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Abstract—Intellectual property (IP) and integrated circuit (IC)
piracy are of increasing concern to IP/IC providers because of
the globalization of IC design flow and supply chains. Such
globalization is driven by the cost associated with the design,
fabrication, and testing of integrated circuits and allows avenues
for piracy. To protect the designs against IC piracy, we propose a
fingerprinting scheme based on side-channel power analysis and
machine learning methods. The proposed method distinguishes
the ICs which realize a modified netlist, yet same functionality.
Our method doesn’t imply any hardware overhead. We specifi-
cally focus on the ability to detect minimal design variations, as
quantified by the number of logic gates changed. Accuracy of
the proposed scheme is greater than 96 percent, and typically
99 percent in detecting one or more gate-level netlist changes.
Additionally, the effect of temperature has been investigated
as part of this work. Results depict 95.4 percent accuracy in
detecting the exact number of gate changes when data and
classifier use the same temperature, while training with different
temperatures results in 33.6 percent accuracy. This shows the
effectiveness of building temperature-dependent classifiers from
simulations at known operating temperatures.

Index Terms—IP Piracy, Fingerprinting, Side-Channel Power
Analysis, Machine Learning

I. INTRODUCTION

Increasing the complexity of integrated circuits has raised

design time and costs, and in turn has led to the globalization

of the design and manufacturing process. Such globalization

has increased IC counterfeiting and piracy rates [1]. In recent

years, IC Piracy has become a major concern for government,

military, and private sectors with increased cost and downtime

of systems [2].

Applying traditional piracy avoidance methods such as IC

fingerprinting and active metering schemes require additional

hardware and/or impose delay and cost overhead [2–4]. In

practice, modern low cost/power embedded systems have very

small performance margins and adding additional complexity

would either raise the price in terms of new hardware or make

the device less responsive with additional software demands

[5]. An adversary who has access to the gate-level design

(either from a malicious insider or via reverse engineering)

may only change a few gates while keeping the functionality

intact, and introduce the IC as a new original circuit which can

be sold under a new name. To address this problem, this paper

proposes a technique using side-channel analysis to monitor

Figure 1: (a) Supply chain allowing a board manufac-

turer/assembler receiving components from a trusted/untrusted

foundry via a trusted/untrusted supplier. Our method provides

the design-based fingerprints that the trusted test facility will

utilize to detect piracy. (b) Continuum showing likeliness

measures of an IC compared to a given fingerprint used for

authenticity certification. Green shows a match and red depicts

a mismatch. (c) Continuum showing likeliness measures of an

IC compared to a given fingerprint for "theft" detection.

the transient power consumption of an IC in order to detect

if the IC has been altered during the manufacturing process

1(a).

In this paper, we present a new methodology for determining

likeness of an IC to a precharacterized implementation. The

designer generates a likeness measure that is fundamentally

tied to the gate-level design and manufacturing process param-

eters. This likeness metric could be used for two purposes. One

is to certify an IC as authentic (exact design and manufacturer)

by enforcing a tight bound on the similarity, thereby rejecting

any IC with design or manufacturing differences. The second

application is to prevent theft, by catching “similar” designs

sold under a different branding with a loose bound designed

to catch a stolen and slightly modified design that keeps

functionality intact.
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The first application (henceforth called authenticity certifi-

cation in this paper) is important because in a non-vertical

supply chain as shown in Fig. 1(a), there are multiple avenues

for pirated ICs to enter the supply chain (through untrusted

foundries or 3rd-party suppliers). Our method for supply

verification allows a board manufacturer/assembler to verify

the purchased ICs and distinguish them from pirated versions.

In practice, in our method, the IC designer provides additional

information to trusted entities to help them in distinguishing

original designs from pirated versions using a tight tolerance

on the fingerprint (See Fig. 1(b)).

The second application (henceforth called theft detection in

this paper) is where a manufactured IC may not completely

conform the GDSII file sent by original designer, i.e. a rouge

element in the manufacturing process alters the design such
that the new device is functionally equivalent to the original
one, and may have reduced performance. This application

targets the circuits that have same functionality, yet different

gate-level implementations (in terms of a few gates) and hence

a larger window for catching similar ICs as shown in Fig. 1(c).

The following major contributions are presented in this

article:

1) A technique is proposed to determine if intellectual

property (IP) manufactured within an IC can be veri-

fied by a design-based fingerprint provided by the IP

designer. This fingerprint is created via analysis of the

IC’s power consumption, which using an SVM classifier

can accurately determine if there is a change in a circuit

from an original circuit.

2) Simulation-based evidence is presented showing that

classification of the number of changed gates in a

circuit from an original circuit can be determined, which

does not require additional watermarking circuitry. This

analysis includes considering the effect of temperature

variations and transistor mismatch along varying sample

rates on the performance of the classifier.

3) A temperature-dependent model is proposed for clas-

sifying changes in a circuit to mitigate real world

temperature variations.

The remainder of paper is organized as follows. Section

II covers existing techniques of detecting hardware changes.

Section III covers the setup of the circuits analyzed, the

simulation parameters used, and the setup of the classifier. The

results are presented and discussed in Section IV. Finally, in

Section V conclusions are drawn and future work is discussed.

II. RELATED WORK

Prior work in the field of pirated ICs has concentrated

on two avenues. The first is inclusion of and testing for

fingerprinting, watermarking, etc. to protect IP [1, 3, 6]. The

second is detection of hardware Trojans, additional elements

added to a circuit that includes a trigger and payload to

produce a desired effect [7].

To combat pirated devices, additional elements are added to

an IC to help identify the IPs included in a design, because

these elements are only understood by the designer it is

difficult or impossible to remove them and therefore a pirated

device may still contain these elements [4]. Common methods

are watermarking, obfuscation, and fingerprinting. The term

watermarking refers to embedding ownership information into

an IC that can later be verified to show the company whose

IP is included in the IC. Prior work in the area verifies the

presence of a watermark finite state machine though power

analysis [2]. The term obfuscation refers to the insertion of

additional elements to the circuit such that, by using the correct

key the device will operate correctly, but without the key the

exact functionality can not be determined [6]. Recent work on

obfuscation has extended the technique from combinational

logic to include simple finite state machines [8]. Unlike these

methods that require additional hardware, our method requires

no additional hardware and can therefore be a cost savings.

The term fingerprinting refers to ensuring that each IC has

a unique identifier and each IC can be tracked though the

supply chain its identifier [3]. Recent work in this area deals

with leakage and switching power of the gates to create a

device fingerprint [9]. Each device has a unique signature and

therefore needs to be handled individually after manufacturing,

whereas our method creates one signature for a design based

on simulations and is therefore less costly to implement.

Altering the final circuit during the manufacturing process

is very similar to Trojan insertion. Hardware Trojans are the

elements that are maliciously inserted in circuits and mainly

include trigger and payload parts. The trigger can be a specific

input vector, or a sequence of input values that activate the

Trojan circuit. When activated, the payload can result in

circuit malfunction or data leakage [10, 11]. Trojan detection

methods mainly rely on characterizing path delays [11, 12],

and/or electromagnetic emissions[13]. However, in our threat

scenario, the malicious change doesn’t alter the functionally

of a victim circuit, nor does it result in data leakage. Using

path-delay based Trojan detection schemes to detect our victim

circuits is costly because of the scalability of these methods

with the exponentiation growth of the number of paths needed

to be monitored. In practice, in our threat scenario, the

adversary does not need (and even better not to) target critical

or near-critical paths for gate changes. Thereby, path-delay

based techniques encounter scalability issues as they need to

monitor several paths. In addition, although our gate change

can be considered as a Trojan but Trojan-detection schemes

that rely on functionality change fail to detect our pirated

ICs as in our threat scenario the functionality is not changed

and so the even so-called Trojan is never triggered. On the

other hand, we believe that our technique can be adapted for

detecting Trojans as well. However, further investigation is

needed to confirm this ability and therefore in this paper we

focus on distinguishing the ICs which follow our threat model,

and leave the Trojan detection problem as a future research.

III. PROPOSED METHOD

To create a design-based fingerprint, a circuit is simulated

with a set of input patterns and the current drawn from the

circuit is monitored. The Fast Fourier Transform (FFT) of this

time-domain signal along with the signals from the altered

circuits (though functionally equivalent). Two classifiers are
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Figure 2: Flowchart demonstrating the generation of design-

based fingerprints from current traces using binary and multi-

class classifiers. A FFT is performed on current traces and the

results passed to multiple classifiers, which combine to create

the design-based fingerprint.

Figure 3: Simulation setup used in the experiments showing

four chained inverters for input waveform smoothing and the

location where the current is being measured.

created, a binary to identify the original circuit from altered

circuits and a multi-class to identify the number of changes in

a circuit. The second classifier can be dimensionally reduced

to create a binary classifier. From these classifiers, a design

based-fingerprint is created which allows a given IC to be

analyzed in order to determine if the IC is a pirated one or not

and in the case of piracy, how many gates have been changed.

This sequence is shown in Fig. 2. This process can be applied

to larger circuits via partitioning the circuits and considering

one signature for each part using the above technique.

A. Circuit Setup
The circuits evaluated in this paper are selected from the

ISCAS-85 benchmarks [14] and are detailed in Table I. The

benchmarks represent a wide range of application areas and

sizes. The original circuits for this work are an implementation

of these standardized circuits. The experimental setup is shown

in Fig. 3. The four chained inverters model a typical driver

(e.g. limited slew rate). The current measured for this paper is

that from the power supply that feeds the circuit and not the

driver inverters. Altered circuits are created from the original

circuit by a Python script that randomly selects either 1, 2, 5,

10 or 100 gates changes the selected gate from a NAND to an

AND followed by an inverter, an AND to a NAND followed

by an inverter, a NOR to an OR followed by an inverter, etc.

B. Circuit Simulation
To evaluate the effectiveness of the proposed design-based

fingerprint verification, five different ISCAS’85 benchmarks

Table I: ISCAS’85 circuit descriptions.

specified in Table I were simulated. Device-level simula-

tions were performed at the schematic level for this paper.

An in-house tool was used to generate the transistor-level

model of the considered benchmarks. Using a 45-nm technol-

ogy extracted from the open-source NANGATE library [15],

transistor-level simulations were conducted using Synopsys’

HSpice.

For each benchmark circuit (base circuit), we generated sev-

eral altered circuits as follows. We changed one gate (selected

randomly) of the base circuit to a functional equivalent gate(s)

and repeated the process to generate 20 altered circuits. We

also generated 20 circuits each with 2, 5, 10, and 100 gate

changes compared to the original netlist of each benchmark

circuit. To consider the effect of process variations and show

the effectiveness of our method under the process variations,

for each benchmark circuit, we conducted 620 Monte Carlo

simulations of the base circuit and 31 simulations of each of

the 20 altered counterparts using same randomly generated

input sets to feed each circuit and its all counterparts.

For each of the simulations, the current traces were ex-

tracted. Simulations were carried out using the following

process-variation parameters with a Gaussian distribution:

transistor gate length L: 3σ = 10%; threshold voltage VTH :

3σ = 30%, and gate-oxide thickness tOX : 3σ = 3%. The

process variation data reflects a 45-nm process in commercial

use today [16]. The simulations were conducted assuming

45◦C operating temperatures and 10 ps temporal resolution

and were controlled by a Python program.

C. Golden Waveform Generation

The use of a golden waveform and its effect on the accuracy

of the classifier is investigated by comparing the results of the

classifier with and without preprocessing by subtracting the

golden waveform from the data. A golden waveform is gener-

ated by taking the average of the original circuit simulations,

for this work, it is the average of the 620 simulations.

D. Classification Setup

In this paper, a support vector machine (SVM) is used

for classification as it provided the highest accuracy when

compared to other machine learning techniques. A similar

scheme was used in prior work [17]. A basic binary SVM

maps the training data into a higher dimensional feature space

and then attempts to find a boundary-defining expression that

supports useful separation of data while minimizing errors

[18]. The binary classifier can be extended to a multi-class

problem with such methods as an "one vs all" approach. This

compares one class to the remaining data and tries to find
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a boundary to maximize the separation between classes [19].

We use a binary classifier for both authentication certification

and theft detection, however in the case of theft detection

we can use a multi-class classifier to find an approximate

number of gate changes. Additionally, the multi-class classifier

is dimensionally reduced to create a derived binary classifier.
The SVM classifier was trained using two different prepro-

cessing methods. The first was preprocessing by taking the

time-domain waveform and windowing around the transients

caused by input transitions. This is done to limit the amount

of data processed and to eliminate noise contribution from

expected quiescence periods after settling. The FFT was taken

of the resultant windowed time-domain signal. The SVM

was then trained using 5-fold cross validation to test the

accuracy of the binary and multi-class classifications. The

second preprocessing method is similar to the first, however,

prior to windowing the time-domain data, the golden waveform
is subtracted from the time-domain signal. The difference

is then windowed and the remaining preprocessing steps

are the same. We analyzed both time and frequency-domain

classifiers, however the frequency-domain classifier resulted in

2% more accuracy and yielded less false negatives. Therefore

we only present the frequency-domain data.
To confirm the accuracy of the classifier and to verify

that the classifier is able to classify the particular number of

gate changes, the classifier was fed with another completely

separate set of data that included the same number of runs as

the original, but had different gates changed from the original

training data. The outcome of this classification supports

determining if the classifier is overfit to particular data.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Classification Results
Directly creating the classifier for the ISCAS’85 circuits

shown in Table I, resulted in the accuracy shown in Table

II. This is the accuracy of our authenticity certification and

for all cases resulted in at least 83% accuracy. The binary

classification was developed using a binary SVM classifier,

while the derived binary was developed from a multi-class

SVM classifier and then reduced to the binary outcome. A

representative binary confusion matrix (for c432 circuit) is

shown in Table III with the rows signifying actual class and the

columns showing the inferred class. The accuracy of the multi-

class SVM classifier is shown in IV and a representative multi-

class confusion matrix (for c432 circuit) is shown in Table

V. This demonstrates the ability to perform theft detection.

In the multi-class case, direct classification yielded better

performance for circuits with fewer gates.

Table II: Accuracy of direct binary vs. derived binary classi-

fication classifier using 10 ps temporal resolution.

Table III: Representative confusion matrix for the ISCAS’85

c432 circuit using 10 ps temporal resolution. Showing 551

unmodified circuits identified as unmodified and 113 altered

circuits identified as unmodified.
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Predicted

Class

Original

AlteredA
ct

ua
l

C
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Table IV: Accuracy of direct classification vs. classification

using a golden waveform with derived binary and multi-class

classifier using using 10 ps temporal resolution.

B. Golden Waveform Implementation

To create the golden waveform discussed in Section III-C

620 simulations of the original circuit (shown in Fig. 4 (a))

were averaged. The resultant golden waveform is shown in

Fig. 4 (b). The golden waveform is visually differentiable in

the time domain from the average of the waveforms for the

simulations as shown in Fig. 5 (a) vs. Fig. 5 (b). The ability

to differentiate the waveforms in the time-domain infers that

classification is possible.

C. Golden Waveform Classification Results

Using the golden waveform, to classify the circuits resulted

in the binary accuracy specified in Table II and multi-class

accuracy specified in Table IV. A representative confusion

matrix for data processed with the golden waveform for the

binary case is shown in Table VI and multi-class confusion

matrix shown in Table VII. In all cases the binary classifier

performs better using the golden waveform and comparing

binary vs. derived binary classifiers, the accuracy was higher in

all cases for the derived binary. The multi-class classifier, also

has accuracy gains for all but one circuit, which had a 0.3%

decrease. Based on the binary and multi-class classification

accuracy results, the use of the golden waveform outperforms

Table V: Confusion matrix for direct classification of IS-

CAS’85 c432 circuit using 10 ps temporal resolution. Each

row represents the number of gate changes from the original

circuit while each column is the outcome of the classifier with

number of gate changes.
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Figure 4: (a) The time-domain current traces showing 30

of the 620 Monte Carlo simulations demonstrating transistor

mismatch and (b) the time-domain golden waveform for the

ISCAS’85 c432 circuit.

Figure 5: (a) Time-domain golden waveform, compared to

(b) the average for each of the following: Original circuit, 1

gate modified, 2 gates modified, 5 gates modified, 10 gates

modified, and 100 gates modified for the ISCAS’85 c432

circuit.

the direct classification. Using the golden waveform trained

classifier, the binary accuracy can be maintained about 99%

or 269 defects per million.

To verify that the classifier is performing correctly, a new

set of simulations were run with the same number of runs

as in the training scenario for the c432 circuit; twenty runs

of thirty-one MC simulations each with a different number of

changed gates (1, 2, 5, 10 and 100 gates). The results show the

accuracy of 77.9% with the confusion matrix shown in Fig.

VIII. This shows there is some over fitting to the data, but it

Table VI: Representative confusion matrix for golden wave-
form binary classification for the ISCAS’85 c1355 circuit

using 10 ps temporal resolution.
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maintains the ability to distinguish an altered circuit from an

original circuit with 100% accuracy.

D. Varying Temporal Resolution Results

For this work, a 10 ps temporal resolution was used.

Examining the frequency spectrum of the golden waveform
shown in Fig. 6a, a different temporal resolution may yield the

same accuracy, but at a lower temporal resolution needing less

computation. To evaluate the effect of varying the temporal

resolution, simulations were conducted with a temporal reso-

lution of 1 ps and 100 ps and the resultant frequency spectrums

are shown in Fig. 6a and Fig. 6c respectively. The accuracy

of the resultant sampling rates for the multi-class classifier are

93.8%, 95.5%, and 93.5% for 1 ps, 10 ps, and 100 ps temporal

resolution respectively. For all cases accuracy is >99.9% for

the binary classifier and >93% for multi-class classifier. The

higher accuracy at 10 ps when compared to 100 ps for the

multi-class classifier can be explained by the extra dimensions

from the 100 ps classifier. Additional preprocessing steps to

limit the dimensionality of the classifier can be performed.

As it stands the accuracy for all cases is >99% for binary

classification and >93% for multi-class classification.

E. Varying Temperature Results

The baseline temperature used in this paper is 45◦C. To

test the effects of temperature on the classification accuracy,

simulations were conducted at 25◦C and 70◦C to cover the

range of many commercial ICs. The results of these simula-

tions were used by the classifier trained with 45◦C data and

resulted in 33.6% and 28.1% accuracy, respectively for the

multi-class classifier. When the same temperature data was

used to train the classifier as the data being classified the

accuracy improved to 95.4% and 92.1% for 25◦C and 70◦C,

respectively. This means that the classifier is temperature

dependent, and therefore the classifier must be created from

data at the same temperature that subsequent testing and clas-

sification is going to be performed at. For a lab environment

this implies that the temperature of the IC needs to be held

within a temperature band to accurately classify the results.

In an uncontrolled environment, the temperature should be

recorded and a classifier created for that temperature.

V. CONCLUSIONS AND FUTURE WORK

The experimental results confirmed that by deploying a

design-based fingerprint and preprocessing using the golden
waveform, our binary classifier has an almost 100% accuracy

rate for authenticity certification. Going to the multi-class

classifier for theft detection, we can predict the number of

gates changed with an accuracy of 77.9% for a data set with

unknown gates that are not part of the training data. In this

research, we also considered the impact of sampling rate

and showed that it is robust (>90% accuracy) for temporal

resolutions between 1 ps and 100 ps.

Future directions will include creating a temperature-

independent classifier and test the ability to detect Trojans.

Additionally, the effects of aging on a circuit may change
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Table VII: Confusion matrices for the golden waveform classification of ISCAS’85 circuits using 10 ps temporal resolution.
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Figure 6: Frequency-domain of the golden waveform for the ISCAS’85 c432 circuit with different temporal resolutions.

Table VIII: Confusion matrix showing the results of cross

validation data conducted with the classifier for the c432

circuit.
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its design-based fingerprint and needs to be investigated. The

impact of noise on the circuit, as well as layout-level routing

and power-grid effects and variations need to be accounted for

and included in the models to more accurately represent real

world conditions in the simulations. We expect these variations

to have minimal effects on the outcome of this technique,

since they can be accounted for with additional simulation

parameters. Future work will expand on the these premises

while maintaining a high accuracy.
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