
LASCA: Learning Assisted Side Channel Delay
Analysis for Hardware Trojan Detection

Ashkan Vakil∗, Farnaz Behnia∗, Ali Mirzaeian∗, Houman Homayoun†, Naghmeh Karimi‡, Avesta Sasan∗
∗Department of ECE, George Mason University, e-mail: {avakil, fbehnia, amirzaei, asasan}@gmu.edu

‡Department of CSEE, University of Maryland, Baltimore County, e-mail: nkarimi@umbc.edu
†Department of ECE, University of California, Davis, e-mail: hhomayoun@ucdavis.edu

Abstract—In this paper, we introduce a Learning Assisted Side
Channel delay Analysis (LASCA) methodology for Hardware
Trojan detection. Our proposed solution, unlike the prior art,
does not require a Golden IC. Instead, it trains a Neural Network
to act as a process tracking watchdog for correlating the static
timing data (produced at design time) to the delay information
obtained from clock frequency sweeping (at test time) for the
purpose of Trojan detection. Using the LASCA flow, we detect
close to 90% of Hardware Trojans in the simulated scenarios.

I. INTRODUCTION AND BACKGROUND

The use of untrusted entities in this global supply chain has
raised pressing concerns about the security of the fabricated
ICs that are targeted for use in sensitive applications. One of
these security threats is the adversarial infestation of fabricated
ICs with a hardware (HW) Trojan. A Trojan can be broadly
defined as a malicious modification to a circuit to control,
modify, disable, or monitor its logic.

Conventional manufacturing VLSI test and verification
methodologies fall short in detecting HW Trojans due to
the different and un-modeled nature of these malicious alter-
ations. This has led many researchers to investigate solutions
for detection of HW Trojans through statistical analysis of
side-channel information collected from ICs, including side-
channel power analysis [1]–[6], power supply transient signal
analysis [7], [8], regional supply currents analysis [9], temper-
ature analysis [10], wireless transmission power analysis [11],
and side-channel delay analysis [12]–[18].

The problem with many of the previous HW Trojan de-
tection solutions is a need for some sort of a golden model
from which the parametric signature of the fabricated ICs
are collected and used to define a decision boundary (power,
delay, temperature, etc) for separating the Trojan-infested ICs.
However, building a golden IC is extremely difficult or even
impossible: In many cases, especially in advanced technology
node, the choice of the foundry is limited to one or a very
few, none of which may be trusted. Even if a trusted foundry
exists, fabrication of a small volume of ICs for obtaining a
golden IC is usually cost prohibitive [5]. Moreover, the process
used in each foundry is quite different and a golden IC that is
fabricated in one foundry can not be used for assessing an IC
fabricated in another foundry.

For these reasons, we do not assume the existence of a
golden IC or a golden model. Instead, we develop and train a
learning-assisted timing-adjustment model that combined with
the STA acts as a golden model. This work is motivated by
two previous papers: The side-channel power analysis in [5]
and side-channel delay analysis in [12], a short description of
which is given next:

This research is funded by the Defense Advanced Research Projects Agency
(DARPA-AFRL, FA8650-18-1-7820) of the USA.

The side-channel statistical power analysis solution for
Trojan detection in [5] proposed that the trusted region for
the operation of a Trojan free IC can be learned using a
combination of a trusted simulation model, measurements
from the carefully engineered and distributed PCM structures,
and advanced statistical tail modeling techniques. This work,
however, relies on side-channel power analysis for the detec-
tion of hardware Trojan. For observing a meaningful change
in leakage or dynamic power, the size of hardware trojan
has to be large. Hence, this technique falls short of detecting
Hardware Trojans implemented using a small number of
gates. This is when our proposed solution can detect even
a single added logic gate in a tested timing path. Besides,
[5] relies on the usage of PCMs (with a defined structure
that is repeated and distributed over the IC) for extracting
the process parameters. However, the number and accuracy
of PCMs are limited. Although PCM can roughly track the
process corner from chip to chip and could be used for the
rough calibration of timing and spice models, they fall short
of accurately characterizing the behavior of different gates and
metal layers. This is when in our proposed solution, every
timing path could be used as a PCM for training the neural
assisted timing augmentation engine, and therefore the impact
of different timing path topologies, different gate types/sizes,
and the change in the capacitive or resistive load of different
metal layers are taken into account.

The side channel delay analysis solution in [12] uses Clock
Frequency Sweeping Test (CFST) to detect the hardware
Trojan. However, it relies on the existence of a Golden IC for
delay comparison. Our proposed side-channel Trojan detection
scheme is inspired by this work (and used CFST for the
generation of label data points for each feature set), however,
our proposed mechanism does not need a Golden IC.

II. TROJAN THREAT MODEL

The adversary in this paper is an untrusted foundry with
access to GDSII (Graphic Database System format). The goal
of the adversary is to insert a Trojan that is triggered based
on a combination, or a sequence of rare events. A Trojan,
As illustrated in Fig. 1, consists of 1) Trojan’s Trigger inputs
(TT), 2) Trojan’s Triggering (which could be sequential or
combinational) Circuit (TTC), and 3) Trojan Payload (TP).
Upon activation, the TP alters the circuit functionality. We
assume that no Golden IC exists, and the Trojan is inserted in
all fabricated ICs.

III. TROJAN DETECTION CHALLENGE: VARIABILITY

The TT of an HW Trojan poses an additional capacitive
load on its driving cell, resulting in a slower rise and fall,
while its TP adds a gate delay to its victim timing path. In

978-1-7281-4207-4/20/$31.00 ©2020 IEEE 40 21st Int'l Symposium on Quality Electronic Design

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 20,2020 at 18:50:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: (left): Trojan taxonomy, (right): Trojan trigger circuit types

a perfect world, A Trojan can be detected by tracking and
analyzing the changes in the delay of timing-paths compared
to that predicted by STA. The challenge for this solution is
that STA suggested delay information can be significantly
different from delay information that is collected at the test
time. This is due to several factors most notable of which
are: 1) voltage noise, 2) Process Variation, and 3) process drift.

1- Voltage Noise: In an ASIC chip, the Power Delivery
Network (PDN) is an RLC network that responds to the
change in the current demand of transistors, posing voltage
(IR) drop and voltage variation on transistors [19]. During
STA the IR drop and voltage noise are modeled by (1)
specifying a rail voltage value below supplied voltage
to account for IR drop, and (2) using register-endpoint
uncertainty to guard against voltage-variation-induced clock
network jitter [20]. The chosen values for the rail-voltage and
uncertainty should be pessimistic to capture the worst-case
(to prevent setup/hold failure). However, the majority of
timing-paths experience smaller IR-drop and voltage noise.
This poses a security threat; the pessimistic margins build
large unused timing slack into the majority of timing-paths,
which is not visible to the physical designer and test engineer.
The unused timing slacks can be used by an adversary in an
untrusted foundry to design a Trojan and hide its delay impact.

2- Process Variation (PV): The PV refers to the variations
in the physical and electrical properties of transistors in the
result of physical limitations faced during the fabrication
process [21]. It affects the delay and drive-strength of
fabricated transistors. PV makes Trojan detection more
difficult as one has to investigate if the change in the delay
is the result of PV or the timing impact of an HW Trojan.

3- Process Drift: The SPICE model for the fabrication
process in a new technology node is released soon after a
process is production-ready and is used to characterize the
standard cell libraries deployed in a physical design house.
To guarantee a high-yield, the SPICE-model and standard
cell libraries are padded with a carefully crafted margin. In
addition, the foundry keeps improving the process over time to
increase yield and reduce cost. Hence, the fabrication process
and the released SPICE model drift apart over time. The
improvement in the process builds large unused slacks in a
fabricated IC that is designed using the older SPICE and
library models. This poses a security problem as these unused
and hidden timing slacks can be used by an adversary in the
untrusted foundry to design stealthy HW Trojan(s).

IV. PROPOSED HW TROJAN DETECTION SOLUTIONS

The LASCA integrates multiple variation modeling and mit-
igation techniques into a side-channel delay analysis solution
for the purpose of HW Trojan testing. Using the proposed
techniques, we characterize and mitigate the impact of volt-
age noise, PV and process drift to improve the correlation
between the adjusted timing model and the fabricated ICs’

TABLE I: Description for each of 48 features, extracted from each timing-
path for building the NN training set. (LP: Launch portion of timing-path, CP:
Capture portion of timing-path, DP: Data portion of timing-path, M: Metal
Layer, x: drive strength of the gate)

Total of 48 Features, 3 Feature Extracted from each timing-path

Setup Time Path delay reported in STA Sum of fanout over cells in DP
45 Feature Extracted, 15 from each sub-path (CP, LP and DP)

number of gates subpath Delay # cells of x0 strength
cells of x1 strength # cells of x2 strength # cells of x4 strength
cells of x8 strength # cells of x16 strength # cells of x32 strength
Total Length of M1 Total Length of M2 Total Length of M3
Total Length of M4 Total Length of M5 Total Length of M6

Fig. 2: The configuration of the feed-forward fully-connected NN trained in
this work to serve as a test-time process watchdog.

timing behavior. We first describe how each of these variation
sources is modeled and mitigated, and then explain how each
mitigation technique is integrated into LASCA to improve the
chances of an HW Trojan detection.

A. Modeling and Tracking the Process Drift

Process drift results in a non-uniform shift in the delay
of different timing-paths. To model the timing impact of
process drift, we design and train a Neural Network (NN)to
act as a process tracking watchdog (NN-Watchdog). This
NN-Watchdog is used to predict the difference between the
slack reported by STA at design time and that sampled from
fabricated IC at test time. To train the NN-Watchdog, we
need a labeled data-set. Each data point in our data-set is a
collection of 48 input features and a label value. The input
features, detail of which is in Table I, are extracted from
physical design EDA and the STA engine. The label for each
data point is the difference between the slack reported by STA
(at design time), and that obtained by CFST [12] (at test time).

To assess the effectiveness of NN-Watchdog (and for lack
of access to fabricated ICs), we modeled the process drift by
extracting the shift in delay values from SPICE simulations
performed using a skewed SPICE model. For this purpose,
we first extracted the SPICE model for each timing-path in the
input training. Then, to mimic a systematic process drift, the
SPICE model was skewed such that the NMOS and PMOS
transistors were ∼X% faster, and the Metal capacitance for
Metal layers 1 to 7 was derated by Y%. Selection of X and
Y gives us a consistently faster or slower process model. For
example, the selection of (X,Y) = (5, 5), (0, 0), (−5,−5)
produces Fast, Typical, and Slow process models in our
simulations. The resulting database was then divided into 1)
training-set for training the NN (60% of timing-paths), 2)
verification-set used for assessing the trained model accuracy
while training (20% of timing-paths), and 3) test-set used for
reporting the results (20% of timing-paths).

We then design and trained a fully connected feed-forward
NN (Fig. 2.(left)) as a process tracking watchdog that predicts
the difference between the slack reported by STA and slack
measured by the tester. To find a NN architecture with high
accuracy, we utilized Keras [22] and trained a large number of
models by sweeping various model parameters. The number
of hidden layers was swept between 1 to 3, and the number of

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 20,2020 at 18:50:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Computing the mean delay of a path using CFST delay measurements
with step size S, clock period T, over m samples (dies).

nodes in each hidden layer was swept from [input+output
2 to

2×(input+output)
3]. We also tested different activation functions

including: tanH , Sigmoid, ReLU , PReLU , Power, Log,
and Exp. The object of the training was defined to reduce the
sum of squared distances (MSE) between the model’s (slack
shift) prediction and labeled data.

We separately trained each model for AES128, Ethernet, and
S38417 (from IWLS benchmark suit [23]) benchmarks using
21K, 20K, and 4K timing-paths for training, respectively. Data
collected from the training of over 5K models revealed that
the configuration that is shown in Fig. 2.(right) achieves the
highest regression accuracy in most cases. When using a single
”NVIDIA Tesla k80” GPU, the training time of this network
for s38417, Ethernet and AES128 was approximately 1,4 and
5 hours respectively.

B. Modeling and Mitigating PV

We divide the PV into two categories: 1) Random Class
that includes the independent intra-die PV, and 2) Persistent

class including all forms of inter-die and correlated intra-
die variation. we use two different mechanisms to deal with
random and persistent PV: (1) We perform speed binning
on fabricated ICs and divided them into different speed bins
(Fast, Normal, and Slow), arguing that ICs in the same bin
are similarly affected by the persistent PV. Then for each
bin, we train an NN-Watchdog. (2) To reduce the impact of
random PV, using the formulation presented in Fig. 3, we
collect the delay of each timing path (in our test set) from
many ICs and compute their average delay to be used in our
HW Trojan detection solution. When the timing-path delay
is averaged across N different dies, the standard deviation
of the random variable representing the average delay is N
times smaller than the standard deviation of individual samples
(σAVG = σsample/N). Note that the mean value is computed
from discrete delay samples obtained from CFST test, and the
tester’s size (S), as illustrated in Fig. 3, affects the value of
the computed mean.

To emulate the persistent PV (within the same process
corner), we created 2 additional derivatives (slightly modified
copy) for each of our skewed SPICE models. Each skewed
SPICE model was altered to make the transistors in the first
derivative 1% slower, and in the second derivative 1% faster.
To model Random PV, each SPICE simulation is subjected to
100 Monte Carlo simulations (modeling CFST performed on
100 different dies in the same speed-bin), where the threshold
voltage (Vth), Oxide thickness (Tox) and channel Length (L)
are varied (based on a normal distribution) to model the
variation of path delays from chip to chip according to the
expected variation in 32nm technology node.

C. Modeling Timing Impact of Voltage Noise

To improve the accuracy of our timing model (GTM),
we utilize the IR-ATA methodology in [19] that models the
voltage drop and voltage noise. The IR-ATA flow models the

Trojan Detection TestsFabricationDesign
Netlist

Physical
Design

Voltage Noise
Modeling

Timing Closure

Met
Spec?

Configuration

TDF Pattern
Feature

Extraction

Nodes on
short or

long path?

Trojan
Analyzer

TDF Test
Pattern

With Trojan Trojan Free
Chip Finishing

Tester CFST

NN Training

NN-Watch-Dog
Configuration

Trojan Signature

Power based HT
Detection

N
ot in the scope
of this w

ork

Speed
Binning

Train or
Test?

Fig. 4: LASCA Trojan Detection Flow: The model includes changes in the
design and test stages. The test stage divides the timing-paths into long & short
paths. The short paths are subjected to power side-channel Trojan detection as
described in [4] (not covered in this paper), and the long paths are subjected
to delay side-channel analysis using GTM as reference timing model, adjusted
by a NN that is trained as a process watchdog and by using CFST to find the
start-to-fail frequencies for timing-paths under test.

voltage drop and endpoint uncertainty (due to the voltage-
induced clock jitter) using a differential voltage pair (different
voltages for launch and capture path of a timing-path). The
differential voltage pair is obtained based on a statistical anal-
ysis performed on the design-specific IR simulation results. By
using the IR-ATA, the voltage-induced clock jitter uncertainty
becomes path specific. This removes the need for a large hard
margin, resulting in the majority of timing-paths to benefit
from the smaller and dynamically computed margins. Due to
lack of space, we avoid discussing the details of IR-ATA and
refer the readers to [19] for more details.

D. LASCA Trojan Detection Flow

Fig. 4 shows the overall flow of the LASCA Trojan de-
tection flow. We augment the design stage with an additional
step for statistical modeling of the voltage noise and IR drop
using IR-ATA flow as described in [19]. Accordingly, the
STA reports the timing slack of each timing path based on
its estimate of voltage drop and voltage noise (as opposed
to a global pessimistic margin). This, as we will illustrate
in the result section, will improve the correlation between
timing slack predicted by timing engine, and the timing slack
observed at test time using CFST. The final GDSII is then
sent to the foundry for fabrication. The fabricated ICs may be
tested in the untrusted foundry for functionality. The working
ICs are then sent to a trusted facility for Trojan detection.

To detect a Trojan, we need to find the TT/TP induced slack
change. As Fig. 1 shows, a TT adds capacitive load to driving
cell of its observed net, and the TP appends an additional gate
delay to every timing path that passes through its victim net.
To detect a victimized or a monitored net (by a TP or TT), and
for having no prior knowledge on which nets are affected, we
need to include all nets in our delay analysis. We define a P2P-
wire as a net that connects the output pin of a driver cell (or a
primary input) to the input pin of one of its fanout cells (or a
primary output). Hence a gate with a fanout of 4 has 4 P2P-
wires. Each P2P-wire will be tested for rise and fall transitions.
To increase the detection rate and to account for PV, this
process may be repeated for N different timing-paths passing
through that net. The second criteria for selecting the timing-
paths is the maximum frequency of the tester equipment; The
delay of the selected paths should be larger than the limit

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 20,2020 at 18:50:10 UTC from IEEE Xplore. Restrictions apply.

imposed by the maximum reachable frequency of the tester
equipment. If the P2P-wire in no timing-path is long enough
for CFST, it is regarded as a candidate for Trojan detection via
power-based detection schemes. Note that timing-paths with
a small number of gates (in their data sub-path) have high
controllability, making them ideal for the power-based Trojan
detection schemes (e.g. [1]–[3], [24]) that rely on full or partial
activation of such paths. For all other timing-path candidates,
we generate the Path Delay Fault (PDF) test vectors using
an Automatic Test Pattern Generation tool (ATPG). If ATPG
cannot generate a test pattern for a path, the path selection
changes. If ATPG cannot generate a test vector for any path
through that P2P-wire, it is discarded.

Algorithm 1 Generating a training set for the NN-Watchdog

1: NP ← mR2 � R is the registers count, and m is a large number (e.g. 10)
2: TimingPaths ← Select NP timing-paths (min of m path per endpoint)
3: for all path in TimingPaths do
4: feature(path) ← Extract path features from GTM � input feature
5: GTM(path) ← Extract path slack from GTM
6: Slack(path) = 0

7: for all die in Dies do
8: for all path in TimingPaths do
9: CFST(die,path) ← Slack of path in CFST test of die

10: Slack(path) += CFST(die,path)

11: for all path in TimingPaths do
12: Slack(path) = Slack(path)/NP ;
13: Δslack(path) = Slack(path) - GTM(path) � label
14: data-points(path) ← (features(path),Δslack(path))

The Alg. 2 describes our proposed Trojan detection flow.
As described in this algorithm, after selecting the set of
timing paths for PDF testing, we speed-bin the fabricated dies.
In the next step, we collect the NN-Watchdog training data
using the flow described in algorithm 1. Then, we train a
process tracking NN-Watchdog for each bin and extract the
standard deviation of each NN-Watchdog in predicting the
shifted delays. For each bin, we perform CFST and measure
the start to fail frequencies for the selected timing-paths. The
slack difference (δ) between the mean of slacks reported by
the CFST and the NN-Watchdog adjusted slack from GTM
(in the same bin) represents the likelihood of a timing path
being affected by a Trojan. To make a binary decision, we
use a threshold to assess the significance of δ and classify the
timing paths into benign or malignant (Trojan) classes.

When choosing a value for Trojan-detection threshold, we
face a trade-off between the false positive rate and the accuracy
of Trojan detection. The false positive could be the result of 1)
inaccuracy in the GTM, 2) inaccuracy of NN, and 3) random
PV for sampling over a small number of ICs. To reduce the
false positive rate, the threshold used for detection should be
large enough, to account for these. Since we average the delay
of each timing-path over many IC samples, the impact of ran-
dom PV in the average delay could be reduced to a desirable
range. However, we still have to account for the inaccuracy of
the NN and persistent variation. Hence, we define the detection
threshold to be TTh = n×max(σNN , σPV), in which the σPV

is the expected variance of persistent PV (excluding random)
and σNN is the standard deviation of the NN. Since σNN is
the aggregated impact of NN inaccuracy (for under-fitting or
over-fitting of the trained model) and impact of persistent PV,
the variance of σNN tends to be larger than σPV , and we can
simply use TTh = n× σNN (n is selected as 4 in Alg. 2).

To verify the choice of threshold values TTh, we utilized

Youden [25] method to extract the threshold value from
a Receiver Operating Characteristic (ROC) curve that we
generate over our SPICE simulation data (details in Section V).
Note that at test time, we do not know which timing-paths

are affected by HW Trojan. Hence, the optimal threshold of

detection cannot be determined using the Youden method.

Change in the temperature affects the speed of transistors
and alters the RC characteristics of the connecting wires. But,
the temperature change is an extremely slow phenomenon.
That’s why one can design temperature sensors with sampling
frequencies far lower than operational clock frequency [26],
[27]. At test time, a test vector is loaded into the scan chain
using a slow clock, then the circuit operates at-speed for two
cycles (launch and capture) using a fast clock. Finally, the scan
is offloaded using a slow clock. The heat dissipation when us-
ing a slow clock is quite low, and the duration of at-speed test
is only two cycles for each test pattern, limiting the extent of
temperature changes to a fraction of a degree Celsius. Hence,
at test time the die temperature can be tightly controlled to
discount the delay impact of temperature variations.

Algorithm 2 LASCA Trojan Detection Flow

1: N = # paths to be tested through each net in the design
2: Nets ← all nets in the design.
3: for all net in Nets do � net selection of Path Delay Fault (PDF) test
4: TimingPaths + = select N timing-paths passing through net

5: Perform speed binning on all dies and assign them to B bins.
6: for all bin in B do � NN training
7: NNbin ← Train a NN-Watchdog according to the algorithm 1
8: σNNbin

← the standard deviation of NNbin

9: for all die in bin do
10: Slack = 0
11: for all path in TimingPaths do
12: CFST(bin,die,path)← path slack measured by CFST die in the bin
13: Slack(bin,path) += CFST(bin,die,path)

14: for all path in TimingPaths do
15: μS (bin,path) = Slack(bin,path)/sizeof(bin);

16: TTh= 4×σNNbin
� Detection Threshold = 4σ to reduce false positive

17: for all path in TimingPaths do
18: GTM(path) ← query the slack of path from GTM
19: NNSD(path) ← slack shift suggested by NNbin(path)
20: AS(path) = GTM(path) + NNWatchdog(path) � Adjusted Slack
21: δ = μS (bin,path) - AS(path) � Shifted delay after adjustment
22: if (δ > TTh) then � Trojan Classifier
23: Likely Trojan Set ← path

V. RESULTS AND DISCUSSION

In this section, we first look at the accuracy of the NN-
Watchdog in tracking the process drift, and then we present
the result of applying our proposed test flow, LASCA, for
Trojan detection.

A. NN-Watchdog Accuracy

Table II depicts the mean and standard deviation of the
NN-Watchdog in predicting the shift in the delay of timing-
paths when subjected to process drift. As shown, the standard
deviation is reasonably small. To put this in perspective, we
can compare the error distribution of NN-Watchdog with the
error distribution obtained by finding the difference between
delay of timing-paths reported by SPICE (dSPICE) and that
obtained from STA (dSTA). Fig. 5 depicts the distribution of
NN-Watchdog error and mean-shifted delay-difference model
(ΔSPICE−STA = dSTA − dSPICE) over a large selection
of timing-paths. As illustrated, the mean shifted SPICE-STA
difference, for all benchmarks, has a much larger standard de-
viation compared to the NN-Watchdog error. This reveals the

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 20,2020 at 18:50:10 UTC from IEEE Xplore. Restrictions apply.

TABLE II: The Accuracy of the NN-Watchdog regression model trained for
different benchmarks. The μ and σ are the Mean and Standard deviation of
the regression error over the validation set. As discussed in Section IV-A, the
Fast, Typical and Slow process are simulated using skewed Spice model with
(X,Y) = (5,5), (0,0), (-5,-5), respectively.

Benchmarks Gates Size Fast Typical Slow
Train Test μ(ps) σ(ps) μ(ps) σ(ps) μ(ps) σ(ps)

AES128 114K 21K 4K -0.14 7.45 0.04 8.12 -0.02 7.15
Ethernet 40K 20K 4K 0.79 9.65 0.28 9.13 -0.65 8.36
S38417 6K 4K 1K 0.12 6.87 0.08 7.07 0.25 6.38

Fig. 5: Histogram of NN-Watchdog Error trained for different benchmarks.

strength of NN-Watchdog and justifies why an NN-Watchdog
could significantly enhance our Trojan detection flow by
accurately adjusting the STA reported delay information to
account for the impact of process drift.

B. HW Trojan Detection Accuracy

Setup: We selected 720 timing-paths from non-critical to
critical range, covering a range of 400 ps of slack from
3 largest IWLS benchmarks [23] (Ethernet, S38417 and
AES128). Each benchmark is hardened (physical design) and
timing closed at 1.4GHz in 32nm technology. For each bench-
mark, we divided the selected timing-paths into two groups
(360 each) for inserting TTs and TPs. We further divided
each subgroup into three smaller groups of 120 paths each
to implement small, medium, and large size Trojans. The TP
size is controlled by the selection of logic gates with different
inherent delays. The TT size is controlled by the distance it is
placed from the triggering net. During NN-Watchdog training,
we do not know if a timing-path selected for training contains
a Trojan. Hence, we also evaluated the impact of including
Trojans affected timing paths in the training; We trained 3 NN-
Watchdogs with 0, 20 and 40 Trojan paths included in their
training set. The rest of the Trojans are used for evaluating
the LASCA Trojan detection accuracy as a part of its test-set.

To model the voltage variation, we used Redhawk [28]
and simulated 50 cycles of vectorless IR simulation when
clock and data toggle rates are 100% and 10% respectively. In
the SPICE simulation, each timing-path is assigned a random
value from a normal distribution for the Vth of its transistors
(to model the PV), and each of its gates is annotated with
the gate voltage reported by Redhawk in one simulation
cycle. Note that each SPICE simulation presents a CFST test
performed on a different die at a different time. Furthermore,
the slack reported by the SPICE simulation for each timing-
path was adjusted to the neighboring larger clock sweeping
frequency step, modeling the CFST step size. The step size in
the state-of-the-art tester equipments can be as small as 10-
15ps. Hence, we selected the step size of the tester as 15ps.

In our simulations, we assessed the effectiveness of Trojan
detection using 3 approaches. 1) Shifted STA (SSTA): when
STA results are used as Golden Timing Model to detect
HW Trojans. The process drift makes the direct usage of
STA results quite ineffective. To account for process drift in
SSTA, we have computed a static shift value, obtained from
averaging the observed shift from many sampled timing-paths,
and have shifted all reported slacks by STA using this value.

Fig. 6: Trojan Payload detection results for 3 benchmarks. (top): Detection
rate, (middle): False positive rate, (bottom): Associated ROC curve capturing
the True Positive Rate (TPR) versus True False Positive Rate. The SSTA bar
represents the HW Trojan Payload detection using a (Mean shifted) STA.
The SGTM represents Trojan detection when IR-ATA [19] flow is deployed.
The NGTM bars represent the Trojan Payload detection when both IR-ATA
approach and the NN-Watchdog are combined. Each bar shows the NN trained
when X Trojans are included in the training set, with X ∈ {0, 20, 40}.

TABLE III: Threshold values used for TT and TP Trojan detection in Fast-bin
in Algorithm 2

Benchmarks
TP TT

Youden 4× σNN Youden 4× σNN
AES128 27.1 29.86 16.3 29.86
Ethernet 35.5 38.67 15.4 38.67
S38417 24.7 27.46 17.2 27.46

For this approach, we have set the detection threshold to the
fixed value of 45ps which is the delay of a 2-input NAND
gate in our standard cell library. 2) Shifted GTM (SGTM):
which is similar to SSTA with the exception that the voltage
noise and IR-drop are modeled using IR-ATA [19] and the
Trojan detection threshold is set to 45ps. 3) Neural shifted
Golden Timing Model (NGTM) in which the voltage noise is
modeled using IR-ATA [19], while the process drift is modeled
using NN-Watchdog. The NGTM represents the detection
model proposed and utilized in LASCA. Furthermore, we have
investigated the accuracy of NGTM when the training set
includes 0, 20 and 40 timing-paths affected by HW Trojans.
In all of SSTA, SGTM and NGTM, the effectiveness of
the selected threshold is assessed by extracting the optimal
threshold from the ROC curve using Youden [25] method.

Fig. 6 captures the result of TP detection in Fast (X,Y)=(5,5)
speed bin. The top row compares the accuracy of SSTA,
SGTM, and NGTM in detecting TPs, and the middle row
reports the false positive rate of detection for each model
across different benchmarks. The NGTM model is reported
3 times, corresponding to a model having 0, 20 and 40 Trojan
paths included in its training set. The bottom row illustrates
the ROC curve from which the Youden threshold (as described
in Section IV-D) is extracted. The threshold values used for
detection using each of these methods is reported in Table III.
As illustrated, the usage of IR-ATA in SGTM model improves
the TP detection rate compared to the SSTA at the expense of

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 20,2020 at 18:50:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Trojan Trigger detection results for 3 benchmarks. (top): Detection
rate, (middle): False positive rate, (bottom): Associated ROC curve capturing
the True Positive Rate (TPR) versus True False Positive Rate.

TABLE IV: Percentage of False Positives (FPo) and True Positives (TPo)
when LASCA (as described in Alg. 2) with NGTM-10 is used for detection
of TP in Slow, Typical, and Fast speed bins.

Benchmarks
Slow Typical Fast No-Binning

TPo FPo TPo FPo TPo FPo TPo FPo
AES128 88.6 0.11 87.8 0.17 86.1 0.18 0.78 0.31
Ethernet 87.3 0.17 85.5 0.12 88.6 0.15 0.80 0.48
S38417 83.7 0.19 82.2 0.23 80.3 0.39 0.77 0.45

higher false positive. However, the use of IR-ATA and NN-
Watchdog in the NGTM not only results in a significantly
higher increase in the TP detection rate (to over 88%), but also
significantly depresses the false positive rate. This confirms
the ability of NN-Watchdog in modeling the complicated, non-
linear, path-specific shift of delays resulting from process drift.
Finally, note that the presence of a small number of Trojans
in the training set does not affect the accuracy of trained NN-
Watchdog as the impact of a few samples in a large training
set is statistically insignificant.

Figure 7 depicts the result of our TT detection in the FAST
speed bin with (X,X) = (5,5). As shown, NGTM has a lower
rate for detecting TTs compared to TPs due to the smaller
impact of TT on the delay of affected observed nets compared
to TP (which is at least equal to one gate delay). Similar to
the TP case, we observe that contamination of the training set
with few HW Trojan data points does not impact the accuracy
of trained NN-Watchdog. This is because the number of HW
Trojan infested timing paths is statistically insignificant and
does not affect the training results. As illustrated, the Trojan
trigger detection using our proposed approach closely tracks
the Yuden model. Note that extracting the Yuden threshold
requires a Trojan oracle database that is not available and is
only presented to illustrate the effectiveness of our proposed
solution. Finally, note that a hardware Trojan can have multiple
TT and TP; although we have separately reported the result of
TT and TP detection, detection of a single TT or TP is enough
to detect the hardware Trojan. Therefore the overall detection
rate of a hardware Trojan is larger than the results reported
for TT or TP detection.

Table IV captures the results of TP Trojan detection in
all speed bins. As reported, the speed binning provides more
accurate results for TP detection compared to the No-speed-
binning case. This is due to the larger standard deviation of
the NN-Watchdog when training over extracted delays from
all dies without considering the impact of persistent PV.

VI. CONCLUSION

In this paper, we presented LASCA, a promising methodol-
ogy for Trojan detection based on side-channel delay analysis,
that does not require the availability and usage of a Golden
IC. For Trojan detection, The LASCA relies on 1) improving
the timing model at design time to account for voltage noise,
and 2) training a Neural Network at test time that is used as
a process tracking watchdog to model the process drift (while
accounting for process variation). We have reported that the
LASCA Trojan detection flow could achieve close to 90%
Trojan detection in the selected benchmarks.

REFERENCES

[1] D. Agrawal et al., “Trojan detection using IC fingerprinting,” in Security and Privacy, 2007. SP’07.
IEEE Symp. on. IEEE, 2007, pp. 296–310.

[2] R. Rad, et al., “A sensitivity analysis of power signal methods for detecting hardware trojans
under real process and environmental conditions,” IEEE Trans. on VLSI Systems, vol. 18, no. 12,
pp. 1735–1744, 2010.

[3] H. Salmani et al., “New design strategy for improving hardware trojan detection and reducing
trojan activation time,” in IEEE Int. Workshop on Hardware-Oriented Security and Trust, 2009,
pp. 66–73.

[4] M. Lecomte et al., “An on-chip technique to detect hardware trojans and assist counterfeit
identification,” IEEE Trans. on VLSI Systems, vol. 25, no. 12, pp. 3317–3330, 2017.

[5] Y. Liu et al., “Hardware trojan detection through golden chip-free statistical side-channel finger-
printing,” in Proceedings of the 51st Annual Design Automation Conference. ACM, 2014, pp.
1–6.

[6] C. Lamech et al., “Rebel and tdc: Two embedded test structures for on-chip measurements of
within-die path delay variations,” in Proceedings of the International Conference on Computer-
Aided Design. IEEE Press, 2011, pp. 170–177.

[7] R. Rad et al., “Sensitivity analysis to hardware trojans using power supply transient signals,” in
2008 IEEE International Workshop on Hardware-Oriented Security and Trust. IEEE, 2008, pp.
3–7.

[8] R. M. Rad et al., “Power supply signal calibration techniques for improving detection resolution
to hardware trojans,” in 2008 IEEE/ACM International Conference on Computer-Aided Design,
2008, pp. 632–639.

[9] D. Du et al., “Self-referencing: A scalable side-channel approach for hardware trojan detection,”
in International Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2010,
pp. 173–187.

[10] K. Hu et al., “High-sensitivity hardware trojan detection using multimodal characterization,” in
Proceedings of the Conference on Design, Automation and Test in Europe. EDA Consortium,
2013, pp. 1271–1276.

[11] Y. Liu et al., “Hardware trojans in wireless cryptographic ics: silicon demonstration & detection
method evaluation,” in 2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2013, pp. 399–404.

[12] K. Xiao et al., “A clock sweeping technique for detecting hw trojans impacting circuits delay,”
IEEE Design Test, vol. 30, pp. 26–34, 2013.

[13] Y. et al., “Hw trojan detection using path delay fingerprint,” in IEEE Int. Workshop on HW-
Oriented Security & Trust, 2008, pp. 51–57.

[14] J. Li et al., “At-speed delay characterization for ic authentication and trojan horse detection,” in
Int. Workshop on Hardware-Oriented Security and Trust, 2008, pp. 8–14.

[15] Y. Jin et al., “Hardware trojan detection using path delay fingerprint,” in Hardware-Oriented
Security and Trust, 2008. HOST 2008. IEEE Int. Workshop on. IEEE, 2008, pp. 51–57.

[16] X. Cui et al., “Hardware trojan detection using the order of path delay,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 14, no. 3, p. 33, 2018.

[17] I. Exurville et al., “Resilient hardware trojans detection based on path delay measurements,” in
2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
2015, pp. 151–156.

[18] D. Ismari et al., “On detecting delay anomalies introduced by hardware trojans,” in 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2016, pp.
1–7.

[19] A. Vakil et al., “IR-ATA: IR annotated timing analysis, a flow for closing the loop between PDN
design, IR analysis & timing closure,” in Asia and South Pacific Design Automation Conf., 2019,
pp. 152–159.

[20] K. Arabi et al., “Power supply noise in socs: Metrics, management, and measurement,” IEEE
Design & Test of Comp., vol. 24, no. 3, 2007.

[21] V. Wang et al., “A design model for random process variability,” in Int. Symp. on Quality Electronic
Design, 2008, pp. 734–737.

[22] F. Chollet et al., “Keras,” https://keras.io, 2019.
[23] IWLS-org. (2005) Iwls 2005 benchmarks. Accessed July 10, 2019. [Online]. Available:

http://iwls.org/iwls2005/benchmarks.html
[24] S. Wei et al., “Scalable hardware Trojan diagnosis,” IEEE Trans. on VLSI Systems, vol. 20, no. 6,

pp. 1049–1057, 2012.
[25] N. Perkins et al., “The inconsistency of optimal cutpoints obtained using two criteria based on the

receiver operating characteristic curve,” American journal of epidemiology, vol. 163, no. 7, pp.
670–675, 2006.

[26] S. Chen et al., “Fully on-chip temperature, process, and voltage sensors,” in Proceedings of 2010
IEEE Int. Symp. on Circuits and Systems, May 2010, pp. 897–900.

[27] M. Sasaki et al., “A temperature sensor with an inaccuracy of−1/+0.8 ◦ c using 90-nm 1-v cmos
for online thermal monitoring of vlsi circuits,” IEEE Trans. on Semiconductor Manufacturing,
vol. 21, no. 2, pp. 201–208, May 2008.

[28] ANSYS-Apache. (2020) Redhawk. Accessed Jan 10, 2020. [Online]. Available:
https://www.ansys.com/products/semiconductors/ansys-redhawk

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 20,2020 at 18:50:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

