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ABSTRACT
Masking countermeasures, used to thwart side-channel at-
tacks, have been shown to be vulnerable to mask-extraction
attacks. State-of-the-art mask-extraction attacks on the Ad-
vanced Encryption Standard (AES) algorithm target S-Box
re-computation schemes, but have not been applied to sce-
narios where S-Boxes are precomputed offline. We propose
an attack targeting precomputed S-Boxes stored in non-
volatile memory. Our attack targets AES implemented in
software protected by a low entropy masking scheme and
recovers the masks with 91% success rate. Recovering the
secret key requires fewer power traces (in fact, by at least
two orders of magnitude) compared to a classical second
order attack. Moreover, we show that this attack remains
viable in a noisy environment, or with a reduced number of
leakage points.

Categories and Subject Descriptors
E.3 [Data]: Data encryption; K.6.5 [Computing Milieux]:
Management of computing and information systems—Phys-
ical security

1. INTRODUCTION
Traditionally, a cryptographic algorithm was considered

secure if it withstood classical linear and differential crypt-
analysis. A side-channel attack exploits physical character-
istics of a device in order to recover secret information, such
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as the encryption key. Power dissipation and electromag-
netic (EM) emanation side-channel attacks are of particular
concern because of their low implementation cost, ease of
use, and effectiveness in extracting secret information [10].
Power analysis attacks work because the amount of power
(or EM emanations) dissipated by a device is dependent
on the data being processed. The Advanced Encryption
Standard (AES) is the standard symmetric key encryption
specified by National Institute of Standards and Technol-
ogy (NIST) in FIPS 197, and is also included in ISO/IEC
18033-3:2010. It is widely used in electronic systems such as
automated teller machines, telecommunications, and virtual
private networks. Traditional cryptanalysis cannot break
AES. However, if AES is not carefully implemented, side-
channel attacks can leak the secret key [10, 3, 2].

1.1 Related Work
Masking variables is a well-known countermeasure [16, 18,

15, 5] to protect against side-channel attacks. Sensitive vari-
ables are concealed by random variables. Masking comes in
a variety of flavors, however we consider only the Boolean
type in this paper. Boolean masking splits a sensitive vari-
able x into a number (d + 1) of shares by the exclusive-or
(XOR) operation x = x0 ⊕ . . . ⊕ xd. Each share is pro-
cessed independently so that the measured leakage depends
on some random value, rather than the sensitive informa-
tion. A first-order masking scheme uses one mask, whereas
a dth-order masking scheme uses d masks. A (d+1)th-order
attack targets the manipulation of d + 1 manipulated vari-
ables that jointly depend on a secret value (e.g., the d + 1
masks). A dth-order masking scheme can be broken by a
(d + 1)th-order attack [11]. Masking strategies can also be
classified according to the amount of entropy used; intu-
itively, the more entropy in the set of masks, the more secure
the implementations are against side-channel analysis. Full
Entropy Masking Schemes (FEMS) draw masks from the
entire mask set to conceal sensitive information [20]. In the
case of AES, each plaintext byte is masked, and so each mask
can take on all 256 values from F8

2. Low Entropy Masking
Schemes (LEMS) instead draw masks from a reduced mask
set, a strict subset of F8

2 [20, 7].
Masking the non-linear portions of AES, i.e., the S-Boxes

can be costly. The masked S-Boxes can be calculated on-
the-fly for each encryption [16], securely precomputed be-
fore encryption begins [8], or generated offline and stored in
ROM/RAM [12]. The S-Box precomputation scheme suits



AES, because the 16 S-Boxes are the same (unlike DES,
for instance). However, the S-Box precomputation method
significantly increases total encryption time. The masked
S-Box is typically recalculated for every encryption and this
S-Box recomputation can be as long as the entire AES op-
eration, if not longer. For instance, the authors in [11] de-
scribe an AES implementation that takes twice as long to
encrypt a plaintext versus the equivalent unprotected ver-
sion; 33% of the run-time is spent calculating the masked
S-Box. The frequent reuse of the mask during the S-Box
precomputation allows for horizontal attacks (deemed hori-
zontal because multiple points along a single power trace are
analyzed [4]), which exploit the high multiplicity of samples
(namely, 256) to recover the mask [14, 19].

Computing offline the entire set of masked S-Boxes (256
for a FEMS) alleviates the extra runtime issue of S-Box re-
computation, but requires at least 64 kilobytes of memory
which is beyond the capacity of embedded systems such as
smartcards. LEMS offers a trade-off between complexity
and security. The space required for a LEMS using 16 masks
out-of-256 masks is that needed to store 16 S-Boxes (namely
4 kilobytes of storage). Removing the need for a lengthy
masked S-Box precomputation, we notice that LEMS are
less prone to attacks such as [14, 19]. Additional masks (as
in high-order masking schemes) increase the complexity and
area overhead of the design, since these extra masks have to
be stored in memory or calculated at some point in time.
Therefore first-order masking schemes are the mainstream
protection.

1.2 Contribution and Outline
Efficient first-order masking schemes (FEMS using S-Box

precomputation or LEMS such as Rotating S-Box Mask-
ing [12]) reuse the same mask several times, typically at
each S-Box call, therefore a horizontal power analysis at-
tack on 16 leakage points can reveal the mask. We show
that the state-of-the-art mask extraction attack [19] on S-
Box precomputation can be retargeted towards a masked
AES implementation. Indeed, the attack presented in [19,
14] is the core idea of this paper. At the time of writing, a
similar attack was published on the DPA Contest website[6]
by Nakai et al. We want to stress that both works were per-
formed independent of each other. We therefore add value
by exploring the attack parameters in order to gain a deeper
understanding of the strength of the attack. We show that
the attack can succeed even in the presence of noise: tiny
information on the mask can be extracted, enabling a first-
order attack in a second pass. We find that this type of
attack outperforms a classical second-order attack with re-
spect to number of traces needed to recover the key.

The rest of the paper is organized as follows. Section 2
proposes the mask recovery attack, and validates it using
publicly available data. Section 3 discusses the attack results
and attack parameters, compares the attack with a state-of-
the-art second-order attack [17] in noisy environments, and
proposes a countermeasure. Section 4 concludes the paper.

2. PROPOSED MASK RECOVERY ATTACK
We describe the implemented countermeasure, power anal-

ysis, and the proposed attack.

2.1 Rotating S-Box Masking
A first-order masking countermeasure called Rotating Sbox
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Figure 1: AES-256 with the Rotating S-Box Mask-
ing (RSM) protection. RSM is a low entropy mask-
ing scheme. The dashed boxes represent the opera-
tions added by RSM to AES.

Masking (RSM) [12] is shown in Figure 1. The dotted boxes
represent the additional steps added to AES-256 by RSM.
RSM is a Boolean-additive LEMS and uses a total of 16
public-knowledge masks, m0−15 ∈ M ⊂ F8

2, one for each
byte of plaintext. At the start of each encryption, a random
offset j ∈ [0 . . . 15] is drawn. The offset can be thought of as
the number of positions to cyclically left-rotate the base set
of masks, M0. The set of masks with offset j is denoted as
Mj , e.g., if the offset j = 0, then the masks are deployed in
the following order M0 = m0,m1,m2, . . . ,m14,m15. Thus,
only 16 possibilities exist for the the order of the masks, since
a shift greater than 15 simply wraps around. The masks are
then XORed with the plaintext, and this result is XORed
with the first round key. The S-Box is replaced by 16 masked
S-Boxes, where each S-Box corresponds to an offset. This
avoids the penalty of the lengthy S-Box recomputation that
other masking schemes utilize (except masking schemes with
S-Box secure calculation [18, 5]). ShiftRows is unchanged
since the underlying data is not modified. The MixColumns
operation is a special masked version. Afterwards, the next-
round masks are applied while simultaneously removing the
current-round masks, and the offset value is incremented. It
is important to stress that the data never appear unmasked.

2.2 Power Analysis
A generic power (or EM) analysis attack has the following

five steps [11].
1) Measure the power consumption (or EM) of a de-

vice as it encrypts (resp. decrypts) a number of
plaintexts (resp. ciphertexts). We used EM traces
provided by the DPA Contest V4 [6], as detailed in Sec-
tion 2.3.

2) Choose an intermediate result of the target algo-
rithm to attack. Normally a part of the algorithm that
operates on the key is attacked. However, we wish first
to recover the mask set, so we target the loading of the
masks, as described in Section 2.5.

3) Calculate the intermediate results for all secret



hypotheses. In this case, there are 16 possibilities for
the mask set, shown in matrix M in Section 2.6.

4) Apply a hypothetical power model to the calcu-
lated intermediate results. We used the Hamming
weight power model, as described in Section 2.6.

5) Compare the measured power consumption to the
hypothetical power consumption to determine the
secret key (or a small part of the key). This is ex-
plained in more detail in Section 2.6.

This attack is performed in two stages: (1) the pre-processing
mask recovery stage and (2) CPA attack to recover the key.
The basic idea is to recover an estimate of the masks from
each power trace, and then launch a horizontal (attacking
many samples from a single trace) CPA attack against the
16 possible combinations of the mask. Recovering the masks
allows us to undo the countermeasure so that we can cor-
rectly predict some intermediate value, e.g., the S-Box out-
put. Thus a second CPA attack, vertical (attacking the same
time instance across many traces) this time, reveals the key.
Both stages are first-order attacks.

2.3 Experimental Setup
The AES-256 RSM is implemented on an Atmel ATMega-

163 smartcard connected to a SASEBO-W board [6]. EM
traces were captured using a Langer EM near-field probe
RF-U 5-2, sampled at 500 MS/s by a Lecroy Waverunner
6100A oscilloscope.

Algorithm 1: Mask Recovery

input : Window when masking is thought to occur W
A single power trace t
Length of masking operation Δ
Mask matrix M

output: The mask set Mg and the mask offset g
1 τ ← ChooseSamples(W) ; // leakage Detection
2 r ← 0 ; // row index for subtrace matrix V
3 for i ∈ τ do
4 for j ← 0 to 15 do
5 lkg ← t(i + j · Δ) ; // measured leakage at sample i

for byte j
6 V[r, j] ← lkg ; // build subtrace matrix

7 end
8 r ← r + 1 ; // increment row index

9 end
10 H ← hw(M) ; // mask Hamming weight
11 return g ← argmax ρ̂(V,H) ; // recover the mask offset
12 return Mg ← M[:, g] ; // guessed mask set

2.4 Leakage Detection
We use Normalized Inter-class Variance (NICV) [1], which

is an analysis of variance (ANOVA) F-Test, to identify leak-
age in power traces. The NICV relies on publicly avail-
able information (such as known plaintexts or ciphertexts).
Let T be the set of power traces, and X be the corre-
sponding set of plaintext bytes. The NICV is calculated

as NICV = Var (E[T |X])
Var (T )

where, 0 ≤ |NICV | ≤ 1. Figure 2

shows the NICV calculated for each plaintext byte using
10,000 traces, and reveals useful information to the attacker.
With knowledge of the algorithm, he can distinguish when
different operations take place. The 16 peaks in Figure 2(a)
from samples 0 to 75, 000 suggest the AddRoundKey opera-
tion, while the second set of 16 peaks beginning at sample
point 105 signifies the SubBytes operation. An attacker can
use this knowledge to extract leakage samples that belong
to a certain operation.
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Figure 2: NICV for each plaintext byte over 10, 000
traces. (a) AES operations are identifiable (b) NICV
for the first 3 bytes of plaintext. Each byte exhibits
similar characteristics, which implies the operation
taking place a number times, but each time process-
ing different data.

The attacker now has a rough idea of the time frame
when each operation takes place, and can even determine
the amount of time to process each byte by examining Δ,
the distance between the peaks in Figure 2(b). Figure 2(a)
shows that each plaintext byte is operated on only once be-
fore it enters the S-Box, i.e. there is only one time interval
when leakage occurs for each plaintext byte before the S-
Box. Therefore the plaintext loading, masking operation,
and AddRoundKey must all take place within the same time
interval. Moreover, the order and morphology of each NICV
curve tells the attacker that the same set of operations is ap-
plied 16 times in a row, beginning with byte 0 and ending
with byte 15. Consequently, the attacker now has an idea
about the mask order.

2.5 Extract Leaky Samples
The attacker then chooses a window W of width Δ, and

extracts possible candidates for the time samples when each
mask is loaded. The attacker can use the NICV (or some
other leakage detection tool [1] such as SOSD or SOST) to
minimize the amount of points he will attack by considering
only leakage measurements above a certain threshold (deter-
mined empirically), or he can simply attack every point in
the window. The attacker selects τ samples to attack from a
single power trace, and stores their leakage measurements, v,
into the first column of the τ × 16 matrix V. Each column
V is then filled in by extracting the leakage measurement
exactly Δ samples from the previous measurement.

V =




t0 t0 +Δ t0 + 2Δ · · · t0 + 15Δ
t1 t1 +Δ t1 + 2Δ · · · t1 + 15Δ
...

...
...

. . .
...

tτ−1 tτ−1 +Δ tτ−1 + 2Δ · · · tτ−1 + 15Δ


 .

2.6 Recover the Mask Offset
The next step is to launch a modified CPA attack on the

sub-traces in V. Since we do not know in which order the



masks were loaded, we guess every combination, as shown
in the 16× 16 matrix M = [M0 . . .M15]

�. Each column of
M corresponds to an offset applied to the base set of masks
M0, where

M =




m0 m1 m2 · · · m15
m1 m2 m3 · · · m0

...
...

...
. . .

...
m15 m0 m1 · · · m14


 .

We apply a Hamming weight power model hw(·) to the
mask matrix M, which is generally a good model for mi-
croprocessors [11, 9]. The hypothetical power consumption
is H = hw(M). The next step is to compare the modeled
power consumption with the measured power consumption.
If we assume the power model to be linear, e.g., Hamming
weight or Hamming distance, a natural choice for the at-
tack is the correlation coefficient. Correlation power anal-
ysis (CPA) evaluates the amount of correlation between a
set of measured power traces T and a model of the key-
dependent device leakage, L [3], and is calculated for ev-
ery time sample. Pearson’s correlation coefficient is cal-
culated as ρ(T,L) = cov(T, L)/(σTσL), however this can
be difficult (or impossible) to compute, and so we instead
use an estimate ρ̂ (where |ρ̂| ≤ 1) which is calculated as

�n−1
i=0 (ti−ti)(li−li)��n−1

i=0 (ti−ti)
2 �n−1

i=0 (li−li)
2
for the set of traces T (contain-

ing n traces ti ) and hypothetical power model L, con-
taining n hypothetical power consumption values l. Wrong
guesses for the key will have correlations close to 0, while
the correct guess will have |ρ̂| close to 1 (assuming the power
model is accurate). We calculate ρ̂(V,H), which leads to 16
correlation coefficients. Each correlation coefficient corre-
sponds to a mask offset. By choosing the location where
the max ρ̂(V,H) occurs, we can guess the offset. Using the
offset guess, we can predict the S-Box output and deploy a
CPA attack to recover the key.

3. RESULTS
This attack is feasible since the device leaks the Hamming

weight of the masks when they are loaded from memory.
Once the masks are recovered, extracting the key is straight-
forward. Our attack requires 10.1 traces to fully recover the
key, while an attack on an unprotected implementation re-
quires 9.9 traces and can be considered as a lower bound
regarding the number of traces. Our attack is close to that
bound; the reason that we need slightly more traces is be-
cause we do not always correctly guess the offset. Compar-
ing our offset guesses with the actual mask offsets, we were
able to successfully guess the offset 91% of the time. Re-
call the estimation error of the mean in a Bernoulli process
is p (1− p) /nrep, where p = 0.91 and nrep is the number
of repetitions, namely nrep = 10, 000. The success rate is
estimated over 10, 000 traces with accuracy ≈ 10−5.

3.1 Mask Recovery Success Rate
Figure 4(a) shows the success rate of recovering the mask

for various signal-to-noise ratios (SNR). The probability of
correctly guessing the offset at random is 1/16, or 6.25%:
we exceed this value for all SNR > 25 (i.e., σnoise > 30).
Therefore, using our method is preferred to naively guessing
for most noise levels.

3.2 Tweaking the Algorithm Parameters
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Figure 3: Mask recovery success rate as a function
of number of masks attacked.

We examine how the algorithm parameters affect the mask
recovery success rate. If only one mask (out of a possible 16)
is attacked, the success rate equates to the expected value
for naively guessing the mask. Indeed, with 1 mask, there
is no “rotation” possible, hence the mask is “horizontally in-
distinguishable”. Thus an attacker gains no advantage by
attacking only 1 sample, since the extra computation time
does not lead to an increase in success rate. However, at-
tacking 2 masks, i.e., {m0,m1}, allows the pair to be distin-
guished with 11% success rate, slightly outperforming naive
guessing. The success rate increases linearly as the number
of masks increases, demonstrating the positive relationship
between mask entropy and number of masks attacked.

The attacker can also vary the width of the window where
he suspects the masking operation to occur. Enlarging the
window linearly increases the computational effort, i.e., in-
creasing the width by n samples, leads to an attack complex-
ity of O(n). Compare this to a second-order attack, where

an increase in n samples requires n(n−1)
2

calculations [13].

3.3 Comparison with State-of-the-Art in the
Presence of Noise

Noise increases the difficulty of carrying out a successful
power attack, i.e., an attacker is required to measure more
power traces. Common sources of noise include electronic
noise from other circuit components, measurement errors,
and clock jitter [11, 9]. Most of the noise in cryptographic
devices can be approximated by a normal distribution ∼
N (0,σ2) [11]. In order to determine the influence of noise
on our attack, we artificially corrupt the power traces by
introducing additive white Gaussian noise ∼ N (0,σ2).

We compare our attack with a state-of-the-art second-
order attack, namely the bivariate attack using a centered
product as combination function [17]. This type of attack
is ideal for software first-order masking schemes, and was
proven to be optimal in the presence of noise [17].

Figure 4(b) shows the evolution of global success rate
(GSR) as a function of number of traces attacked and signal-
to-noise ratio (SNR). GSR is the probability to recover the
full key. We define an attack as being successful if GSR
≥ 80% [?]; conversely, we define a failed attack if the GSR
fails to reach 80% within 105 traces. The best-case attack
scenario is SNR = 2.689, i.e., no artificial noise is added.
The best-case mask recovery attack requires 10 traces to
succeed, whereas the best-case second-order attack does not
succeed until 300 traces. The mask recovery attack is more
resilient to noise since for a given number of power traces,
the success rate will be higher for all SNR’s. Regardless
of the noise level, our mask recovery attack (empirically)



0

50%

80%

100%

2−5 2−4 2−3 2−2 2−1  20  21

E[Success Rate] = 6.25%

Mask Recovery Success Rate

Signal−to−Noise Ratio

(a)

100 101 102 103 1040%

20%

40%

60%

80%

100%

Number of Traces

 

 

2.689
0.289
0.097
0.046
0.035

SNR

 

 
Mask Recovery

2nd−Order

Global Success Rate

(b)

Figure 4: (a) Mask recovery success rate for 105

traces (b) Global success rate (GSR) vs. number
of traces for different noise levels. The mask recov-
ery attack outperforms the second-order attack by
at least two orders of magnitude at every SNR.

reveals the key faster than a traditional bivariate attack.
The mask recovery attack outperforms the second-order

attack by about two orders of magnitude for SNR ≥ 0.289.
The second-order attack fails for SNR < 0.289, whereas the
mask recovery attack succeeds for 0.035 ≤ SNR ≤ 2.689.
The lower performance of the second-order attack can be
attributed to the leakage combination function. Indeed, by
combining multiple leakages, the noise is amplified [17]. By
choosing an optimal prediction function, the noise amplifi-
cation can be minimized, but many more traces must be
analyzed for a successful attack as shown in Figure 4(b).

4. CONCLUSION
We demonstrated how to recover a set of masks used in

an AES-RSM software implementation. Our attack outper-
forms a traditional bivariate attack by two orders of mag-
nitude, and can succeed even in heavy noise. We show how
the attack parameters affect the success rate, namely that
attacking just 2 (out of 16) yields a better mask recovery
success rate versus naive guessing. It is not enough to say
an implementation is first-order (or second-order, etc.) se-
cure. Indeed, we showed that the countermeasure (genuine
RSM implemented naively in software on a smartcard) can
only defend against traditional first-order attacks.
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