when the embedded Flip-Flop is queried.

2) Cross-PUF Attacks: Recall that our proposed Cross-
PUF attacks are where one PUF is used as the reference to
build the model, and the other PUFs are being targeted.

Targeting the Latch: Table II demonstrates the Cross-PUF
attack accuracy for all PUFs when targeting the latch. The
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diagonal of this table shows the Self-PUF attacks where each
PUF is attacked using its own power traces. As shown, the
average accuracy of the Self-PUF attacks is 99.68% while the
attacks accuracy is 97.30% for the Cross-PUF attacks when
200 traces are used for training the model. The minimum
accuracy for the Cross-PUF attacks is ≈94.5%.

TABLE II: Accuracy of Cross-PUF attacks for each PUF pair.

Modeled
PUF

Traces used
for Training

Attacked PUF
PUF1 PUF2 PUF3 PUF4 PUF5

PUF1 200 0.9998 0.9605 0.9965 0.9997 0.9483
PUF2 200 0.9454 0.9987 0.9776 0.9517 0.9545
PUF3 200 0.9735 0.9997 0.9983 0.9775 0.9494
PUF4 200 0.9936 0.9700 0.9815 0.9975 0.9470
PUF5 200 0.9880 0.9951 0.9640 0.9855 0.9895

Targeting the Flip-Flop: Similar to the Self-PUF attacks that
targeted the embedded Flip-Flop, in Cross-PUF attacks the
‘0’ and ‘1’ responses are clearly discerned from each other
based on the power consumption of the Flip-Flop. This can
be observed in Fig. 2a. Based on our experiments, the accuracy
of such attacks is ≈100%.

The takeaway point from this set of experiments is that we
can successfully launch Cross-PUF attacks targeting either of
the arbiter latch or the embedded Flip-Flop and they can be
as strong as Self-PUF attacks. This is a significant threat for
the security of devices employing PUFs, since the adversary
can model a PUF realized from the same GDSII to break the
security of the target PUF.

B. Attacks Efficiency in the Presence of Noise

To show the efficacy of the proposed attacks in real silicon
experiments, as discussed in Section V, Gaussian noise was
added to the power traces extracted from our HSpice simula-
tions. To launch the Cross-PUF attacks, on both the latch and
Flip-Flop, the model was trained on PUF1 using 2,000 traces
and tested against 11,000 traces of each of the other PUFs.

Targeting the Latch: The attack results when the arbiter
latch is targeted are shown in Fig. 4. This figure depicts the
modeling accuracy in different levels of noise. As shown, the
attacks are highly successful when the noise σ = 2.5e-4, i.e.,
97% accuracy for the Self-PUF attacks (attacking PUF1), and
more than 92% accuracy for the Cross-PUF attacks. However,
the attack accuracy for the other noise levels is considerably
less as the power traces themselves are fully concealed by the
noise, therefore the SNR is too low to successfully launch the
Self-PUF or Cross-PUF attacks. The results show that in the
presence of acceptable amount of noise (i.e. reasonable SNR),
both Cross-PUF and Self-PUF attacks are highly accurate.

Targeting the Flip-Flop: The attack accuracies are shown in
Fig. 5. As depicted, in these attacks, the accuracy decreases
when increasing the noise level, even-so the attacks are still
highly successful, i.e., the accuracy is ≈100% across all
attacks (Self-PUF and Cross-PUF attacks) when σ = 16e-4
and for σ = 32e-4, the accuracy drops only marginally to
≈98.5%, Increasing the noise even further finally results in
a dip when σ = 64e-4. However, in this level still the Self-
PUF attacks have 91.4% accuracy and the Cross-PUF attacks
experience between 83.7% and 89.5% accuracy.

Fig. 4: Cross-PUF attacks targeting the arbiter latch in five
PUFs in the presence of different noise levels.

Fig. 5: Cross-PUF attacks targeting the embedded Flip-Flop
in five PUFs in the presence of different noise levels.

The takeaway from these experiments is the high success
of the Cross-PUF attacks even in the presence of noise (albeit
with a reasonable SNR).

C. Attacks Efficiency in Case of Temperature Misalignment
In these experiments, we consider PUF1 operating at 60◦C

as a reference and target PUF1 and the other 4 PUFs operating
at 80◦C. The model was trained with 1,000 power-traces and
tested against 11,000 power-traces. Figure 6 shows superim-
posed traces of PUF1 operating at different temperatures. As
expected the PUF operates faster at lower temperatures.

Fig. 6: Superimposing 50 traces of PUF1 under different
temperatures to observe the difference in the collected traces.

Targeting the Latch: Figure 7 shows the effect of temperature
misalignments on the attacks accuracy when the arbiter latch
is attacked. As shown, for the Self-PUF attacks, the PUF can
be modeled with 100% accuracy in case of no noise. The
accuracy changes to 96.11% when Gaussian noise with σ =
2.5e-4 is added artificially to the power traces and diminishes
with increasing σ.Again, we want to emphasize that the noise
levels with σ > 2.5e-4 results in a very low SNR.

The results shown in Fig. 7 confirm that Cross-PUF attacks
through latches are performed at an accuracy higher than
>97% for the SVM algorithm in the case of no noise. When
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Fig. 7: The temperature misalignment modeling results for the
Self-PUF and Cross-PUF attacks targeting the latch.

Fig. 8: The temperature misalignment modeling results for the
Self-PUF and Cross-PUF attacks targeting the Flip-Flop.

noise is added with σ = 2.5e-4 the accuracy decreases to 80%
for the Cross-PUF attacks. Note that the greater the noise
level, the lower the accuracy.

Targeting the Flip-Flop: The results of both Self-PUF and
Cross-PUF attacks targeting the Flip-Flop are shown in Fig. 8.
As depicted, targeting the Flip-Flop results in 100% accuracy
for the Self-PUF attacks in case of no noise up to a noise with
σ ≤ 16e-4 even when there are temperature misalignments.
The results are very similar for Cross-PUF attacks, i.e., the
average accuracy of >99% when σ ≤16e-4. Both the Self-
PUF and Cross-PUF attacks demonstrate more than 98.9%
accuracy for σ ≤32e-4. Finally, the accuracy diminishes on
average to 88% and 84% when σ = 64e-4 for the Self-PUF
and Cross-PUF attacks, respectively.

The takeaway from these observations is that the Cross-PUF
attacks are highly successful despite having a misalignment in
temperature between the modeled and attacked PUFs. This
observation makes the attack more realistic as the adversary
may not be able to control the temperature of the target PUF.

VII. DISCUSSION ABOUT THE SCOPE OF THE ATTACK

The experimental results show that an arbiter-PUF can be
attacked via profiling the traces of a reference PUF realized
from the same GDSII. The simulation results clearly confirm
that the Flip-Flop sampling the arbitration result is the main
leakage source when compared to the arbitration latch. Note
that any kind of arbiter-PUF, even those more robust against
modeling attacks (through their CRPs) such as the Feed-
Forward PUF or XOR-PUF can be targeted in a similar
way (i.e., via Cross-PUF attacks). There are several reasons
explaining this significant leakage at the Flip-Flop stage.
First, the Flip-Flop is necessarily connected to the system
bus and thus more heavily loaded. Secondly, the output is

synchronized with the system clock, hence there is no need of
synchronization and the peak of energy is denser. Finally, the
Flip-Flop has a fixed initial state which can be forced by the
reset signal. Thus the leakage is both intense and reproducible.

VIII. CONCLUSIONS

We proposed the Cross-PUF attacks which allow an ad-
versary to attack an arbiter-PUF and its derivatives by using
the power traces of another counterpart fabricated from the
same wafer (or same GDSII), without the knowledge of CRPs.
This corresponds to both enhanced modeling attacks and
profiling attacks, as a reference PUF is required. Compared
to the classical modeling attacks which target a single PUF
and requires a subset of its CRPs, the Cross-PUF attacks
allow the adversary to target all PUFs fabricated from the
same GDSII by observing their side-channel leakage. An ML
model is trained with the power traces of the reference PUF,
targeting the leakages related to either the arbitration phase at
the latch level, or to the sampling in a system D-Flip-Flop.
We showed that the Cross-PUF attacks are highly successful
despite temperature misalignments between the reference and
target PUFs. It has been shown that the embedded Flip-Flop
fed by the arbiter-PUF output is the main source of leakage.
The efficiency of the proposed attacks has been validated by
simulation using realistic SNR in different temperature con-
ditions. As future works we will investigate countermeasures
and the Cross-PUF attacks considering aging effects.
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[10] U. Rührmair et al., “Efficient power and timing side channels for
physical unclonable functions,” in CHES, 2014, pp. 476–492.

[11] R. Elnaggar et al., “Machine learning for hardware security: Opportu-
nities and risks,” J. Elect. Test., vol. 34, no. 2, pp. 183–201, Apr. 2018.
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