
3684 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

A PUF-Based Modeling-Attack Resilient
Authentication Protocol for IoT Devices

Mohammad Ebrahimabadi, Graduate Student Member, IEEE, Mohamed Younis , Senior Member, IEEE,
and Naghmeh Karimi , Member, IEEE

Abstract—Physical unclonable functions (PUFs) offer a promis-
ing solution for the authentication of Internet of Things (IoT)
devices as they provide unique fingerprints for the underlying
devices through their challenge–response pairs. However, PUFs
have been shown to be vulnerable to modeling attacks. In this
article, we propose a novel protocol to thwart such vulnerability
by limiting the adversary’s ability to intercept the whole challenge
bits exchanged with IoT nodes. We split the challenge bits over
multiple messages and engage one or multiple helper nodes in the
dissemination process. We further study the implications of var-
ious parts of the challenge patterns on the modeling attack and
propose extensions of our protocol that exploit bits scrambling
and padding to ameliorate the attack resiliency. The experimental
results extracted from a 16-bit and a 64-bit arbiter-PUF imple-
mented on FPGA demonstrate the effectiveness of the proposed
methods in boosting the robustness of IoT authentication.

Index Terms—Authentication, Internet of Things (IoT), phys-
ical unclonable function (PUF), machine learning (ML).

I. INTRODUCTION

THE NOTION of the Internet of Things (IoT) has emerged
to characterize the internetworking of numerous and

diverse devices to form ubiquitous computing systems that
enable probing the environment, sharing data, and control-
ling physical processes. In essence, an IoT provides a core
infrastructure that extends the communication and exchange of
data from servers, personal computers and smartphones to an
enormous range of objects used in everyday life. IoT applica-
tions can be found in several domains, e.g., scientific, military,
and civil domains. For example, in space applications, an IoT
would enable broad accessibility at the global scale by inter-
networking of space assets owned and operated by independent
entities. Similarly, in the realm of smart cities, the Internet
of Vehicles would self-manage traffic on the road through
interaction between vehicles and cooperation with road infras-
tructure, e.g., traffic signals. Overall, it is estimated that 100
billion devices will be interconnected through IoT frameworks
by 2025 [1].

The societal impact and role of IoT elevate the importance
of guarding it against security threats. However, countering

Manuscript received March 10, 2021; revised May 9, 2021; accepted
July 14, 2021. Date of publication July 19, 2021; date of current version
February 21, 2022. (Corresponding author: Mohamed Younis.)

The authors are with the Department of Computer Science and
Electrical Engineering, University of Maryland at Baltimore County,
Baltimore, MD 21250 USA (e-mail: e127@umbc.edu; younis@umbc.edu;
nkarimi@umbc.edu).

Digital Object Identifier 10.1109/JIOT.2021.3098496

security attacks in IoT is more challenging than in traditional
networks due to the wide range of communication protocols and
limited capabilities of the involved devices. Security threats for
IoT devices range from enforcing malicious malfunctions and
denial of service to leaking sensitive information. Given the role
that an IoT plays, combating security threats is a must, and pro-
visioning for node authentication, data integrity, access control,
and privacy would be expected in the design [2]–[5]. However,
in such an era of globalization, outsourcing of digital design
and IC fabrication has become very common, and consequently,
counterfeit electronics is a major worry for application devel-
opers, especially in critical systems that involve sensing and
control [6]. Such an outsourcing trend could potentially enable
unauthorized devices to blend in and join the network. Thereby,
authenticating devices in an IoT has become an extremely
critical and challenging security threat.

An IoT is characterized by the heterogeneity of the
interconnected devices, many of which are constrained in
their computation, communication, and energy resources. Such
resource limitation restrains the applicability of elaborate secu-
rity solutions, and mandates the use of lightweight primitives
and the tradeoff between security and resources [5]. In addi-
tion, IoT devices operate unattended and, thus, adversaries
could come close enough to eavesdrop on transmissions [7].
In practice, to ensure secure communication, the authenticity
of each device in the IoT framework should be confirmed.
Accordingly, provision for efficient device authentication is
highly required.

Authentication has been traditionally supported by either
deploying the public-key infrastructure (PKI) [8]–[11] or
identity-based encryption (IBE) [12], [13]. PKI employs one
or multiple trusted parties to certify that a cryptographic key
belongs to a particular user or device. Due to the associated
computational and communication overhead, such certifica-
tion is quite costly and not scalable for an IoT system with
numerous nodes [14]. Despite their performance advantages
over PKI, IBE schemes also suffer from scalability limi-
tations and are deemed unfit for the resource-constrained
IoT devices. Generally, authentication schemes that require
computation-intensive cryptographic primitives, e.g., asym-
metric cryptography, impose significant overhead and do not
suit resource-constrained IoT devices [15]. Moreover, conven-
tional sole-software authentication schemes [16] are not robust
enough, as a device can be hacked and its cryptographic iden-
tity in terms of encryption (private) key or digital certificate
can be leaked or manipulated.

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3865-9217
https://orcid.org/0000-0002-5825-6637

EBRAHIMABADI et al.: PUF-BASED MODELING-ATTACK RESILIENT AUTHENTICATION PROTOCOL FOR IoT DEVICES 3685

On the other hand, existing schemes that involve hardware
are not secure either [12], [15]. The use of nonvolatile memo-
ries such as EEPROM or battery-backed SRAM to store shared
keys are vulnerable to device tampering. The same argument
applies for solutions that leverage trusted platform modules
(TPMs) [17], [18]. TPM, and its lightweight alternatives [19],
increase the hardware complexity and are geared for software
integrity rather than device authentication. Thereby, to protect
IoT frameworks, it is necessary to develop authentication and
key management protocols that utilize lightweight cryptogra-
phy and low-cost tamper-resistant primitives. These protocols
should be versatile to be able to efficiently cope with the
dynamic node membership, and resilient against contemporary
attacks.

In this article, we aspire to fill the technical gap and propose
a robust authentication mechanism for IoT devices. Our mech-
anism employs physical unclonable functions (PUFs) [20]
to associate unique hardware-based IDs to the participating
devices in order to enable effective protection against contem-
porary security threats, such as eavesdropping, impersonation,
and message replay. PUFs operate based on unintentional
variations that occur in the fabrication process of the inte-
grated circuits, causing signals that follow similar paths in
the design to experience slightly different propagation delays
in different chips. Thereby, the response of each PUF to the
same input (so-called challenge) varies among similar chips.
These unique signatures are highly adopted by industry for
IC Metering, detection of counterfeit ICs, and logic obfusca-
tion [21], [22], and can also be used for device authentication
purposes. Deploying PUF unique signatures alleviates the need
to store the unique ID of each IoT device in memory and, thus,
deprives an adversary from revealing the secure device iden-
tifier (ID) through software hacking and makes IoT devices
more secure [7], [23].

A PUF is classified as weak or strong based on whether
the challenge response space is small or large, respectively.
Strong PUFs are often used for authentication protocols, while
weak PUFs are often deemed suitable for generating crypto-
graphic keys [4], [24]–[26]. Although PUFs are fundamentally
based on random physical variations and consequently sup-
posed to be unclonable [27], they may be prone to attacks
that aim at modeling their behavior using machine learning
(ML) techniques. In fact, by having access to a subset of the
challenge–response pairs (CRPs), an adversary may be able
to model the PUF, even strong ones [27]–[34]. Thereby, it
is necessary to prevent intercepting the challenge–response
exchange messages used for authenticating IoT devices.

Accordingly, this article focuses on strong PUFs and pro-
poses a novel authentication protocol that splits challenge
bit-streams into multiple messages, and engages additional
(helper) nodes. The challenge bits are extracted from multiple
messages routed through different nodes. The goal is to
counter eavesdropping attempts aimed at uncovering the
exchanged CRPs. We also study the impact of various chal-
lenge bits on the PUF modeling attack, and further provi-
sion additional protection by employing: 1) bit scrambling
and 2) challenge padding techniques to degrade the adver-
sary’s modeling capabilities. Thus, this article fundamentally

contributes a novel authentication protocol for IoT that:
1) employs lightweight hardware primitives; 2) avoids the
reliance on cryptosystems; and 3) resists machine modeling
attacks. Specifically, the contributions are as follows.

1) Develop a novel lightweight PUF-based mechanism for
authenticating IoT devices. Rather than applying encryp-
tion, our mechanism pursues challenge splitting (CSP)
to thwart the PUF modeling attacks.

2) Study the impact of a known portion of a challenge
pattern on the PUF modeling accuracy.

3) Propose an enhancement for CSP through bit scram-
bling, referred to hereafter as CSP-S.

4) Strengthen CSP through challenge Padding (CSP-P)
to introduce noisy data that degrades the ML-based
modeling accuracy.

5) Evaluate all proposed methods using the data extracted
from FPGA implementation of the target PUF.

The remainder of this article is organized as follows.
Section II presents related work on IoT authentication.
Section III presents the threat model considered in this study
and provides some preliminaries. Section IV describes the
proposed authentication mechanisms. The validation results
are reported in Section V. Section VI analyzes the security
and overhead of the proposed schemes. Section VII concludes
this article and highlights future research directions.

II. RELATED WORK

An IoT is a collection of low-cost and resource-constrained
devices operating in unsupervised environments [35], [36].
Even though several authentication protocols and security
provisions exist for wireless networks, they do not suit the
resource-constrained and very dynamic network membership
of IoT devices [2], [3], [8], [9], [23]. Most existing authenti-
cation protocols rely on storing the device ID in its memory.
However, such a methodology is not secure as IoT devices may
not be always protected against cyber and physical attacks. To
prevent storing keys in the IoT devices, deploying PUFs has
been explored [27], [29], [37]–[42]. Although these authen-
tication schemes are lightweight and benefit from the unique
footprints of PUF devices, they suffer from vulnerabilities to
security threats such as modeling attacks, replay attacks, and
impersonation attacks.

Chatterjee et al. [14] used PUFs to generate public and
private keys to be used for securing data transfer in IoT.
The proposed scheme is resilient against replay attacks, yet
it is computationally intensive and would not suit resource-
constrained IoT devices. Wallrabenstein [7] opted to avoid
storing the private key in the device memory in order to
achieve tamper resistance. The approach is to embed an
elliptic-curve cryptosystem on the IoT device, to be used along
with the PUF to regenerate the private key when needed.
However, the approach requires some changes to be made
to the IoT device hardware. The scheme of Huth et al. [43]
has low storage requirements; yet it needs considerable hard-
ware changes to be applied to the device. Meanwhile, PUF-
RAKE [44] uses a random number generator to shuffle the
challenge and response bits and store them in an encrypted

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

3686 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

form. The selection of the random number generator is based
on whether the challenge is even or odd. The device is given
a sequence of random numbers to be used to reorder the pro-
vided challenge bits; upon applying the challenges to the PUF,
the response bits are shuffled again before replying to the
server. However, the approach either requires synchronization
if the sequence of random numbers is not predetermined, or
introduces vulnerability if the device can be hacked and its
memory is read.

Successful modeling of the PUF behavior can compro-
mise the PUF-based IoT security provision. Some efforts have
been dedicated to mitigate the PUF vulnerability to modeling
attacks. Ganji et al. [45]–[47] employed machine-learning
techniques to model different PUF types based on their CRPs.
However, those schemes need the attacker to have access to
a set of CRPs that meet a specific requirement, e.g., a set of
challenge bit-streams that are different in only 1 (or n) bits.
They use the corresponding response of such a set of challenge
bit-streams to determine the influential bits of the deployed
PUF and increase the accuracy of the modeling attack. Our
proposed schemes are resilient against such a PUF modeling
attack since, by CSP, the adversary does not have access to the
full challenge bits, and applying bit scrambling and padding
prevents an adversary from determining the index of each
challenge bit in the intercepted bit-stream.

A number of approaches have been developed to safeguard
PUF-based authentication solutions against possible modeling
attacks, or at least or mitigate their threat. Existing schemes
can be categorized based on the methodology as: 1) hard-
ware based; 2) encryption based; or 3) protocol based. The
former opts to harness the PUF design by the incorpora-
tion of additional logic. For example, PHEMAP [48] uses
a sequencer, where the challenge Ci at time ti is a func-
tion of C0, C1, . . . , Ci−1. Meanwhile, the objective of [49] is
to increase PUF reliability and resilience to modeling. The
approach is to add two flip-flops and make the output as a
function of the PUF response and the first and last challenge
bits. On the other hand, Gu et al. [30] deployed a replicated
PUF, the so-called Fake PUF. Using such an extra PUF, fake
CRPs are exchanged to mislead the attacker. In fact, in this
method the genuine PUF is occasionally queried only at pre-
determined time, while the fake PUF is used frequently and is
thus assumed to be queried by the adversary. Although these
schemes increase the resiliency of the IoT framework against
modeling attacks, they impose a significant hardware over-
head, i.e., an extra PUF along with a controller and counter
to decide when the fake and genuine CRPs are sent [30]. In
addition, a synchronization scheme could be needed, e.g., to
decide when exactly the challenge bit-stream should be sent
to the genuine PUF. Our proposed CSP mechanism does not
require any circuit-level modification of the basic PUF design.

Some schemes have employed a cryptosystem in order to
mitigate the PUF modeling vulnerability. For example, the
approach of Gope et al. [50] does not transmit responses;
instead it uses the PUF output to generate a pseudo response
through a sequence of steps that are known to the communi-
cating parties. The server includes a random number (nonce)

and employs a hashing function in its request; such a num-
ber is used by the device in generating the pseudo response.
Similarly, PUF-IPA [51] applies a cryptographic hash of the
PUF response and stores only hashed (and encrypted) val-
ues in the database that is securely accessible by the verifier.
Although the SRAM-PUF-based authentication scheme of
Farha et al. [52] uses the SRAM address instead of the
challenge, it still applies a cryptographic hash and uses a
nonce. Overall, this category of schemes simply loses the PUF
advantage by employing a cryptographic hash function, which
constitutes significant computational overhead for the devices.
CSP avoids such overhead. Also, the hashing function needs
to be agreed upon by the communicating parties. In addition,
repeating the nonce makes the system vulnerable to message
replay and man-in-the-middle attacks.

Finally, the last category of work counters PUF-
modeling through protocol-level provisions. For example,
Barbareschi et al. [53] used predefined chains of CRPs. The
authentication process fully relies on knowing the chain and
only the XOR values of the responses are sent. To mitigate
the vulnerability of chain leakage, multiple chains are used
with disjoint links. While the PUF advantage of avoiding
response storage is leveraged, chains can still be used for
modeling the PUF. Some work mitigates the PUF-modeling
threat by pursuing multifactor authentication, e.g., by using a
shared cryptographic key in addition to the CRP [54]. Mutual
authentication of IoT nodes have been tackled in [5], where
the challenge bit-pattern used for authentication in a certain
time slot (iteration) is determined based on the challenge that
was used previously, e.g., in the preceding iteration. Also,
the response is not explicitly transmitted. Such interiteration
challenge dependency, along with obfuscated response trans-
mission, degrades the adversary’s ability to model the PUF.
However, such a challenge selection approach makes the IoT
framework vulnerable to impersonation attacks in case even
one challenge is leaked. Meanwhile, Yu et al. [55] secured
their PUF against modeling attacks via limiting the number of
CRPs transferred in the IoT framework. They also prevent
using repetitive challenge bit-streams to restrict launching
the reliability attacks where the adversary exploits the mea-
surement noise to model the PUF. However, such a scheme
is only applicable for the cases where authentication is not
conducted very often and, consequently, is not suitable for
applications like self-driving cars that need to exchange data
very frequently and require rapid authentication.

Overall, our CSP mechanism enables lightweight defense
against modeling attacks without employing computationally
intensive cryptosystems. It is worth noting that CSP also
counters reliability attacks that exploit the measurement noise
to model the PUF [56], since our CSP denies adversarial
access to the full challenge bits (by splitting scheme) and
nullifies the mapping functions [28] used by such an attack
(through scrambling and/or padding schemes). We demon-
strate the resilience of our proposed schemes against such an
attack in Section V-B. Table I summarizes the shortcomings of
the discussed state-of-the-art methods in tackling the modeling
attacks.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMABADI et al.: PUF-BASED MODELING-ATTACK RESILIENT AUTHENTICATION PROTOCOL FOR IoT DEVICES 3687

III. SYSTEM MODEL AND PRELIMINARIES

A. System and Threat Models

Our proposed solution employs hardware-based IDs for
authenticating IoT devices. In particular, we assume that a
PUF is embedded in each IoT device. To authenticate a device
Di, the server sends a request to Di that includes a challenge
bit-stream. Upon receiving the request, Di will apply the chal-
lenge to its embedded PUF and send back the PUF response.
By matching the node response to a preknown value, the iden-
tity of Di can be confirmed. Note that in this model, a subset
of CRP combinations of each device is stored in the server
during the device enrolment phase.

A PUF response could be affected by noise caused by power
variation and environmental conditions, e.g., temperature [57].
Such a noise is often mitigated by the incorporation of an error
correction code (ECC) at the circuit level. The focus of this
article is on protocol-level protection against PUF modeling
attacks using ML techniques. We are assuming that a suit-
able ECC, e.g., [58]–[60], is employed to ensure stability and
consistency of the PUF output.

Although PUFs are supposed to be unclonable, an adversary
may intercept and uncover the CRPs transferred between the
server and an enrolled device. The adversary can then use the
intercepted CRPs to model the behavior of the embedded PUF.
In this case, the underlying device can be impersonated to
introduce a wide range of malicious activities in the IoT
system. Thus, it is necessary to mitigate such vulnerabilities by
preventing access to CRPs. Note that the novelty of our work is
in prevention of modeling attacks on PUF-based authentication
schemes, rather than using PUFs for authentication.

In this article, we assume that the device authentication
and enrolment management are conducted through a central
supervisory node (e.g., server). The server carries out the
authentication of devices either as a part of IoT admission
control or as a service to enable communication between
device pairs. We also assume that the server is trustworthy.
Specifically, handling an IoT network with an untrusted server
is out of scope of this article.

B. Preliminaries

1) Arbiter-PUF: Our authentication protocol employs a
strong PUF. In this article, we focus on the use of arbiter-
PUFs; however, the proposed techniques can be adopted for
other strong PUFs. As mentioned earlier, weak PUFs are not
used for authentication and are more suitable for key gener-
ation. An arbiter-PUF is a strong PUF consisting of a pair
of delay chains; when queried, it generates one response bit
per challenge [20]. This PUF operates based on the process-
variation that induces race between two identical paths (top
and bottom paths shown in Fig. 1). The race corresponds to the
difference in signal propagation delay on these two paths and
affects the value latched by the arbiter [63]. The arbiter can be
realized as a simple SR-latch implemented by two NOR gates.
The latch output Q in Fig. 1 presents the PUF ID (response).
If the transition reaches the upper NOR earlier, Q gets the
value of “1”; otherwise, Q would be “0.” The value of Q is
important and presents the PUF ID (response). To support L

Fig. 1. Illustrating the design of an arbiter-PUF.

response bits, the circuit is replicated L times, yet using the
same input (challenge bits).

2) Machine Learning: ML is a data-driven modeling tech-
nique and is particularly effective when there is no knowledge
about the process governing the data generation. The modeling
performed with ML algorithms consists of two phases, namely,
training and evaluation (or inference). In the training phase,
the model is constructed utilizing a set of input and output
data pairs. The model is adjusted based on whether it classi-
fies the input to the correct response or not. In the evaluation
phase, unseen inputs are tested to see if the model correctly
determines the output.

In this article, we assume that the adversary deploys ML
algorithms to model the employed PUF. In the training phase,
the model is formed utilizing the PUF’s CRPs. Then, in the
evaluation phase, unseen inputs (i.e., challenges) are tested to
see if the model correctly predicts the response. In the experi-
ments, we use the support vector machine (SVM) [64] as well
as neural networks (NNs) [65] to launch the modeling attacks.

IV. PROPOSED METHODOLOGY

As mentioned earlier, to authenticate each device, the CRPs
of its embedded PUF are exchanged between the server and the
device. However, an eavesdropper may intercept the exchanged
messages between the server and a device Di in order to
uncover the CRPs; such an eavesdropper could then launch a
replay attack. When sufficient CRPs are intercepted, the adver-
sary can further develop an accurate ML-based model of the
PUF to impersonate Di. To mitigate such vulnerability, our
approach opts to mislead the adversary about the transferred
CRPs by applying the following schemes.

1) Engaging what we call “helper nodes” in the authen-
tication process where the challenge is split among
multiple packets; each packet provides only one part of
the challenge bit-stream and relayed by a distinct helper
node.

2) Applying a preagreed upon scrambling pattern of the
whole or the subset challenge bits that are included in a
packet payload.

3) Adding redundant bits to the challenge bits within the
packet in a manner that is known to both server and
device. Such padding further confuses the adversary
about the PUF size.

Our approach does not employ a cryptosystem and is thus
computationally lightweight. At the time a device is enrolled

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

3688 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

TABLE I
COMPARISON OF THE STATE-OF-THE-ART COUNTERMEASURES AGAINST PUF MODELING ATTACKS

with the server, the protocol specifications will be determined
so that the device knows which portion of the challenge bit-
stream will be subject to padding and scrambling, and in what
form. The idea is to synchronize the device and server while
avoiding information leakage about the defense mechanism
through the incorporation of any hint aboard a packet. The
number of helper nodes is determined based on the network
density. A helper node qualification is judged based on
prior authentication or using a trust assessment/management
methodology. The aforementioned three schemes are explained
in detail in the balance of this section.

A. Challenge Splitting

Unlike the usual form of transmitting challenges to an IoT
node, our proposed scheme makes the server split each chal-
lenge into multiple partitions. When Di is being authenticated,
it does not receive the whole challenge bits (Ci) from the
server. Instead, the server divides the challenge bit-stream
into K partitions, sends one partition (Ci,0) directly to Di,
and arranges for the other partitions (Ci,1, Ci,2, . . . , Ci,K−1)
to reach Di indirectly through K − 1 other “helper” nodes.
The rationale is that an eavesdropper should not be able to
distinguish between the various messages to reassemble the
challenge bit-stream and, correspondingly, the response of the
PUF of Di. We refer to this scheme as “CSP.” In this scheme,
the first few nodes are authenticated directly without CSP

(yet via the scrambling and padding schemes discussed in the
following sections); then they can serve as helpers.

In practice, the best value for K can be decided based on dif-
ferent criteria and is subject to tradeoff. For example, the larger
K is, the longer the authentication delay and the more the over-
head imposed on the network become. On the other hand, a
large K will make it more difficult for the adversary since it
requires intercepting and analyzing many messages. It is note-
worthy to mention that by splitting the challenge bits, first the
probability of intercepting is decreased as the eavesdropper
may not have access to all links due to not being within the
communication range. Second, even if the adversary can eaves-
drop on all links through which the PUF challenge partitions
are sent, the order of partitions within the Ci bit-stream will
be unknown. The ordering of partitions is decided between the
server and each device during the device enrolment phase in
the IoT, as explained in Section IV-B.

Without loss of generality, Fig. 2 shows an example network
that consists of a server and two IoT devices, Di and Dj,
one of which is employed as a helper node. Assume that
the helper node has been already authenticated and the adver-
sary can only eavesdrop on one of the communication links,
either between the server and node Di or between server and
node Dj. Also, the response of the device can be sent directly
to the server, or split and forwarded via multiple nodes. As
Fig. 2 shows, the server splits the challenge into two sub-
challenges with size M and N-M, sends the M bit portion
directly to the target device and the rest through node Dj. In

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMABADI et al.: PUF-BASED MODELING-ATTACK RESILIENT AUTHENTICATION PROTOCOL FOR IoT DEVICES 3689

Fig. 2. Block diagram of the CSP scheme (to authenticate device Di, the
server uses node Dj as the helper node).

practice, the helper node selection could be done dynamically
based on different criteria, e.g., the proximity of the helper
to the authenticated node, the presence of wireless commu-
nication links among the nodes, the time since the helper
was last authenticated, etc. Helper nodes can further be quali-
fied based on their trustworthiness that may be assessed using
application-based or network-based models in the context of
IoT, e.g., CTRUST [66].

Modeling the PUF with partial access to the challenge bits
is very difficult, if not impossible. We will demonstrate in
Section V that the success rate of the modeling attack in case
of CSP is also affected by whether the most significant bits
(MSBs) of the challenges are intercepted or the least signifi-
cant bits (LSBs). In Section V, we will discuss how the attack
success is affected based on whether the attacker knows or
does not know the PUF size. We finally note that even if the
challenge Ci sent by the server to node Di cannot be split
due to the unavailability of any trusted helper node Dj (that
has already been authenticated) in the communication range
of Di, our approach still employs bits scrambling and padding
methods to boost the PUF modeling resilience. As discussed
in the following sections, bit scrambling and padding can be
applied even when helper nodes are involved.

B. Ordering of Challenge Partitions in CSP

Challenge reformation requires knowing the order for par-
titions received by the device from the server directly and
through helper nodes. CSP avoids explicit inclusion of control
information in the packet, instead it enables the device to infer
such an order based on the ID of the helper node(s) as well as
the node to be authenticated. Conventionally, nodes in a given
network have unique IDs that are monotonic in nature. Such
monotonicity is exploited by CSP to order the received chal-
lenge partitions. Since the node ID is usually included in the
packet header, an adversary can retrieve it as well. In order to
prevent the adversary from concluding the partitioning order,
CSP remaps the IDs using a simple hashing function similar
to peer-to-peer systems. The procedure is as follows.

1) When a device Dq is enrolled, the server assigns such a
device a random number θq using a uniform distribution
over the range [U, L].

2) When splitting the challenge, a set of K−1 helper nodes
is formed; assume that the IDs of the helpers to be
ID1, ID2, . . . , IDK−1. Assume that IDK is the ID of Dq,
i.e., the device to be authenticated.

3) The server calculates the rank of each involved node
using: Ranki = IDi mod θq

4) A sorted list η of nodes is then formed where the device
Dq and helpers are sorted ascendingly based on their
rank. Nodes that happen to have the same rank are sorted
according to their ID.

5) The server splits the challenge into K unequally sized
partitions and assigns them to the nodes in η.

Device Dq is to replicate the aforementioned steps since it
knows θq and can read the helper nodes’ IDs from the received
packets. θq constitutes a secret that prevents an adversary from
doing the same. We illustrate the process through an example.
Assume that a device Dq with ID of 103 is to be authenticated.
At the time of enrollment, a random value in the range [2, 9]
is picked and happens to be equal to 5, i.e., θq = 5. The server
set K = 4 and picked three helpers Dx, Dy, and Dz, whose IDs
are 215, 110, and 52, respectively. Thus, the ranks of nodes
Dq, Dx, Dy, and Dz are 3, 0, 0, and 2, respectively. Since Dx

and Dy have the same rank, we sort them according to their ID.
Thus, the challenge partitions will be assigned according to the
sorted set η = {Dy, Dx, Dz, Dq}. Upon receiving the packets
from the server and nodes Dx, Dy, and Dz, the device extracts
the challenge partitions and concatenates them according to η

in order to form the challenge bit-stream.

C. Challenge Scrambling

As mentioned earlier and will be shown in Section V, in the
CSP scheme, the success rate of the modeling attack increases
if the MSB part of the challenge is captured, rather than the
LSB part; in essence, the MSB bits are the challenge bits
being applied to the multiplexers close to the arbiter as shown
in Fig. 1. Accordingly, the bit position within the intercepted
challenge affects the modeling attack success rate. This obser-
vation motivates our second protection scheme that performs
challenge scrambling, referred to as (CSP-S).

In CSP-S, the challenge bits are reordered before being sent
to the target device. For example, for an 8-bit arbiter-PUF,
instead of sending the challenge bits to the target device Di as
Ci[0], Ci[1], . . . , Ci[7], we can send the reordered challenge
bits, e.g., Ci[7], Ci[5], Ci[3], Ci[1], Ci[0], Ci[2], Ci[4], Ci[6].
In practice, all or a subset of the challenge bit-stream may be
scrambled; nonetheless, the more bits are reordered, the less
the attack success rate becomes. Unscrambling the challenge
bits may be performed either in hardware or at the system
level. The former does not impose much complexity and can
be done when the scrambling scheme is fixed (static), while
the latter is suitable when the scrambling algorithm changes
over time. In case of fixed scrambling, the challenge bit orders
should have been decided initially between the server and each
device during the enrollment phase.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

3690 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

For the dynamic scrambling, two options are possible. The
first is for the server to add some control information in
the packet so that the device can know how to unscramble
the challenge bits. Such an option is ruled out since the added
information could be exploited by the adversary to uncover the
scrambling pattern. Alternatively, the device and server agree
on a similar scrambling/unscrambling algorithm that is either
sequential or time-dependent in nature. The former makes
the scrambling pattern in one authentication packet a func-
tion of previously used patterns, while the latter determines
the scrambling pattern based on a timestamp. The algorithm
could be picked during the enrolment phase. It should be noted
that the inclusion of a serial number and/or a timestamp in a
packet header is quite popular in order to cope with possi-
ble packet loss due to communication errors. Knowing the
packet serial number and/or timestamp would not suffice for
unscrambling without knowing the function. The server also
varies the scrambling function across the enrolled IoT devices.
The experimental results demonstrate remarkable effectiveness
of CSP-S against modeling attacks. We also note that combin-
ing CSP and CSP-S can significantly increase the security of
the authentication process.

D. Challenge Padding

The objective of the CSP-P method is to make the authenti-
cation protocol resilient against ML-based modeling attacks by
introducing extra bits in the packets that are independent from
the challenge bit-stream. In CSP-P, we pad the challenge bit-
streams with random strings. In other words, the bit-stream
Ci is first split into K partitions Ci,0, Ci,1, . . . , and Ci,K−1;
then, each partition is padded with random strings such that
transmitted packets have a similar size. In essence, the adver-
sary assumes that the padded bits are part of the challenge
bit-stream and, thereby, uses them in forming the ML model.
Hence, the padding bits act as noisy data and degrade the PUF
modeling accuracy.

In order to enable the target device to decode the
received packets and extract the underlying challenge partition,
information about the challenge size and the location of the
challenge bits inside the packet are preagreed upon between
the server and node, i.e., defined by the server at the time a
device is enrolled. In order to prevent an adversary who could
guess the use of CSP-P, from extracting the relevant chal-
lenge bits, the format of the packet changes among devices.
Fig. 3 shows two samples of such a packet payload structure;
again the server varies the format among the devices for added
protection in case one device is compromised.

In Fig. 3, the Challenge Size specifies the length of the por-
tion of the actual challenge bit-stream included in the packet.
This can notify the target device about the number of bits that
it will receive through the helper node(s). Note that it is also
possible to send the entire challenge bit-stream in one packet
without splitting it and engaging a helper node. In that case,
the device’s underlying PUF does not need to wait to receive
the other part of the bit-stream through helper node(s), and can
evaluate the response right away. To increase the security, we
do not fix the position of the challenge bit-streams inside the

Fig. 3. Sample packet structures in CSP-P. Each packet includes five fields.
The order and size of these fields vary from one device to another (e.g.,
nodes i and j) and are picked by the server during device enrolment. The
actual location of the subchallenge bits within the packet payload can change
from one device to another as well as one packet to another for the same
device. (a) Node i. (b) Node j.

transferred packet, i.e., the position can change in each packet.
Accordingly, the Challenge Start Point field informs the PUF
about the starting position of the included challenge partition
inside the packet. Moreover, in this method, each challenge
partition is padded with two random bit-streams.

To elaborate, let us assume that Di has an N-bit PUF. In this
case, the packets shown in Fig. 3 designate �Log2N� bits for
the Challenge Size field. Note that each authentication packet
sent to Di will include �Log2N� bits regardless whether Di

receives the challenge bit-stream in one or multiple packets.
In addition, as the packet size is L, we assign �Log2L� bits
for the Challenge Start Point field. The remaining part of the
packet payload shown in Fig. 3 are used for the subchallenge
bits and the random bits; the latter are added to mislead the
adversary. During the enrolment phase, the server informs Di

about the positions of the Challenge Size and Challenge Start
Point fields in the packet; while these positions differ from
one device to another, they are fixed for all packets sent to
the same device. By knowing the position of these fields, the
receiver can determine where the subchallenge bits “c” within
the packet are, even if c changes from packet to packet (which
will be reflected in the challenge size and start points fields).
Such a variability will further mislead the adversary. Again,
the order and the size of each of the fields shown in Fig. 3
can change from one device to another and is determined by
the server during device enrolment. Our experimental results
show the efficacy of the CSP-P scheme.

E. Guidelines for Protocol Selection

Fig. 4 depicts the sequence diagram of our proposed
CSP authentication protocol and its variants, where K − 1
helper nodes are engaged in authenticating Di. As will be
shown in Section V, all the proposed protocols improve the
resilience against modeling attacks. We expect, nonetheless,
that decisions on which protocol to employ will be based
on the network constraints as well as the threat model. The
incorporation of padding is definitely plausible yet it ele-
vates the bandwidth requirements and would not be attractive

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMABADI et al.: PUF-BASED MODELING-ATTACK RESILIENT AUTHENTICATION PROTOCOL FOR IoT DEVICES 3691

Fig. 4. Sequence diagram for the CSP protocol with K − 1 helper nodes
being involved in authenticating the targeted IoT device i. The challenge Ci
is split by the server into K partitions, where only one of these partitions is
sent directly to the targeted device while the rest are sent through the helpers.
In conjunction with splitting, challenge bit padding and scrambling are also
employed at the level of individual packets to defend against eavesdroppers.

Algorithm 1: Guidelines for Applying CSP
Enrolment of IoT device Di:

• Record a set of CRPs for PUF of Di
• Assign a random value of θi for Di
• Agree on the structure of CSP − P packet
• Pick a CSP − S scrambling algorithm

Authentication of IoT device Di:
1 Applying CSP − S
2 if (There is a helper node in range of Di) then
3 Applying CSP

1) Identifying active helper nodes in the range of Di
2) Splitting the challenge to K Sub-challenges

4 if (The network traffic is light) then
5 Applying CSP − P

when radio interference is high or in dense deployment with
increased medium access contention. Scrambling can be suit-
able in these cases. In other words, when the packet size
is a concern, we rather deploy splitting and scrambling than
padding. Finally, scrambling is quite effective, yet is expected
to be sensitive to how the bits are reordered. Also, if the scram-
bling algorithm is uncovered or modeled, the challenge bits
would be recoverable by the adversary. Therefore, splitting
will be invaluable as the adversary will be deprived of getting
the whole challenge bits. The same can be stated regarding
padding, where combining splitting and padding is a better
option as the eavesdropper does not have access to some parts
of the CRPs even if the padding details are leaked. Algorithm 1
provides a pseudocode summary of the required settings at the
device enrollment phase and when to apply each of the CSP
schemes.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we first provide details of the setup used to
validate the proposed schemes. Then, we present the obtained
results and discuss our observations.

A. Experimental Setup

To validate our approach, we implemented 16 and 64-bit
arbiter-PUFs on Xilinx ARTIX-7 FPGA [67]. In our experi-
ments, we dedicated one FPGA to represent the IoT node that
includes an embedded PUF to be used for its authentication,
and another FPGA to act as a helper node when applying our
CSP scheme. The FPGA boards use the UART protocol for
connecting to a PC; the latter plays the role of the server in our
IoT framework. To support communication between the device
and helper nodes, the two FPGAs were connected using their
onboard peripheral interfaces. The PC (i.e., Server) generates a
number of randomly generated bit-streams to be used as chal-
lenge bits and sends one portion to the target FPGA directly
and the other portion indirectly via the helper node. These two
portions are combined and used as the PUF’s input challenge
in the target node. The related response is sent back to the PC
via the UART communication. Note that our setup is wired
but it can be also implemented as a wireless infrastructure.

We employed the SVM and a NNs as representatives of ML
techniques that an adversary pursues to conduct a modeling
attack against the deployed PUFs. Our NN is a 5-layer fully
connected architecture with one input layer (with 64 neurons
reflecting the PUF size), three nonlinear hidden layers (with
5, 10, and 15 neurons), and one output neuron with sigmoid
function. Rectified linear unit (ReLU) is used as an activa-
tion function in all layers. The learning rate and momentum
are 0.01 and 0.99, respectively, and the number of epochs is
1000. The adversary is assumed to intercept some of the CRPs.
Two scenarios are considered: 1) when the adversary inter-
cepts a packet with the full challenge bit-streams and 2) when
only some part of each challenge bit-stream is included in
the intercepted packet. We note that the mapping function
of [28] is used in the PUF modeling. Such a mapping reflects
the structure of the arbiter-PUF considered in this article and
enables successful modeling using relatively small training
challenge–response sets. By using the mapping function, we
are principally assuming an adversary with significant knowl-
edge of the protection system. In these experiments, we first
show the modeling results using 2000 CRPs for each PUF.
Then, we increase the training size and demonstrate its impact
on the launched modeling attacks when our proposed schemes
are used.

B. Experimental Results

1) Effect of Challenge Splitting: The first set of results
assesses the resilience of CSP against modeling attacks. The
results for a 16-bit PUF are shown in Fig. 5. These results were
gathered for the cases in which the N-bit challenge (N = 16)
is split into two parts, one M-bit portion is sent to the node
and the other N-M bits are routed through one helper node.
The assumption is that the adversary can only eavesdrop on
the M-bit part. The bars shown in red in Fig. 5 present the

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

3692 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

Fig. 5. PUF modeling accuracy using SVM when the adversary intercepts
the M LSB or MSB bits of challenge (M ≤ N, where N = 16).

results when M MSB bits of the challenge (and intercepted by
the adversary) are used to model the PUF, while the blue bars
correspond to the case in which the M LSB bits are used for
modeling the PUF. Obviously, there is no splitting when M is
16 in these experiments.

As expected, the more bits the adversary can intercept,
the more accurate the PUF modeling would be. The results
depicted in Fig. 5 show that getting access to the 3, 6, and
15 MSB bits results in 61.8%, 71.5%, and 93.75% modeling
accuracy, respectively. A small fluctuation in accuracy (e.g., in
case of intercepting 9 MSB bits) is due to the randomness of
the training in ML schemes and, generally, does not affect the
trend. In case of no-splitting (M = 16), the accuracy increases
to 94.95%.

Another important trend that could be observed from the
experiments is that all challenge bits do not have equivalent
effects on the PUF response prediction. In other words, if the
adversary could uncover L (out of N) bits of the challenge,
the accuracy of the PUF modeling significantly differs based
on the position of these L bits within the N bit challenge
pattern, e.g., L MSB or LSB bits. For example, the results
shown in Fig. 5 indicate that if the attacker has access to
the most significant 8 bits, the accuracy is 69.40%, while by
using the least significant 8 bits, the accuracy drops to 50.6%.
Comparing the bars related to M = 8 in this figure points out
the dominant effect of the MSBs in the challenge. In essence,
even with access to all challenge bits except the MSB one, the
adversary may not be successful in modeling the PUF, where
the prediction accuracy is 49.2% for this case (corresponding
to M = 15 in Fig. 5).

The criticality of the MSB bits of the challenge in modeling
the arbiter-PUF, compared to the LSB bits, can be explained
via the circuit Fig. 1. In each stage of this circuit, based on
the related challenge values, either the upper and lower path
inputs are connected to the related upper and lower path out-
puts, respectively (the so-called pass mode), or these inputs
are swapped and get connected to the lower and upper path
outputs, respectively (the so-called switch mode). In this case,
if the attacker cannot intercept the last bit of the challenge
C[N − 1], there is 50% probability that an incorrect value for
C[N −1] will be used in the ML model, even if all other chal-
lenge bits are intercepted. Such an incorrect value realizes a
wrong mode, i.e., the last-level multiplexers experience the

Fig. 6. PUF modeling accuracy using SVM and NN, when the CSP protocol
is being applied. The adversary does not know the PUF size N(= 64) and
intercepts M LSB or MSB bits of each challenge bit-stream.

pass (switch) mode incorrectly. Thus, such an incorrect value
results in 100% wrong output for that particular challenge.
However, if C[i] is missed by the attacker (i < N − 1), it is
still probable that the multiplexers fed by C[i+1], . . . , C[N−1]
can restore the correct output if their accumulative delay can
compensate for the incorrect swap (or pass) in the stage i
of multiplexers. Thereby, the closer to the arbiter a challenge
bit is, the more negative effect it has on the success of the
modeling attack if it cannot be intercepted. Here, closer refers
to the presence of fewer gates between that challenge bit and
the arbiter. For example, in Fig. 1, C[N − 1] (C[0]) is the
closest (farthest) challenge bit to (from) the arbiter.

By splitting the challenge into two parts and sending one
portion using a helper node, the adversary who eavesdrops on
the wireless link between the node and the server may observe
repetitive challenges with different responses. This may give
a hint that the PUF-challenge is more than the M-Bit, inter-
cepted by the adversary; otherwise, the response would not be
different. The adversary also may think that the mismatch of
the responses for the same challenge could be due to transmis-
sion or measurement noise; we will discuss the impact of the
measurement noise later in this section. For the sake of sim-
plicity, we have ignored the transmission noise here. However,
they can be taken care of by using ECCs [27].

The results shown in Fig. 5 represent the cases in
which some repetitive combinations of M bits with different
responses may have been encountered. To avoid redundancies,
we do not show the results of modeling the 16-bit PUF when
only nonrepetitive partial challenges are transferred. However,
we will show the results for such a case for the 64-bit PUF
later in the section. Note that the results in Fig. 5 assume
that the attacker does not know the size of the embedded
PUF (i.e., N), and guesses the size based on the partial chal-
lenge; thereby, the adversary trains the ML model based on
the guessed, rather than the actual, PUF size. The case where
the PUF size is known to the attacker will be discussed in the
next experiments.

Fig. 6 shows the FPGA implementation results for a 64-bit
PUF modeling with SVM and NN. Here, the splitting scenario
is similar to the one discussed for the 16-bit PUF. This fig-
ure confirms our previous observations that if the adversary
has only access to the LSB part of the challenge, regardless

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMABADI et al.: PUF-BASED MODELING-ATTACK RESILIENT AUTHENTICATION PROTOCOL FOR IoT DEVICES 3693

of the employed ML scheme, the PUF cannot be accurately
modeled even with access to 48 out of the 64 bits, where the
modeling accuracy is ≈ 50%. However, the trend is differ-
ent when having access to the MSB part, where the accuracy
grows with the increased number of intercepted challenge bits.
For instance, the accuracy of 57.4%, 61.5%, and 68.5% can be
achieved via access to 16, 32, and 48 nonrepetitive MSB bits,
when SVM is used to model the PUF. The accuracy grows
to 97% in case of no-splitting (M = 64). Using NN for the
modeling attack results in a very similar outcome; as shown
the accuracy is 57%, 61%, and 67.15% when intercepting 16,
32, and 48 nonrepetitive MSB bits when the PUF is modeled
with NN.

The results shown earlier are based on the involvement of
one helper node. We have also conducted experiments while
engaging two helper nodes. When the adversary intercepts one
of the 21 LSB, 21 Middle, or 22 MSB bits of the challenge,
the modeling accuracy was found to be 50.35%, 51.25%, and
60.65%, respectively, while using SVM that is trained with
2000 CRPs. Using NN with the same data set gave very similar
results. In these experiments the PUF size is unknown to the
attacker while factoring in, rather than filtering out, repetitive
CRPs. Generally, a larger helper node count makes it harder
for an attacker as more links are to be monitored, as we show
through analysis in Section VI.

Fig. 6 reports the performance when a set of distinct (non-
repetitive) challenge bit-streams is used to model the PUF.
Repetitive challenges refer to the cases in which some of
the intercepted M (out of N) challenge bits are similar and
correspond to different responses. The presence of repeti-
tive challenge bit-streams is found not to yield noteworthy
variations in the results, mainly because of the size of the
challenge–response data set used in the modeling (i.e., 2000
CRPs). To better capture the effect of repetitive challenges on
the performance of CSP, we rerun the experiments where SVM
is applied to model the PUF using only 200 CRPs. The results
shown in Fig. 7 correspond to the case where 56 MSB bits
(out of 64 bits) of each challenge are intercepted by the adver-
sary. As expected, repetitive challenges diminish the modeling
accuracy. For example, having 5% repetitive challenges (out
of 200) results in the accuracy of 72.15%, while with 30%
and 60% repetitive challenges, the accuracy drops to 70.6%
and 67.85%, respectively.

Note that the repetitive cases (similar challenges with dif-
ferent responses) that an adversary may observe is due to
the splitting scheme. Assume that two different challenges C1
and C2, with different responses, are split to (C1,0, C1,1) and
(C2,0, C2,1), respectively. Although C1 and C2 are not similar,
yet C1,0 and C2,0 may be similar. In this case, the adversary
who can only intercept the C1,0 and C2,0 portions as well as
the PUF response is misled due to having two similar chal-
lenges with different responses. Accordingly, such data result
in lower modeling accuracy.

2) Impact of Knowing the Actual PUF Size: In our
approach, only one portion of the CRPs may be captured,
specifically M bits; hence, the adversary will not have access
to the whole challenge to model the PUF, even with knowledge
of the actual PUF size. The adversary may fill the remaining

Fig. 7. PUF modeling accuracy using SVM while CSP is being applied. The
adversary does not know the PUF size N(= 64) and intercepts 56 MSB bits of
each challenge bit-stream when X% of the intercepted challenge bit-streams
are repetitive, X∈ {0, 5, 15, 30, 45, 60, 75, 90}.

N-M part of the challenge with random bits during training.
To build the whole challenge, there are two options, namely,
assuming that the available M bits are the MSB or LSB parts
of the challenge bit pattern, albeit if the adversary has learned
about our splitting scheme.

Fig. 8(a) and (b) depicts the results for the case where the
adversary knows the PUF size, but obviously does not know
whether the captured M bits are the LSB or MSB portion
of the original challenge. As the results indicate, the highest
prediction accuracy is when the obtained bits are from MSB
bits and are also treated as the MSB portion during train-
ing [shown by gray bars in Fig. 8(a) and (b)]. In this case,
the accuracy is 56.15%, 61.55%, 61.5%, 63.7%, 66.4%, and
75.2% using the SVM scheme while accessing the 16, 24,
32, 40, 48, and 56 MSB bits, respectively. Meanwhile, apply-
ing NN achieves 54.8%, 57.9%, 62.85%, 63.95%, 66.1%, and
76.95% for intercepting 16, 24, 32, 40, 48, and 56 MSB bits,
respectively. The first take-away point from these results is that
even with using a relatively more sophisticated ML scheme,
namely, NN, the attacker is not successful in modeling the
PUF without having access to the full challenge bit-streams.
These results are very similar to the related case in Fig. 6,
where the PUF size is assumed to be unknown. Interestingly,
when only the LSB is captured, learning the PUF size degrades
the modeling accuracy.

3) Efficacy of Challenge Scrambling: In this set of exper-
iments, bit scrambling has been applied along with splitting
the challenge bits. The results reveal a significant decrease
in modeling accuracy. Fig. 9 depicts the results for the case
in which the challenge bits are first scrambled randomly, and
then the scrambled challenge is split into two parts, where one
part is sent via a helper node. These results were obtained
using both SVM and NN. As shown in the figure, even if
the adversary has access to the full challenge (i.e., no split-
ting; M = 64), the PUF cannot be modeled accurately, where
the accuracy is ≈ 51.92% for SVM and 51.85% for NN.
The take-away point from such an observation is that the
challenge scrambling scheme is highly powerful in thwart-
ing the modeling attack regardless of the ML scheme used for
modeling.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

3694 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

Fig. 8. PUF modeling accuracy when launching attack using (a) SVM and
(b) NN, while applying CSP. The adversary is assumed to know the size of
PUF, and intercept M LSB or MSB bits of each challenge bit-stream.

Fig. 9. Modeling accuracy using SVM and NN while the CSP-S protocol
is being applied. Here, M (out of 64) bits of the scrambled challenges are
intercepted. Since scrambling is applied before CSP, access to MSB or LSB
bits does not lead to any meaningful variations.

Note that in these experiments, for all cases of M, the accu-
racy of the modeling attack is around 50%, i.e., the slight
differences observed across the bars in this figure relate to
the randomness of the ML schemes and do not have much
implication.

4) Effect of Challenge Padding: This set of results mea-
sures the efficacy of the CSP-P scheme in thwarting PUF
modeling attacks. The results are based on the 64-bit PUF.
Again, we split the challenge into two parts, and the adver-
sary can only intercept one of them. Note that in this case, the
packet size is fixed. However, the partial challenge size can
be varied from one packet to another.

Fig. 10. Effect of the CSP-P scheme on the modeling accuracy when using
SVM and NN to launch the attack.

Fig. 10 shows the accuracy of PUF modeling when SVM
and NN models are applied. Each packet includes a full chal-
lenge (or part of a challenge) as well as information about the
location of challenge bits within the packet payload. Based
on the packet size, the payload is further padded with some
random bits to mislead the adversary. For example, an 80-
bit packet includes between 1 (65) and 64 (2) of challenge
(padded) bits and the remaining 14 bits are devoted to spec-
ify the size of the included challenge partition along with the
starting location within the packet payload (7 bits for each
of “Challenge Size” and “Challenge Start Point” fields in this
example as shown in Fig. 3).

When using either of SVM and NN schemes, the modeling
accuracy is under 52% for all considered cases. Since the
packet size is fixed during the challenge transfer, the adversary
is misled and considers the packet payload size as the PUF
size. Thus, the CSP-P scheme makes the PUF modeling attack
almost impossible, where the modeling accuracy is around
50%.

5) Effect of the Training Set Size: For the results shown in
Figs. 5–10, we used 2000 samples for training the ML model
unless otherwise mentioned. In order to capture the effect of
training set size on the achieved results, we have repeated
the experiments for the 64-bit PUF using different numbers
of training samples. Fig. 11 reports the results for the case
where the adversary intercepts 32 (out of 64) challenge bits,
knows the PUF size yet does not know whether the captured
bits are the LSB or MSB portion of the original challenge,
and uses NN for modeling. This figure shows the modeling
accuracy when up to 60 000 challenge response pairs were
used for training. As shown, by intercepting 50% (32 out of
64) of each challenge bit-stream, the accuracy of the modeling
attack in the presence of the splitting scheme does not exceed
67%. In this case, increasing the training size beyond 20 000
samples does not result in a meaningful increase of the attack
success. Note that to decrease the attack success, we can split
the challenge bit-stream into more partitions, as we analyze in
Section VI.

Figs. 12 and 13 capture the effect of training set size on
the resilience of the scrambling and padding schemes, respec-
tively, when all challenge bits are intercepted. As shown even
with a training set of 60 000 CRPs the attacker does not have
any success in modeling the PUF. These results are without

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMABADI et al.: PUF-BASED MODELING-ATTACK RESILIENT AUTHENTICATION PROTOCOL FOR IoT DEVICES 3695

Fig. 11. PUF modeling accuracy using NN with different sizes of the training
data set while CSP is applied. The adversary is assumed to know the PUF
size, and intercept 32 (out of 64) challenge bits.

Fig. 12. PUF modeling accuracy using NN with different training data sizes
when the CSP-S protocol is used. The adversary captures all 64 bits of the
scrambled challenges.

Fig. 13. Effect of the training data size on PUF modeling accuracy using
NN when the CSP-P is employed. The packet size is 80 bit, and the adversary
captures all challenge bits.

applying any CSP. Note that in our threat model, the adver-
sary does not have physical access to the PUF itself and only
eavesdropping on the communication links is feasible. Hence,
the adversary has to monitor the links for a long time to be
able to get access to 60 000 challenge response pairs; let alone
being able to capture all challenge partitions and know their
order when helper nodes are engaged. In summary, combining
the three proposed schemes is highly effective in thwarting the
modeling attacks.

6) Resiliency Against the State-of-the-Art PUF Attacks:
To validate the resiliency of the proposed schemes, we have
considered the two most prominent PUF modeling attacks.

Fig. 14. PUF modeling accuracy using Logestic Regression and CMA-
ES while CSP, CSP-S, and CSP-P are employed. For CSP, the adversary is
assumed to know the PUF size, and intercepts 32 (out of 64) challenge bits.
For CSP-S, the adversary captures all 64 bits of the scrambled challenges. For
the CSP-P scheme, the packet size is 80 bit, and the adversary captures all
bits. The title “No-Protection” reflects the case where none of our proposed
schemes is employed.

The first is based on the logistic regression (LR) model [30],
while the second is the CMA-ES attack proposed by G. T.
Becker [56]. We have realized these attacks on full CRP bit-
streams as well as when employing the CSP, bit scrambling
and padding.

Fig 14 depicts the results when using the LR model for the
attack. In these experiments, 60 000 CRPs are used for train-
ing. As shown, the accuracy of this attack is 67.75% when CSP
is employed and the adversary intercepts the 32-Bit MSB part
of challenge. Here, the adversary knows the PUF size yet does
not know whether the captured bits are the LSB or MSB por-
tion of the challenge. One helper node is employed in CSP;
by increasing the number of helper nodes, the accuracy of
modeling is expected to diminish even further as demonstrated
by the security analysis in Section VI. The results of applying
the LR model in the presence of CSP-S and CSP-P schemes
(depicted in Fig. 14) confirm that even when all challenge-
bits are intercepted, bit-scrambling and padding are highly
effective in thwarting the modeling attacks; each experiment
resulted in 50% modeling accuracy.

The CMA-ES-based attacks deploy the covariance matrix
adaptation evolution strategy ML algorithm [68] along with
reliability information obtained from the repeated measure-
ments of CRPs. Such noise-induced reliability information is
used as a side channel to assess the relative delay of the multi-
plexers used in the different stages of the arbiter-PUF families
and, in turn, to model the behavior of the PUF. We used the
open source code of the CAM-ES attack in [69] and [70] and
integrated our three schemes, i.e., splitting, scrambling, and
padding. The results of applying the CMA-ES attack in the
presence of our protection schemes are shown in Fig. 14. In
these experiments, the training set size is 60 000. As indi-
cated by the results, in the presence of each of our proposed
schemes, the accuracy does not exceed 54%. As a reference
point, we also depict the accuracy of the LR and CMA-ES
attacks in absence of our protection schemes. As shown, these
attacks are highly successful (Accuracy ≈ 100%) when our
protection schemes are not applied.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

3696 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

7) Implementation Robustness and Overhead: Uniqueness,
uniformity, reliability, and randomness are important metrics
based on which PUFs are evaluated [71]. The randomness
is the basis for the unpredictability of PUF responses, while
the uniqueness shows how well a single PUF is differenti-
ated from other PUFs based on its CRPs. Uniformity reflects
the distribution of zeros and ones in the PUF response, and
reliability shows how stable the PUF response is in differ-
ent environmental conditions (e.g., change in temperature).
We have implemented five 64-bit arbiter-PUFs (each with an
16-bit response) in our FPGA and evaluated the randomness,
uniformity, and uniqueness of each PUF via 5000 randomly
chosen challenges. It has been observed that on average, the
uniformity is about 49.36%, and the uniqueness among five
samples is 42.24%. By increasing the number of challenges,
uniqueness grew to around 50%. Both metrics ideally should
be 50%.

To evaluate the reliability of the proposed architecture in
different temperatures, we applied 5000 randomly generated
challenges to our 64-bit arbiter PUFs and measured the ham-
ming distance of the responses when a similar challenge is
applied. We considered the base temperature as 30 ◦C and
repeated the experiments in 0 ◦C, 60 ◦C, and 90 ◦C, where on
average the discrepancy was 0.65%, 0.92%, and 1.78% in these
temperatures, respectively. This demonstrates the reliability of
our design. Moreover, the noise effect in the same tempera-
ture resulted in a negligible (0.25%) discrepancy in response,
which confirms the viability of our design for PUF-based
authentication schemes.

The 64-bit implemented arbiter-PUFs was further evaluated
using 15 statistical tests offered by NIST for assessing the
randomness of true random generators [72] with 5 000 000
randomly selected challenge bit-streams. The responses were
divided into 100 blocks each including 50 000 responses, and
we applied the NIST tests to each block. Table II shows the
results. Note that some of the tests (e.g., Universal) need larger
blocks so we partitioned our responses accordingly. As shown
our PUF structure passed almost all tests. This confirms the
randomness of our implemented PUF.

To assess the power consumption overhead, the embedded
PUF is isolated from the underlying circuit. The power con-
sumption of a 64-bit PUF with 16 response bits was measured
by the Xilinx power estimator (XPE) tool and found to be
0.002 W.

VI. SECURITY AND PERFORMANCE ANALYSIS

There is a tradeoff between the security and the imposed
overhead using the proposed methods. The overhead is fun-
damentally due to the increased processing and number of
transmitted bits, which in turns affect power and delay. The
additional processing is due to forming and decoding more
packets in case of CSP or longer packets for CSP-P, and due
to unscrambling in case of CSP-S. In addition, in all three
schemes, building the challenge bit sequence based on the
received data imposes a small delay. Moreover, there could be
a little storage overhead to receive a longer packet in the case

TABLE II
NIST RANDOMNESS TEST RESULT

of CSP-P. In the balance of this section, we analyze the over-
head and the security of the proposed schemes against PUF
modeling attacks as well as conventional attacks against IoT.

A. CSP Overhead and Resilience to Modeling Attacks

1) CSP Resilience to Modeling Attacks: To gauge the
robustness of CSP, we analyze the difficulty of successful PUF
modeling when engaging helper nodes. Assume that the server
engages K − 1 helper nodes to authenticate Di. As mentioned
in Section IV-A, the decision on how the full challenge bit-
stream is formed at node Di after receiving all partitions is
made at the time Di is enrolled in the system (before Di actu-
ally joins the network). Based on the communication range
and the position of nodes, typically the adversary may be able
to eavesdrop only one or a limited subset of challenge parti-
tions. Nonetheless, we analyze the worst case scenario when
all partitions are uncovered.

Lemma 1: When engaging K − 1 helper nodes, the prob-
ability of capturing all individual partitions of the challenge
bit-stream for a node Di is pK , where p is the probability
of successful interception and decoding of a single packet
transmission in the vicinity of the server.

Proof: Given the independence among the K packet trans-
missions, the probability of intercepting the challenge packets
to Di and its helpers will be p . pK−1 = pK .

Since p is a fraction, Lemma 1 implies that increasing K is
beneficial. For example, for an 80% packet interception prob-
ability, the engagement of two helper nodes makes the success
rate for capturing all challenge partitions to be 51%. Such a
rate drops to 41% when using three helper nodes.

Lemma 2: When engaging K − 1 helper nodes and dividing
the challenge into disjoint partitions, the complexity for an
adversary to know the intended challenge bit-stream C, for a
node is K!.

Proof: Let ci refers to the ith partition, where C =
c1‖c2‖ · · · ‖cK . We consider three properties: 1) distinction,
where c1
= c2
= · · ·
= cK ; 2) asymmetry, where ci‖cj
=
cj‖ci ∀i
= j; and 3) nonoverlapping, where ci
⊂ cj ∀i
= j.
The complexity of guessing C is the highest when the dis-
tinction, asymmetry and nonoverlapping properties hold since
the adversary will have to try all possible combinations

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMABADI et al.: PUF-BASED MODELING-ATTACK RESILIENT AUTHENTICATION PROTOCOL FOR IoT DEVICES 3697

for ordering the K challenge partitions, for a total of K!
combinations.

In essence, Lemma 2 provides guidelines for comparing the
various partitioning options. When any of the properties stated
in Lemma 2 are violated, some of the partition ordering com-
binations become similar and fewer than K! iterations would
be needed. While it is not generally possible to achieve the
distinction, asymmetry and nonoverlapping properties for all
challenge bit-streams, using unequal partition sizes definitely
helps. On the other hand, picking a large K increases the prob-
ability that either of the three properties will be violated; thus,
large K increases the number of combinations yet with a trend
less than K!. The case with maximum similarity and symme-
try corresponds to when each partition is just one bit, i.e., N
partitions. In such a case, the number of dissimilar partition
combinations is (N!/m! × (N − m)!), where m is the num-
ber of “0” (or “1”) bits in C. The analysis in the balance
of this section assumes that the challenge partitions hold the
properties of Lemma 2.

Theorem 1: In the worst case, the probability for uncovering
the challenge bit-stream for a node Di is (pK/K!).

Proof: When applying CSP, the best case scenario for
the adversary (worst case vulnerability) is being able to suc-
cessfully find the correct challenge bit-stream. To do so, the
adversary needs to: 1) intercept all challenge related pack-
ets; based on Lemma 1, such a probability is pK and 2)
find the right order of the partitions by considering all possi-
ble combinations; based on Lemma 2, the probability of that
is (1/K!). Thus, the probability of the worst case scenario
is (pK/K!).

Theorem 2: In the worst case, the runtime complexity of
launching a successful modeling attack against a node Di

when CSP is applied is μK!, where μ is the average runtime
complexity of the underlying ML scheme.

Proof: The worst case vulnerability for CSP is when the
adversary successfully uncovers all K challenge partitions. In
such a case, the adversary will have to try all possible partition
orderings and for each a ML model has to be established.
Based on Lemma 2, the adversary will have to form K! distinct
ML models and, thus, the runtime complexity is μK!.

Based on Theorem 1, even if the adversary has access to
all the challenge partitions, by not knowing how to sort them
out the probability of successful PUF modeling is quite low.
Noting that p is a fraction, the probability of a successful
attack in fact exponentially diminishes with increasing K, i.e.,
the number of helpers. Similarly, the runtime complexity is
prohibitive and grows with K, as indicated by Theorem 2.
Finally, we stress that missing some of the challenge partitions
will hinder the modeling process all together as demonstrated
by the results in Section V.

2) CSP-Related Overhead: Increasing resilience to attacks
comes at a price of increased overhead. Here, we analyze the
overhead imposed by our CSP scheme. The more helper nodes
are involved in the process of sending a challenge bit-stream,
the higher the traffic overhead and, in turn, the total energy
consumption, becomes. To formulate the traffic (or energy)
overhead, assume that each packet i consists of Hi bits header

and Wi bits data. The header size (Hi) is constant for all pack-
ets (referred to as H hereafter) while the length of Wi varies
based on the number of challenge bits the packet includes.
In an IoT framework with an N-bit PUF embedded in each
IoT device, N + H bits are transferred per challenge. However,
when CSP engages K − 1 helper nodes, the total number of
transferred bits is shown in (1), where the first term relates to
the bits transferred between the server and the helper nodes
(including node Di itself) and the second term shows the num-
ber of bits transferred between the K −1 helper nodes and the
target device, i.e., Di

Total # of Bits =
K−1∑

i=0

(H + Wi) +
K−1∑

i=1

(H + Wi)

= (2K − 1)H + W0 + 2
K−1∑

i=1

Wi. (1)

Equation (2) represents the case, where the N-bit challenge
bit-stream is divided into K equally sized partitions. As shown,
the greater the number of helper nodes is, the higher the
overhead becomes. However, note that with involving more
helper nodes, the probability that the adversary can success-
fully eavesdrop on multiple channels diminishes and, thus, the
system is more secure as confirmed by Theorems 1 and 2,
above

Wi = N

K
i ∈ {0, 1, 2, . . . , K − 1}

Total # of Bits = (2K − 1)H + N

K
+ 2

K−1∑

i=1

N

K

= (2K − 1)

(
H + N

K

)

= (2K − 1)H +
(

2N − N

K

)
. (2)

B. CSP-S Security and Overhead Analysis

1) CSP-S Resilience to Modeling Attacks: To analyze the
resiliency of CSP-S against modeling attacks, we recall that
the order of bits in a challenge bit-stream is highly influ-
ential for predicting the response of some PUF-types, e.g.,
the arbiter-PUF family considered in this article. Here, we
focus on the scenario when the attacker intercepts all chal-
lenge bits and opts to overcome the bit scrambling scheme by
trying all possible combinations (i.e., brute force). We note that
when scrambling is combined with CSP, the modeling attack
complexity will substantially grow since the aforementioned
analytical results would apply as well.

Lemma 3: Fixed (static) scrambling of the challenge bits
degrades the PUF modeling attack if a PUF-design mapping
function is used.

Proof: Modeling the PUF fundamentally opts to deter-
mine a function f : N → 1 for each bit in the PUF
response, where N is the size of the challenge bit-stream.
If the design of the underlying PUF, e.g., arbiter, is not
factored in, fixed scrambling will simply yield a consistent
style of bit reshuffling and will not impact the ML scheme.
However, considering the PUF design, may enable modeling

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

3698 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

it via using significantly smaller training data. For such a case,
fixed scrambling will disturb the design mapping function and
diminish the accuracy of the PUF model for the same training
data set.

It is noteworthy that the use of the mapping function of [28]
to facilitate the modeling of the arbiter PUF is quite common;
hence, the attacker’s application of such a mapping function
is expected. For the sake of comparison, we have studied the
modeling of a 64-bit PUF using NNs with and without exploit-
ing the mapping function. The results show that a modeling
accuracy of ≈ 97% could be achieved with as little as 2000
challenges when the mapping function is taken into account;
without the mapping function the accuracy is 52% even with
using 2 000 000 CRPs. Hence, without the mapping function
the PUF modeling is ineffective regardless whether scrambling
is used or not. Nonetheless, CSP degrades the modeling attack
as confirmed by Lemma 3.

Lemma 4: Dynamic (varying) scrambling of the PUF chal-
lenge bits boosts the complexity of the modeling attack by a
factor of (N!/[m! × (N − m)!])|S|, where N is the size of the
challenge bit pattern, S is the set of CRPs used for training
the ML scheme, and m is the average number of “0” (or “1”)
bits in C ∈ S.

Proof: Assume that the average runtime complexity of
the underlying ML technique is μ. Scrambling the N bits of
the individual challenges using inconsistent patterns, e.g., time
varying patterns, will necessitate the consideration of all pos-
sible ordering options �, which has been shown earlier to be
(N!/m! × (N − m)!) for a challenge with m zero bits. Thus
using a training data set of size S requires the adversary to
consider � |S| different combinations of challenges taking into
account that each challenge bit-stream may have been scram-
bled in a different way (using the dynamic scheduling scheme).
Building an ML model for each possible option results in � |S|
trials in the worst case. This implies elevating the runtime
complexity of the modeling attack to μ� |S|.

Theorem 3: When employing CSP-S with K − 1 helper
nodes, the probability of successful PUF modeling attack is
(pK/� |S|) for time-variant scheduling, where N is the PUF
size, and S is the size of database used for training, and
� = (N!/[m! × (N − m)!]) with m being the average number
of “0” (or “1”) bits in C ∈ S.

Proof: Based on Lemma 4, the adversary has to consider
all possible � |S| bit orderings. Thus, the probability of having
the correct bit pattern is (1/� |S|). A successful attack will
be the conditional probability of having the right challenge
pattern given the interception of all K challenge packets, which
has the probability of pK . Assuming statistical independence,
the overall probability of a successful modeling attack is the
product and is thus (pK/� |S|).

2) CSP-S Overhead: The overhead imposed by bit scram-
bling depends on whether fixed or dynamically changing
patterns are being pursued. Applying a fixed pattern does not
impose any processing or transmission overhead since the pat-
tern does not vary after both the server and device agree on
during device enrollment. On the other hand, dynamic scram-
bling could impose some processing overhead. As stated in
Section IV-C, in the dynamic case, the scrambling function can

be sequential or time-dependent using the timestamp and/or
the sequence number in the authentication packet header.
Again, the inclusion of a timestamp and a sequence number
is quite conventional in practice in order to detect packet loss
and, hence, would not constitute an overhead for CSP-S.

C. CSP-P Overhead and Modeling Attack Resilience

1) CSP-P Resilience to Modeling Attacks: Recall that
padding adds a few extra bits to the payload of the challenge
packet in order to mislead the adversary about the real size of
PUF as well as which bits among the packet payload relates
to the challenge. Let us assume that for padding and the asso-
ciated control bits a total of E extra bits are added to packet
payload.

Lemma 5: In the worst case, the probability of uncovering a
challenge bit-stream for a device Di that is applying CSP-P is
1/(E + 1) when the PUF size, N, is known to the adversary.

Proof: When the adversary does not know the size of
PUF, all N + E bits will be used for modeling. As in our
method, the padding is dynamically changed, i.e., the place
of the N bit challenge may change in the N + E bit-stream,
PUF modeling would be highly difficult, if not impossible.
However, in the case of knowing the PUF size, the adversary
has to select N consecutive bits from the N + E bits packet
payload. In that case E + 1 possible combinations have to
be tried for each challenge bit-stream, i.e., the probability of
uncovering each challenge is 1/(E + 1). We assume that the
adversary knows how to distinguish between the payload and
packet header and can extract the N + E from the intercepted
packet.

Theorem 4: When combining CSP-P with scrambling,
the probability of revealing each challenge bit-stream C
is 1/((E + 1) × �), where N is the PUF size, and � =
N!/(m! × (N − m)!) with m being the average number of zeros
in C.

Proof: As mentioned in Lemma 5, the probability of
revealing the challenge bit-stream in CSP-P is (1/E + 1).
When the challenge bit-stream is scrambled before padding,
based on Lemma 4 there may result in � different combi-
nations. Thereby, if CSP-P is applied to such a scrambled
bit-stream, the probability of uncovering the challenge would
be [1/((E + 1) × �)].

2) CSP-P Overhead: When CSP-P is applied, instead of
transferring H + N bits for sending each challenge bit-stream
to node Di, H + N + E bits are sent. The bigger E gets, the
larger the overhead becomes, yet the higher security of the
system is. If padding is combined with our CSP scheme, i.e.,
sending the padded challenge bit-stream using K − 1 helper
nodes, the overhead can be computed by using (1), where Wi

includes the challenge bits along with padding bits (Ei) in each
packet i. If the N-bit challenge is divided into K equally sized
partitions, the same number of padding bits (E) is needed for
each packet, consequently the total number of bits exchanged
to send an N-bit challenge bit-stream can be estimated based
on (2) to be: (2K−1)×(H+(N/K)+E). In case of combining
scrambling with padding, the former does not impose any extra
overhead.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMABADI et al.: PUF-BASED MODELING-ATTACK RESILIENT AUTHENTICATION PROTOCOL FOR IoT DEVICES 3699

D. Resiliency Against Conventional Attacks

1) Defeating the Splitting Scheme: Splitting the challenge
bit-stream makes it almost impossible for an attacker to col-
lect CRPs for an IoT device (say Di), even with intercepting
all inbound packets. Basically, the adversary cannot determine
whether a packet is intended for Di or Di acts as a helper
node. In addition, to rebuild the full challenge from its por-
tion, the adversary should know the splitting algorithm (recall
the effects of MSB and LSB portions).

2) Preventing Replay Attacks: As mentioned above, there is
little possibility that an adversary can rebuild a full challenge
from its portions even with intercepting all the incoming pack-
ets to the node that is being authenticated (Di). Accordingly,
our approach prevents replaying a response packet from Di.

3) Countering Impersonation Attacks: IoT frameworks are
vulnerable to impersonation attacks, where a malicious node
claims the identity of a legitimate one by eavesdropping on the
communication traffic and replaying authentication messages.
However, our approach counters such an attack, as even when
the server uses the same challenge for authenticating a specific
node, the packet is split dynamically to two packets (or more
in case of multiple helper nodes), each of which is potentially
sent via a different route. Thus, to conduct impersonation, the
adversary not only has to eavesdrop on all routing paths but
also needs to know the splitting algorithm, which is almost
impossible without excessive resources, as shown earlier in
this section.

E. Effect of Eavesdropping Range

Modeling the PUF requires the adversary to capture a suf-
ficiently large number of CRPs in order for the employed ML
technique to yield high accuracy. In our system model, we
assume that the adversary eavesdrops on the targeted device
to intercept the transmissions from the server and extract the
exchanged CRPs. CSP counters such an attack by splitting
the challenge bits among different packets that are routed to
the targeted device through helper nodes, and employing bit
scrambling and padding. Here, we direct our attention to the
interception range of the adversary, particularly what happens
if the adversary can eavesdrop on multiple nodes. This issue is
related to the node density, the underlying wireless transmis-
sion technology, and the employed communication protocols.
For example, WiFi supports ranges of up to 92 m, which
enables an adversary to capture packets sent by the server
to quite a few nodes, some of which may be playing the role
of helpers during device authentication. Analyzing these pack-
ets collectively could be pursued by the adversary in order to
infer the operation of CSP and uncover the challenge response
pairs. Such a concern grows in scope with increased node den-
sity since the probability of having both the device and its
helpers within the interception range increases. The underly-
ing networking protocol could further assist the adversary by
embedding IDs in the packet header that distinguishes among
packet receivers.

Nonetheless, assuming an attacker intercepts all packets
related to the CSP protocol, analyzing these packets requires
trying all combinations (i.e., brute force) causing the runtime

complexity to be exponential, as we have shown earlier in
this section. By appropriately setting the various parameters,
the system designer can diminish the risk of such an attack
scenario. For example, as indicated by Theorem 4, engaging
multiple helpers and employing a large PUF would massively
degrade the attack success probability. In Section V, we have
demonstrated that modeling the PUF using a subset of the
challenge bit-stream will not be beneficial either. Moreover,
applying anti-traffic analysis measures, e.g., the use of time
varying pseudonyms in the packet headers, will mitigate the
threat of packet correlation and identifying helper nodes. With
that said, if the details of the CSP configuration is discovered
and the attacker can intercept all traffic and infer relation-
ships between nodes, i.e., identify helpers of a device, the
attacker could eventually uncover the CRPs. However, we
deem such a scenario to be very improbable with appropriate
CSP parameter settings and employing contemporary traffic
analysis countermeasures. The latter is a well-studied topic
and is out of the scope of this article.

F. Comparing CSP With Conventional Cryptosystems

Here, we compare our CSP protocol with the alternative
approach of using packet encryption to protect the challenge
bit-stream. We consider the conventional symmetric and asym-
metric cryptosystems and compare the performance in terms
of energy consumption and delay for transferring the data
between server and the IoT device to be authenticated. To
have a baseline for our comparison, we consider the Jennic
JN5139 communication model [73], which employs an IEEE
802.15.4/ZigBee transceiver that operates on 2.3–3.6 V and
has output power of 2.5 dbm. Considering the typical prox-
imity among IoT nodes, we can assume an output power of
1 dbm, which corresponds to ≈ 1.2 mW. The following dis-
cussion shows the estimation for the energy consumption of
IoT nodes.

Energy: In the JN5139 module, the drawn current during
data transmission (Tx) and reception (Rx) are 15 and 17.5 mA,
respectively. By assuming a supply voltage of 2.9 V

Tx Power = (2.9 × 15) + 1.2 = 44.7 mW

Rx Power = (2.9 × 17.5) = 50.75 mW. (3)

The maximum raw data throughput for the IEEE
802.15.4/ZigBee transceiver is 250k bits per second; hence

Energy per Tx Bit = 44.7 mW

250, 000 bit/s
≈ 179 nJ/bit

Energy per Rx Bit = 50.75 mW

250, 000 bit/s
≈ 203 nJ/bit. (4)

As an example, let us consider the case where a 64-bit
PUF is embedded in each IoT device and CPS employs
three helper nodes during the authentication. By splitting the
challenge equally among the device and helpers, each CPS
packet will have 2-byte payload. Assuming a 4-byte packet
header, the energy per transmitted and received CPS packet
would be

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

3700 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

Energy/Tx packet = 179 × 8 × (4 + 2)

1000
≈ 0.009 mJ

Energy/Rx packet = 203 × 8 × (4 + 2)

1000
≈ 0.01 mJ. (5)

During authentication, the IoT device will receive 4 packets
with transmission energy of 0.04 mJ (0.01 mJ for each), and
each helper node receives and sends one packet with a total
energy overhead of 0.019 mJ. Therefore, the overall consumed
energy is 3 × 0.019 + 0.04 ≈ 0.1 mJ.

Rather than using CSP with plain text, let us assume
that encryption is used. Kim et al. [74] have compared
the energy consumed by asymmetric and symmetric encryp-
tion algorithms. Specifically, they have considered an elliptic
curve integrated encryption scheme (ECIES) for private–public
key encryption and the advanced encryption standard (AES)
algorithm for symmetric encryption. To suit the resource-
constrained devices such as the Jennic JN5139 module, small
key sizes, specifically, 256 and 128 bits, were picked for
ECIES and AES, respectively. The results have shown that
ECIES consumed 1230 times and 250 times more energy
than AES-128 during encryption and decryption, respectively.
Meanwhile, according to the infamous BearSSL library [75],
cryptographic hash has close execution time to AES and,
consequently, they have similar energy consumption profile.
Hence, it is sufficient to focus only on AES in our analysis.

Assuming a 128-bit key, an encrypted packet will have a
128-bit payload and 4 Bytes header; thus, the device will
consume 203 × (128 + 32) = 32, 480 nJ ≈ 0.032 mJ in
communication. A recent study of various implementations
of AES on IoT devices has shown that the energy con-
sumed in applying AES decryption is in range of 5–34 mJ,
depending on the implementation [76]. In other words, the
use of a lightweight cryptosystem imposes at least 5.032 mJ
(5 + 0.032 = 5.032 mJ), on the device to retrieve the chal-
lenge sent by a server. Note that in CSP, the energy would be
around 0.04 mJ for receiving the challenge packets since only
simple operations, such as basic bit truncation and concate-
nation, are needed for the modulo operation and challenge
reconstruction from the received packets. Even when con-
sidering the overall energy consumed by all involved nodes
collectively, the total energy overhead stands at 0.1 mJ (as
computed earlier), which is still insignificant compared to the
case of AES. The gap between CSP and an AES-based imple-
mentation is so wide that the superiority of our approach holds
even if the AES energy consumption is significantly reduced.

Similarly, deploying lightweight LFSR-based stream ciphers
such as Trivium to encrypt the challenge bits before transmis-
sion is not appropriate considering their energy consumption.
As reported in [77], Trivium consumes around 81 mJ on
a single-board microcontroller IoT platform, which is still
very high compared to CSP. It is noteworthy to mention that
using single LFSR, instead of the multiple LFSRs deployed
by Trivium, is not recommended as it can be vulnerable to
attacks [78].

Latency: Fundamentally, our CSP protocol splits the chal-
lenge bit-stream among K packets and does not embed any
additional control information. Hence, the delay overhead is
mainly due to sending (K−1) packet headers corresponding to

TABLE III
COMPARING CSP WITH CONVENTIONAL CRYPTOSYSTEMS

the helper nodes. Assuming � is the time for sending a packet
header, the delay overhead equals (K −1)�. The alternative to
our approach is to use packet encryption, where the delay is
due to: 1) the increased packet load since the encryption key
is usually longer than the challenge bit-stream and 2) the rel-
atively long execution time at the device to decrypt the packet
and retrieve the challenge bits. Particularly, the latter typically
dominates (given the limited computational capacity of IoT
devices) and makes the CSP delay overhead to be insignificant
compared to the use of packet encryption.

In order to further illustrate the superiority of CSP in terms
of latency, we compare the delay imposed when AES is used
to secure the transmitted challenges with the case that CSP
is employed. We again consider the time for sending a chal-
lenge partition of 2 bytes along with a 4-byte packet header
(as discussed earlier), which requires 48/250 000 = 0.192 ms.
Hence, it will take 0.768 ms for a device to receive all
four partitions. Reassembling the challenge is through sim-
ple concatenation operation and would be in the nano seconds
range. Meanwhile, Tsao et al. [76] has measured the execu-
tion time of AES with a 128-bit block size on a Raspberry
Pi-based IoT platform and reported that it takes between
28.6 and 108.5 ms to decrypt a message depending on the
AES algorithm implementation. As an encrypted challenge
packet by AES will have a 128-bit payload, by assuming
a 4-Byte packet header, the encrypted challenge packet will
need([128 + (4 × 8)]/250 000) = 0.64 ms to be transmit-
ted over a ZigBee link. Thus, in the baseline case, where
the challenge is sent in an encrypted form, it will take a
device at least 28.6 + 0.64 = 29.24 ms to retrieve the chal-
lenge. Obviously, our CSP protocol is very advantageous by
protecting the challenge without the use of a cryptosystem.

Finally, a recent study has reported the execution time
of popular lightweight LFSR-based stream ciphers for IoT,
such as Lizard, Fruit, Plantlet, and Espresso [79]; the lat-
ter is developed for 5G systems. The study is conducted by
implementing these ciphers on an Arduino platform that has a
16-MHz ATmega 328P microcontroller and 32-kB RAM. The
reported results indicate that these ciphers take around 76 ms
to encrypt 256 Bytes. Assuming the best case scenario that
there is no setup time for the stream cipher and that the exe-
cution time is just proportional to the data size, it would take
about 2.4 ms for a 64-bit PUF challenge. The packet will con-
sist of 64-bit payload and 4 bytes overhead and consequently
will take ([64+(4×8)]/250 000) = 0.38 ms to be transmitted.
Thus, the latency for any of the aforementioned LFSR-based
techniques would be 2.4 + 0.38 ≈ 2.8 ms, which is about
four times worse than the latency for CSP. If we factor in the

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

EBRAHIMABADI et al.: PUF-BASED MODELING-ATTACK RESILIENT AUTHENTICATION PROTOCOL FOR IoT DEVICES 3701

cipher setup time, the performance advantage of our methods
over stream ciphers will just grow in significance. Table III
summarizes the discussed comparison.

VII. CONCLUSION

In this article, we have developed an effective and
lightweight PUF-based authentication protocol for IoT
devices. The protocol employs three novel schemes, namely,
CSP, scrambling, and padding, that hinder the adversary’s abil-
ity in retrieving the challenge bits of the PUF without reliance
on cryptosystems. Along with introducing variability in the
packet format and not embedding any control information, the
proposed schemes achieve resiliency against an adversary that
intercepts the exchanged packets and opts to model the PUF
behaviors using ML techniques. Through analysis and simula-
tion, we have shown that engaging helper nodes to exchange
the embedded PUFs’ signatures, makes the modeling attacks
very difficult. Moreover, the validation results have confirmed
that via scrambling and/or padding the exchanged PUF chal-
lenge the success of the modeling attack diminishes further.
As future work, we plan to develop PUF-based data integrity
solutions and devise the associated key management protocols.

REFERENCES

[1] R. Taylor, D. Baron, and D. Schmidt, “The world in 2025—Predictions
for the next ten years,” in Proc. IMPACT , 2015, pp. 192–195.

[2] T. A. Ahanger and A. Aljumah, “Internet of Things: A comprehensive
study of security issues and defense mechanisms,” IEEE Access, vol. 7,
pp. 11020–11028, 2019.

[3] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security and
privacy issues in Internet-of-Things,” IEEE Internet Things J., vol. 4,
no. 5, pp. 1250–1258, Oct. 2017.

[4] T. Idriss et al., “A PUF-based paradigm for IoT security,” in Proc. World
Forum Internet Things (WF-IoT), 2016, pp. 700–705.

[5] M. N. Aman, K. C. Chua, and B. Sikdar, “Position Paper: Physical
unclonable functions for IoT security,” in Proc. Int. Workshop IoT
Privacy Trust Security, 2016, pp. 10–13.

[6] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit integrated circuits: A rising threat in the
global semiconductor supply chain,” Proc. IEEE, vol. 102, no. 8,
pp. 1207–1228, Aug. 2014.

[7] J. R. Wallrabenstein, “Practical and secure IoT device authentica-
tion using physical unclonable functions,” in Proc. FiCloud, 2016,
pp. 99–106.

[8] T. Xu, J. B. Wendt, and M. Potkonjak, “Security of IoT systems: Design
challenges and opportunities,” in Proc. ICCAD, 2014, pp. 417–423.

[9] X. Liu, M. Zhao, S. Li, F. Zhang, and W. Trappe, “A security framework
for the Internet of Things in the future Internet architecture,” Future
Internet, vol. 9, no. 3, p. 27, Jun. 2017.

[10] X.-W. Wu, E.-H. Yang, and J. Wang, “Lightweight security protocols
for the Internet of Things,” in Proc. IEEE PIMRC, 2017, pp. 1–7.

[11] N. Hong, “A security framework for the Internet of Things based on
public key infrastructure,” in Advanced Materials Research, vol. 671.
Cambridge, MA, USA: Trans. Tech. Publ., 2013, pp. 3223–3226.

[12] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” SIAM J. Comput., vol. 32, no. 3, pp. 586–615, 2003.

[13] S. W. Jung and S. Jung, “Personal oauth authorization server and push
oauth for Internet of Things,” Int. J. Distrib. Sensor Netw., vol. 13, no. 6,
p. 16, 2017.

[14] U. Chatterjee et al., “Building PUF based authentication and key
exchange protocol for IoT without explicit CRPs in verifier database,”
IEEE Trans. Depend. Secure Comput., vol. 16, no. 3, pp. 424–437,
May/Jun. 2019.

[15] Y. Atwady and M. Hammoudeh, “A survey on authentication techniques
for the Internet of Things,” in Proc. Int. Conf. Future Netw. Distrib. Syst.,
2017, pp. 1–8.

[16] Y. Zou, J. Zhu, X. Wang, and L. Hanzo, “A survey on wireless security:
Technical challenges, recent advances, and future trends,” Proc. IEEE,
vol. 104, no. 9, pp. 1727–1765, Sep. 2016.

[17] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “SMART: Secure
and minimal architecture for (establishing dynamic) root of trust,” in
Proc. NDSS, vol. 12, 2012, pp. 1–15.

[18] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “LiteHAX:
Lightweight hardware-assisted attestation of program execution,” in
Proc. ICCAD, 2018, pp. 1–8.

[19] C. Shepherd et al., “Secure and trusted execution: Past, present, and
future—A critical review in the context of the Internet of Things
and cyber-physical systems,” in Proc. Trustcom/BigDataSE/ISPA, 2016,
pp. 168–177.

[20] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proc. DAC, 2007, pp. 9–14.

[21] Physically Unclonable Function. Accessed: Mar. 2021. [Online].
Available: https://www.secure-ic.com/solutions/security-ips/physically-
unclonable-function/

[22] What Makes PUF Technology One of the Best Protections in
Cryptography? Accessed: Mar. 2021. [Online]. Available: https://www.
maximintegrated.com/en/design/blog/what-makes-puf-technology-one-
of-the-best-protections-in-cryptography.html

[23] A. Shamsoshoara, A. Korenda, F. Afghah, and S. Zeadally, “A survey on
physical unclonable function (PUF)-based security solutions for Internet
of Things,” Comput. Netw., vol. 183, Dec. 2020, Art. no. 107593.

[24] O. Günlü, “Multi-entity and multi-enrollment key agreement with
correlated noise,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 1190–1202, 2021.

[25] L. Kusters and F. M. J. Willems, “Secret-key capacity regions for
multiple enrollments with an SRAM-PUF,” IEEE Trans. Inf. Forensics
Security, vol. 14, no. 9, pp. 2276–2287, Sep. 2019.

[26] H. Yıldız, M. Cenk, and E. Onur, “PLGAKD: A PUF-based lightweight
group authentication and key distribution protocol,” IEEE Internet
Things J., vol. 8, no. 7, pp. 5682–5696, Apr. 2021.

[27] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, “A PUF-
based secure communication protocol for IoT,” ACM Trans. Embedded
Comput. Syst., vol. 16, no. 3, p. 67, 2017.

[28] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable functions,”
in Proc. CCS, 2010, pp. 237–249.

[29] J. Kong, F. Koushanfar, P. K. Pendyala, A.-R. Sadeghi, and
C. Wachsmann, “PUFatt: Embedded platform attestation based on novel
processor-based PUFs,” in Proc. DAC, 2014, pp. 1–6.

[30] C. Gu, C.-H. Chang, W. Liu, S. Yu, Y. Wang, and M. O’Neill, “A
modeling attack resistant deception technique for securing PUF based
authentication,” in Proc. AsianHOST , 2019, pp. 1–6.

[31] C. Gu, C.-H. Chang, W. Liu, S. Yu, Y. Wang, and M. O’Neill, “A
modeling attack resistant deception technique for securing lightweight-
puf based authentication,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 40, no. 6, pp. 1183–1196, Jun. 2021.

[32] M. Khalafalla and C. Gebotys, “PUFs deep attacks: Enhanced modeling
attacks using deep learning techniques to break the security of double
arbiter PUFs,” in Proc. DATE, 2019, pp. 204–209.

[33] Y. Gao, H. Ma, S. F. Al-Sarawi, D. Abbott, and D. C. Ranasinghe, “PUF-
FSM: A controlled strong PUF,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 37, no. 5, pp. 1104–1108, May 2018.

[34] J. Delvaux, “Machine-learning attacks on PolyPUFs, OB-PUFs, RPUFs,
LHS-PUFs, and PUF–FSMs,” IEEE Trans. Inf. Forensics Security,
vol. 14, no. 8, pp. 2043–2058, Aug. 2019.

[35] R.-H. Hsu, J. Lee, T. Q. S. Quek, and J.-C. Chen, “Reconfigurable secu-
rity: Edge-computing-based framework for IoT,” IEEE Netw., vol. 32,
no. 5, pp. 92–99, Sep./Oct. 2018.

[36] M. N. Aman, K. C. Chua, and B. Sikdar, “Secure data provenance for the
Internet of Things,” in Proc. Int. Workshop IoT Privacy Trust Security,
2017, pp. 11–14.

[37] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas,
“Slender PUF protocol: A lightweight, robust, and secure authentication
by substring matching,” in Proc. S&P, 2012, pp. 33–44.

[38] Ü. Koçabas, A. Peter, S. Katzenbeisser, and A.-R. Sadeghi, “Converse
PUF-based authentication,” in Proc. Int. Conf. Trust Trustworthy
Comput., 2012, pp. 142–158.

[39] S. Schulz, A. Schaller, F. Kohnhäuser, and S. Katzenbeisser, “Boot attes-
tation: Secure remote reporting with off-the-shelf IoT sensors,” in Proc.
ESORICS, 2017, pp. 437–455.

[40] Y. Lao, B. Yuan, C. H. Kim, and K. K. Parhi, “Reliable PUF-based local
authentication with self-correction,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 36, no. 2, pp. 201–213, Feb. 2017.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

3702 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

[41] M. Barbareschi, P. Bagnasco, and A. Mazzeo, “Authenticating IoT
devices with physically unclonable functions models,” in Proc. 3PGCIC,
2015, pp. 563–567.

[42] M. N. Aman, K. C. Chua, and B. Sikdar, “Mutual authentication in IoT
systems using physical unclonable functions,” IEEE Internet Things J.,
vol. 4, no. 5, pp. 1327–1340, Oct. 2017.

[43] C. Huth, J. Zibuschka, P. Duplys, and T. Güneysu, “Securing systems
on the Internet of Things via physical properties of devices and
communications,” in Proc. IEEE Syst. Conf. (SysCon), 2015, pp. 8–13.

[44] M. A. Qureshi and A. Munir, “PUF-RAKE: A PUF-based robust
and lightweight authentication and key establishment protocol,”
IEEE Trans. Depend. Secure Comput., early access, Feb. 10, 2021,
doi: 10.1109/TDSC.2021.3059454.

[45] F. Ganji, D. Forte, and J.-P. Seifert, “PUFmeter a property testing tool for
assessing the robustness of physically unclonable functions to machine
learning attacks,” IEEE Access, vol. 7, pp. 122513–122521, 2019.

[46] F. Ganji, D. Forte, and J.-P. Seifert, “Having no mathematical model
may not secure PUFs,” J. Cryptograph. Eng., vol. 7, no. 2, pp. 113–128,
2017.

[47] F. Ganji, D. Forte, and J.-P. Seifert, “Rock‘n’roll PUFs: Crafting prov-
ably secure PUFs from less secure ones,” J. Cryptographic Eng., vol. 11,
pp. 33–48, May 2020.

[48] M. Barbareschi, A. D. Benedictis, and N. Mazzocca, “A PUF-based
hardware mutual authentication protocol,” J. Parallel Distrib. Comput.,
vol. 119, pp. 107–120, Sep. 2018.

[49] S. S. Zalivaka, A. A. Ivaniuk, and C.-H. Chang, “Reliable and modeling
attack resistant authentication of arbiter PUF in FPGA implementation
with trinary quadruple response,” IEEE Trans. Inf. Forensics Security,
vol. 14, no. 4, pp. 1109–1123, Apr. 2019.

[50] P. Gope, J. Lee, and T. Q. S. Quek, “Lightweight and practical
anonymous authentication protocol for RFID systems using physically
unclonable functions,” IEEE Trans. Inf. Forensics Security, vol. 13,
no. 11, pp. 2831–2843, Nov. 2018.

[51] M. A. Qureshi and A. Munir, “PUF-IPA: A PUF-based identity
preserving protocol for Internet of Things authentication,” in Proc. IEEE
Annu. Consum. Commun. Netw. Conf. (CCNC), 2020, pp. 1–7.

[52] F. Farha, H. Ning, K. Ali, L. Chen, and C. Nugent, “SRAM-PUF based
entities authentication scheme for resource-constrained IoT devices,”
IEEE Internet Things J., vol. 8, no. 7, pp. 5904–5913, Apr. 2021.

[53] M. Barbareschi. A. D. Benedictis, E. L. Montagna, A. Mazzeo, and
N. Mazzocca, “A PUF-based mutual authentication scheme for cloud-
edges IoT systems,” Future Gener. Comput. Syst., vol. 101, pp. 246–261,
Dec. 2019.

[54] P. Gope and B. Sikdar, “Lightweight and privacy-preserving two-factor
authentication scheme for IoT devices,” IEEE Internet Things J., vol. 6,
no. 1, pp. 580–589, Feb. 2019.

[55] M.-D. Yu et al., “A lockdown technique to prevent machine learning on
PUFs for lightweight authentication,” IEEE Trans. Multi-Scale Comput.
Syst., vol. 2, no. 3, pp. 146–159, Jul.–Sep. 2016.

[56] G. T. Becker, “The gap between promise and reality: On the insecurity
of XOR arbiter PUFs,” in Proc. CHES, 2015, pp. 535–555.

[57] E. I. Vatajelu, G. Di Natale, M. S. Mispan, and B. Halak, “On the
encryption of the challenge in physically unclonable functions,” in Proc.
IOLTS, 2019, pp. 115–120.

[58] O. Günlü̈, O. Iscan, V. Sidorenko, and G. Kramer, “Code construc-
tions for physical unclonable functions and biometric secrecy systems,”
IEEE Trans. Inf. Forensics Security, vol. 14, no. 11, pp. 2848–2858,
Nov. 2019.

[59] B. Chen, T. Ignatenko, F. M. J. Willems, R. Maes, E. van der Sluis, and
G. N. Selimis, “A robust SRAM-PUF key generation scheme based on
polar codes,” in Proc. Global Commun. Conf., 2017, pp. 1–6.

[60] O. Günlü, T. Kernetzky, O. Iscan, V. Sidorenko, G. Kramer, and
R. F. Schaefer, “Secure and reliable key agreement with physical
unclonable functions,” Entropy, vol. 20, no. 5, p. 340, 2018.

[61] E. Öztürk, G. Hammouri, and B. Sunar, “Towards robust low cost
authentication for pervasive devices,” in Proc. Pervasive Comput.
Commn., 2008, pp. 170–178.

[62] S.-J. Wang, Y.-S. Chen, and K. S.-M. Li, “Adversarial attack against
modeling attack on PUF,” in Proc. DAC, 2019, pp. 1–6.

[63] B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proc. CCS, 2002, pp. 148–160.

[64] Y. Shihong, L. Ping, and H. Peiyi, “SVM classification: Its contents and
challenges,” Appl. Math. A J. Chin. Univ., vol. 18, no. 3, pp. 332–342,
2003.

[65] K. Gurney, An Introduction to Neural Networks. Boca Raton, FL, USA:
Taylor&Francis, 1997.

[66] A. A. Adewuyi, H. Cheng, Q. Shi, J. Cao, Á. MacDermott, and
X. Wang, “CTRUST: A dynamic trust model for collaborative appli-
cations in the Internet of Things,” IEEE Internet Things J., vol. 6, no. 3,
pp. 5432–5445, Jun. 2019.

[67] Xilinx ARTIX-7 FPGA. Accessed: Jul. 2020. [Online]. Available:
https://digilentinc.com

[68] N. Hansen, “The CMA evolution strategy: A comparing review,”
in Towards a New Evolutionary Computation. Heidelberg, Germany:
Springer, 2006, pp. 75–102.

[69] CMA-ES Attack. Accessed: Jul. 2020. [Online]. Available: https://github.
com/scluconn/DA_PUF_Library

[70] P. H. Nguyen et al., “The interpose PUF: Secure PUF design
against state-of-the-art machine learning attacks,” in Proc. CHES, 2019,
pp. 243–290.

[71] Y. Hori, T. Yoshida, T. Katashita, and A. Satoh, “Quantitative and
statistical performance evaluation of arbiter physical unclonable func-
tions on FPGAs,” in Proc. Int. Conf. Reconfig. Comput. FPGAs, 2010,
pp. 298–303.

[72] L. E. Bassham et al., A Statistical Test Suite for Random &
Pseudorandom Number Generators for Cryptographic Applications,
NIST document SP 800-22, NIST, Gaithersburg, MD, USA, 2010.

[73] (2010). Product Brief—JN5148 Module (Jennet, ZigBee Pro and
IEEE 802.15.4 Module). [Online]. Available: https://www.glynstore.
com/content/docs/jennic/JN5148-MO-PB_1v1.1.pdf

[74] J. M. Kim, H. S. Lee, J. Yi, and M. Park, “Power adaptive data encryp-
tion for energy-efficient and secure communication in solar-powered
wireless sensor networks,” J. Sensors, vol. 2016, pp. 1–9, Mar. 2016.

[75] (2018). On Performance. [Online]. Available: https://www.bearssl.org/
speed.html#measuring-speed

[76] B. Tsao, Y. Liu, and B. Dezfouli, “Analysis of the duration and energy
consumption of AES algorithms on a Contiki-based IoT device,” in
Proc. 16th EAI Int. Conf. Mobile Ubiquitous Syst. Comput. Netw.
Services, 2019, pp. 483–491.

[77] L. Ertaul and A. Woodall, “IoT security: Performance evaluation of
Grain, MICKEY, and Trivium—Lightweight stream ciphers,” in Proc.
IEEE Conf. Security Manag., 2017, pp. 32–38.

[78] C. Paar and J. Pelzl, Understanding Cryptography—A Textbook for
Students & Practitioners. Heidelberg, Germany: Springer, 2010.

[79] S. Deb and B. Bhuyan, “Performance analysis of current lightweight
stream ciphers for constrained environments,” Indian Acad. Sci., vol. 45,
p. 256, Oct. 2020.

Mohammad Ebrahimabadi (Graduate Student
Member, IEEE) received the B.Sc. degree in elec-
trical engineering from Zanjan University, Zanjan,
Iran, in 2008, and the M.Sc. degree in electrical engi-
neering from the Sharif University of Technology,
Tehran, Iran, in 2011. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Engineering, University of Maryland at
Baltimore County, Baltimore, MD, USA.

He is a member of the Secure, Reliable and
Trusted Systems Research Laboratory, University of

Maryland at Baltimore County. His current research focus is on hardware
security, and in particular side-channel analysis and fault injection attacks
and countermeasures, sensor-assisted secure and reliable design, as well as
developing PUF-based authentication and secure communication protocols in
IoT frameworks.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2021.3059454

EBRAHIMABADI et al.: PUF-BASED MODELING-ATTACK RESILIENT AUTHENTICATION PROTOCOL FOR IoT DEVICES 3703

Mohamed Younis (Senior Member, IEEE) received
the Ph.D. degree in computer science from New
Jersey Institute of Technology, Newark, NJ, USA,
in 1997.

He is currently a Professor with the Department
of Computer Science and Electrical Engineering,
University of Maryland Baltimore County (UMBC).
Before joining UMBC, he was with Honeywell
International Inc., Charlotte, NC, USA, where he
led multiple projects for building integrated fault-
tolerant avionics and dependable computing infras-

tructure. He also participated in the development of the Redundancy
Management System, which is a key component of the Vehicle and Mission
Computer for NASA’s X-33 space launch vehicle. He has published about 300
technical papers in refereed conferences and journals. He has seven granted
and three pending patents. His technical interest includes network architectures
and protocols, wireless sensor networks, embedded systems, fault-tolerant
computing, secure communication, and distributed real-time systems.

Prof. Younis serves/served on the editorial board of multiple journals and
the organizing and technical program committees of numerous conferences.
He is a Senior Member of the IEEE Communications Society.

Naghmeh Karimi (Member, IEEE) received the
B.Sc., M.Sc., and Ph.D. degrees in computer engi-
neering from the University of Tehran, Tehran, Iran,
in 1997, 2002, and 2010, respectively.

She was a Visiting Researcher with Yale
University, New Haven, CT, USA, from 2007 to
2009, and a Postdoctoral Researcher with Duke
University, Durham, NC, USA, from 2011 to 2012.
She has been a Visiting Assistant Professor with
New York University, New York, NY, USA, and
Rutgers University, New Brunswick, NJ, USA, from

2012 to 2016. She joined the University of Maryland at Baltimore County,
Baltimore, MD, USA, as an Assistant Professor in 2017, where she leads
the Secure, Reliable and Trusted Systems Research Laboratory. She has pub-
lished three book chapters and authored/coauthored more than 60 papers in
referred conference proceedings and journal manuscripts. Her current research
interests include hardware security, VLSI testing, design-for-trust, design-for-
testability, and design-for-reliability.

Dr. Karimi is a recipient of the National Science Foundation CAREER
Award in 2020. She serves as an Associate Editor for Journal of Electronic
Testing: Theory and Applications (Springer). She is also the Corresponding
Guest Editor of the Journal on Emerging and Selected Topics in Circuits and
Systems; special issue in Hardware Security in Emerging Technologies.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 25,2022 at 22:01:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

