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Abstract—The test of security primitives is particu-
larly strategic as any bias coming from the implemen-
tation or environment can wreck havoc on the security
it is intended to provide. This paper presents how some
security properties are tested on leading primitives:
True RandomNumber Generation (TRNG), Physically
Unclonable Function (PUF), cryptographic primitives
and Digital Sensor (DS). The test of TRNG and PUF
to ensure a high level of security is mainly about the
entropy assessment, which requires specific statistical
tests. The security against side-channel analysis (SCA)
of cryptographic primitives, like the substitution box in
symmetric cryptography, is generally ensured by mask-
ing. But the hardware implementation of masking can
be damaged by glitches, which create leakages on sensi-
tive variables. A test method is to search for nets of the
cryptographic netlist, which are vulnerable to glitches.
The DS is an efficient primitive to detect disturbances
and rise alarms in case of fault injection attack (FIA).
The dimensioning of this primitive requires a precise
test to take into account the environment variations
including the aging.
Keywords: Test, PUF, TRNG, SCA, FIA, Digital

Sensor, .

I. Introduction

Functional testing has become a mandatory requirement
for circuits to be admitted in downstream supply chain.
Involved techniques are JTAG for boundary scan, and
inner logic validation, BIST for memories, etc. Although
these methods are well-known and have been deployed for
long in digital circuits, their suitability for security func-
tions appear to be insufficient. Indeed, those techniques
only assess the correct functional behavior, but fail to test
security functionalities.

Typically, regarding security applications, it is expected
that some domain-specific tests are carried out. A secure
chip typically embeds key generation logic (such as a PUF
and/or a TRNG, cryptographic algorithms, and attack
sensors. Cryptographic keys must be unpredictable, hence
estimation of noise in the chip shall be made possible.

Besides, cryptographic key management shall be secure
against side-channel attacks, such as those exploiting
masking countermeasures. But they are vulnerable to
glitches, which shall be managed responsibly. Eventually,
digital sensors, which are standard-cell based structures,
shall be calibrated in terms of aging, so that they remain
as efficient as possible across device utilization stages.
This paper addresses all these issues, in a pedagogical

manner. Three sections are devoted to security-specific
tests that shall be carried out in addition to the usual
functional tests. Given the fast spread of security features
in chips, these tests shall not only be considered as nice
features, but very soon, as mandatory features.

a) Contributions: In this paper, we aim at providing
a 360 degree overview of tests related to security chips.
Such information is usually only available in specialized
publications, or even worst, is not publicly discussed (since
it is test labs secret know-how). We detail the nature of
the tests for three classes of security functions, namely:
1) Functions managing the randomness, namely

TRNGs and PUFs;
2) Cryptographic algorithms, whose resistance to side-

channel attacks shall be extensively proven;
3) Physical perturbation sensors, who should keep a

constant calibration to take into account aging.
b) Outline: The rest of the paper is structured as

follows. The question of entropy testing is tackled in
Sec. II. Testing for harmfulness of glitches in side-channel
protections is the topic of Sec. III. The validation of digital
sensors across aging is discussed in Sec. IV. Eventually,
Sec. V concludes the paper.

II. Evaluation of PUFs and TRNGs
Secure devices require different kinds of randomness: On

the one hand, a secret key is required, which is random but
constant over time, on the other hand, randomness, such
as for numbers used once, must differ every time when
sampled. The first kind of randomness is in some scenarios
nowadays provided through a PUF, which derives a secret978-1-6654-1609-2/21/$31.00 ©2021 IEEE
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from process variations, the second is normally based on
a TRNG, which derives the randomness from noise. Still,
both kinds of randomness have to be unpredictable for
an attacker. While already testing the pure operation of
a module for key storage or to generate random numbers
without introducing a backdoor is hard, testing for suffi-
cient randomness adds another level of complexity. In this
paper we exclusively focus on offline tests that are based
on extracted data; Build In Self Tests (BISTs) and online
tests are out of scope for this work.

A. Fundamental Differences in Statistical Properties
On a first glance both, PUFs and TRNGs, output

random numbers. But it is a harmful approach to use the
same tests for both sorts of randomness since it ignores
significant differences in the nature of the random numbers
generated from PUFs and TRNGs:
Source of Randomness: The most important difference

between PUF and TRNG is from where both retrieve
randomness. The randomness of a PUF stems from the
manufacturing process and ideally is invariant over time.
For a TRNG, noise provides the randomness. Subsequent
differences are implications of this aspect.
Amount of Data: For a thorough statistical testing lots

of samples are needed to increase the significance of the
results. For TRNGs the amount of data is, despite of
latency, unlimited since the source of randomness (the
noise) is different at any point in time. In contrast, PUFs
can provide only a limited amount of bits, since the
source of randomness (process variations) is fixed after
production of the chip. The amount of bits derived from
these variations depends on the type of PUF. Typically, for
PUFs storing a key, the output is one bit per PUF cell, e.g.,
for an SRAM PUF [1], up to few ten bits per PUF cell, like
for a Loop PUF [2], and multiple PUF cells are used per
chip1. Consequently, many devices must be manufactured
to obtain a large enough sample size for testing.
Dimension of data: For PUF data, various dimensions

must be tested as opposed to a one-dimensional bit-
stream of a TRNG. To illustrate this, note that a typical
TRNG outputs all bits from a single source. In contrast,
the following PUF dimensions exist: (i) For many PUFs
multiple cells are combined to derive a key of sufficient
length. Thus, already two dimensions must be tested –
the predictability of a response of a PUF cell at a fixed
position over multiple devices and the dependence of bits
on a single device. (ii) Frequently, PUF cells on a single
device are arranged in two-dimensional arrays on a chip.
When, e.g., considering the PUF responses as bitstream
already the decision of how to concatenate bits influences
the result [6]. (iii) Some PUFs output multiple bits per
challenge or position or (iv) are configurable by a chal-
lenge. In the latter case the choice of the challenges adds

1Please note, that multi-challenge PUFs like Arbiter PUFs [3] or
SUM PUFs [4] and their relatives, are rarely used for key storage and
potentially weak against machine learning [5].

another dimension. One solution to cover many dimensions
is to consider the PUF not as one source that outputs
multiple bits, but as a multi-bit source or as multiple one-
bit sources. In either case, PUFs require other tests than
classic TRNGs.
Impact of Noise: For PUFs the evaluated entropy is

extracted from noisy data, while TRNGs use this noise to
generate data. This has two consequences: (i) A test for
PUFs has to consider that measurement data comes from
a joint distribution of noise effects and process variations2.
(ii) Not only does the variation in the manufacturing
process limit the entropy of a PUF, the effective entropy
for the secret key is also reduced by noise, which has to
be mitigated by error correction or other means.

B. Properties to be Tested
According to the fundamental differences of PUFs and

TRNGs, also the properties to be tested differ. For
TRNGs, there are two flavors of tests. On the one side
tests exist, which try to distinguish the TRNG from a
source outputting independent and identically distributed
(iid) random numbers. If no distinction is possible, a high-
quality TRNG is assumed. Alternatively, the entropy of a
sequence of bits is estimated. In either case, the question
is if the TRNG outputs are sufficiently random.
Similarly, for PUFs the question is if the response

is sufficiently random. However, recall that a PUF has
multiple dimensions to be tested. Ultimately, it must be
unpredictable independent of any information of any PUF
dimension given to an attacker. Hence, various properties
of a PUF response have to be checked. Bits generated from
different PUF cells on a device and response bits under
different challenges have to be unbiased and uncorrelated,
as well as bits at the same position over multiple devices.
Besides the analysis of PUF unpredictability by statis-

tical tests, the impact of noise has also to evaluated. The
goal is to reach a sufficiently low noise level that requires
only a minimum of, e.g., error correction.
Finally, for both PUFs and TRNGs, entropy is an

important evaluation metric. But for PUFs the entropy
estimator must consider the PUF specific properties, like
the different dimensions among others.

C. Test Methods for TRNGs
Due to its probabilistic nature, no single test is able

to prove randomness of a TRNG. Hence, all test suites
combine multiple tests such that the confidence increases
with each passed test.
The NIST SP 800-22 [7] compares the TRNG output

against the expected behaviour of an ideal randomness. It
involves 15 tests analyzing the input regarding different
patterns and checking the null hypothesis H0 that the
TRNG under test is random. If the corresponding p-value
for a test is too low, H0 is rejected and the test indicates

2Other effects like temperature shifts, changes in the supply, or
aging might be statistically modelled on top.
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that the data is not sufficiently random. An interpretation
of the overall result is also part of the test suite.

Another standardized test suite is the BSI AIS 31 [8].
Its nine tests (partly similar to [7]) evaluate aspects of
the random sequence. Furthermore, information about the
TRNG’s structure has to be provided by the applicant to
strengthen the confidence in the randomness.

Additional non-standardized test-suits have been de-
veloped such as TESTU01 [9] which includes six test
batteries. Overall, these test-suits follow a similar principle
as already described.

Whereas the previous methods try to distinguish the
actual TRNG output from an ideal one, the NIST SP 800-
90B [10] estimates the min-entropy. Thus, the user first
assigns the TRNG to an iid or a non-iid track, which have
up to ten estimators. The overall estimated min-entropy
is the lowest value of any of the tests.

D. Test Methods for PUFs

Currently, ISO/IEC 20897-2 [11] is the only standard
evaluating PUFs. It demands randomness and reliability
tests. The exemplified test set include PUF-specific tests,
e.g, [12], [13], and methods from standardized TRNG
test suits. It also uses the NIST SP 800-90B in order to
approximate the entropy of PUFs.

However, other research in the PUF domain comple-
ments the methods in [11]. As a first example, [14] show
that entropy tests for PUFs benefit from considering spa-
tial effects. In addition, in the PUF domain a large variety
of qualitative tests exists, whose plots visualize problems
in the PUF design. One example is the application of
Principal Component Analysis (PCA) to show gradients
caused by manufacturing variations [15]. A new trend in
PUF designs are tests, which ensure the quality of a PUF
with some confidence or even try to prove the PUF quality
through hypothesis testing [16]. Such tests can also be
aware of spatial effects [17], which is not the case for the
test defined for TRNGs. In addition, PUFs are frequently
used to store a secret key, so that effectively not only the
PUF’s entropy but also the entropy in the key should be
estimated [18].

E. Discussion of Test Strategies

This introduction into testing PUFs and TRNGs shows
that testing randomness adds another level of complexity
to functional testing in the security domain. The compar-
ison illustrates that PUFs are even harder to test than
TRNGs. This and the novelty of PUFs mean that for PUFs
no well-established test suite exists today. Thus, further
investigation is needed to substantiate the recommenda-
tions in the existing PUF standard with a complete set of
tests like for TRNGs.

III. Assessment of SCA leakage in
cryptographic circuits

A. Presentation of the problem
Cryptographic algorithms consume keys generated by

TRNGs and PUFs. They compute ciphertexts from plain-
texts, or generate signatures from hashes of messages.
While they compute, they inadvertently leak information
on the key. As a matter of fact, the intermediate variables
within the algorithm incur more or less power consump-
tion. Related to that, the electromagnetic field emitted
during the computation is also somehow dependent on
the key. For this reason, the RTL description of crypto-
graphic algorithms often leverage “random masking”. This
is an implementation style whereby a random input is fed
to the module, and mixed to the computation. Correct
implementations ensure that key-dependent intermediate
variables (without mask) are turned into independent
variables.
In this context of gate-level masking, not only every

net must be duly masked, but also the netlist must
be protected against glitches. A glitch is a difference
of evaluation of the netlist, which is likely (or not) to
happen, depending on the internal delays while executing
the netlist. In this section, we formalize the notions of
perfect masking (known since 2014) and perfect masking
in the presence of glitches (our contribution). Moreover, we
propose efficient methods to verify whether the properties
are met. Such methods make up the announced tests of
masked logic in the presence of glitches.

B. Formalization of correct masking scheme
Let k ≥ 1, and F : F3k

2 → F2 a Boolean function of 3
variables, each of k bits.
The Boolean function F models a net in a netlist, and:
• a ∈ Fk2 is the masked information,
• mi ∈ Fk2 is the input random mask, and
• mo ∈ Fk2 is the output random mask.

For example, the masking of a substitution box (also
known as an S-box, a permutation from k bits, denoted
S : Fk2 → Fk2) is (a,mi,mo) 7→ S(a ⊕ mi) ⊕ mo. One
coordinate of this function is denoted by F .
We aim to verify that F protects the value of the

sensitive information x = a ⊕mi, leveraging either input
mask mi or output mask mo.
Notice that the masks are uniformly distributed, that is

P (Mi = mi) = 2−k, for all value mi ∈ Fk2 , and similarly
P (Mo = mo) = 2−k, for all mo ∈ Fk2 .
In the sequel, to simplify the analysis, we focus on nets

which are balanced. We define two properties.

Property 1 (Perfect masking [19]). The function F is
perfectly masked if, for all x ∈ Fk2 ,

P (F (A,Mi,Mo) = 1|X = x) =
P (F (A,Mi,Mo) = 0|X = x).
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Property 2 (Perfect masking against glitches). The func-
tion F is perfectly masked against glitches if, for all x ∈ Fk2 ,
for all δ ∈ F3k

2 \{0}, denoted δ = (δA, δMi
, δMo

),
P (F (A⊕ δA,Mi ⊕ δM1 ,Mo ⊕ δMo )⊕ F (A,Mi,Mo) = 1|X = x) =
P (F (A⊕ δA,Mi ⊕ δM1 ,Mo ⊕ δMo )⊕ F (A,Mi,Mo) = 0|X = x).

C. Equivalent formulation of the properties 1 and 2
Proposition 1 expresses the security requirements in

statistical terms. We can reformulate it using Boolean
functions:

Lemma 1 (Mathematical formulation of Prop. 1). Let
F : F3k

2 → F2. F satisfies Property 1 if and only if:

∀x ∈ Fk2 ,
∑
mi∈Fk2

∑
mo∈Fk2

(−1)F (x⊕mi,mi,mo) = 0.

Proof. The three random variables are Mi, Mo and X.
We know that Mi and Mo are independent and uniformly
distributed.

Notice that for a Boolean variable Y , P(Y = 1) = E(Y ).
Let one value of x. We have:

P(F (X ⊕Mi,Mi,Mo) = 1|X = x)
= P(F (x⊕Mi,Mi,Mo) = 1)
= EMi,Mo

(F (x⊕Mi,Mi,Mo))

= 1
22k

∑
mi,mo

F (x⊕Mi,Mi,Mo). (1)

Symmetrically,

P(F (X ⊕Mi,Mi,Mo) = 0|X = x)
= P(F (x⊕Mi,Mi,Mo) = 0)
= EMi,Mo(1− F (x⊕Mi,Mi,Mo))

= 1
22k

∑
mi,mo

(1− F (x⊕Mi,Mi,Mo)). (2)

Now, (1) is equal to (2) if and only if (iff):∑
mi,mo

F (x⊕Mi,Mi,Mo) =
∑
mi,mo

(1− F (x⊕Mi,Mi,Mo))

i.e., iff ∑
mi,mo

(1− 2F (x⊕Mi,Mi,Mo)) = 0

We can note also that:∑
mi,mo

(1− 2F (x⊕Mi,Mi,Mo) =
∑
mi,mo

(−1)F (x⊕Mi,Mi,Mo).

Corollary 1. Let us note F as the sum of monomials fj.
F (a,mi,mo) =

∑p
j=1 fj(a,mi,mo), since fj ∈ F2 then F

can be written as
F (a,mi,mo) =

∑p
j=1

1
2 (1 − (−1)fj(a,mi,mo)) = 1

2 (p −∑p
j=1(−1)fj(a,mi,mo)) and satisfies the Property 1 iff

p∑
j=1

(
∑
mi,mo

(−1)fj(a,mi,mo)) = 22k(p− 1)

Proof. F satisfies the Property 1 iff
∑
mi,mo

F (x ⊕
mi,mi,mo) = 22k−1 i.e

∑
mi,mo

(p−
∑p
j=1(−1)fj(mi,mo)) =

22k

Remark 1. If F satisfies the Property 1 then the Walsh
transformation of F is null at zero: WF (0) = 0 where

WF (u, v, w) =
∑

a,mi,mo

(−1)u·a+v·mi+w·mo+F (a,mi,mo)

Indeed,

WF (0) = WF (0, 0, 0) =
∑

a,mi,mo

(−1)F (a,mi,mo)

=
∑
a

∑
mi,mo

(−1)F (a,mi,mo)

︸ ︷︷ ︸
=0

= 0

Corollary 2 (Mathematical formulation of Prop. 2). Let
F : F3k

2 → F2. F satisfies Property 2 if and only if:

∀x ∈ Fk2 ,∀δ ∈ F3k
2 \{0},∑

mi∈Fk2

∑
mo∈Fk2

(−1)F ((x⊕mi,mi,mo)⊕δ)⊕F (x⊕mi,mi,mo) = 0.

Proof. Pose Gδ(A,Mi,Mo) = F ((x ⊕ mi,mi,mo) ⊕ δ) ⊕
F (x⊕mi,mi,mo)
One has,

P(Gδ(A,Mi,Mo) = 1|X = x)
= P(Gδ(X ⊕Mi,Mi,Mo) = 1|X = x)
= P(Gδ(x⊕Mi,Mi,Mo) = 1)
= EMi,Mo(Gδ(x⊕Mi,Mi,Mo)

= 1
22k

∑
mi,mo

Gδ(x⊕Mi,Mi,Mo)

F satisfies Property 2 iff

P(Gδ(A,Mi,Mo) = 1|X = x) =

P(Gδ(X +Mi,Mi,Mo) = 1|X = x) = 1
2

iff 1
22k

∑
mi,mo

Gδ(x⊕Mi,Mi,Mo) = 1
2

iff ∑
mi,mo

(1− (−1)Gδ(x⊕Mi,Mi,Mo)

2 ) = 22k−1

iff ∑
mi,mo

(1
2)− 1

2
∑
mi,mo

(−1)Gδ(x⊕Mi,Mi,Mo) = 22k−1

that means ∑
mi,mo

(−1)Gδ(x⊕Mi,Mi,Mo) = 0
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Therefore, proving the security of masked cryptographic
circuits in the presence of glitches amounts to computing
Walsh transforms. They can be speeded-up with butter-
flies algorithms. Namely, the systematic and automatic
masking verification is carried out as shown in Alg. 1.

Algorithm 1: Masking verification method
input : Netlist
output: Lists of unmasked gates and of gates

susceptible to glitching unmasked value
1 Lu ← ∅,Lg ← ∅ // Unmasked / Glitching nets
2 for F ∈ Netlist do // Traversal is chosen by the

tester
3 for x ∈ Fk2 do
4 wu ← 0
5 for mi,mo ∈ Fk2 do
6 wu ← wu + (−1)F (x⊕mi,mi,mo)

7 if wu 6= 0 then // Verification of Prop. 1
leveraging Lem. 1

8 Lu ← Lu ∪ {F}
9 for δ ∈ F3k

2 \{0} do
10 wg ← 0
11 for mi,mo ∈ Fk2 do
12 wg ← wg +

(−1)F ((x⊕mi,mi,mo)⊕δ)⊕F (x⊕mi,mi,mo)

13 if wg 6= 0 then // Verification of
Prop. 2 leveraging Cor. 2

14 Lg ← Lg ∪ {F}

15 return Lu,Lg

D. Emblematic example
One challenge is for instance to verify each and every net

from Canright’s masked S-Box [20] of AES. The netlist can
be found in [21] and the function we consider is:

module bSbox ( A, M, N, encrypt, Q );

at line 234. The masked information on k = 8 bits is A,
the input mask mi is M and the output mask mo is N .
The signal encrypt selects whether the S-Box is the direct
or inverse function (SubBytes vs InvSubBytes), and the
output is Q. We shall test all 8 bits of Q, and also all
internal nets within the netlist.

In this netlist, it is known that all nets are well masked,
but also that some nets are vulnerable to glitches. This
has motivated to elaborate more complex protections, such
as threshold [22] or glitch-free [23] implementations. We
recall the list Lg of glitching gates which disclose the secret
here. They consist in the code below the comment [sic]:
// YO! NEED TO DO SUMMATION BELOW IN SEQUENTIAL
ORDER FOR SECURITY !!!!

at lines 74, 96, 100 and 106 of the netlist [21]. Those lines
can be spotted by our method by running Alg. 1. This
method is automatic and extends beyond the verification
of S-boxes to any masked combinational logic.

IV. Aging-Aware Digital Sensor dimensioning to
enhance reliability

To break a system by FIA, an adversary may perturb
it. Thereby detecting abnormal operating conditions, e.g.,
change of voltage, temperature, or the frequency at which
the system operates is of utmost importance. To address
such security and safety concerns, digital sensors have been
broadly deployed in the recent years, and have replaced the
traditional analog counterparts. Indeed, being designed
in full custom layout [24] and accordingly vulnerability
to removal attacks due to their identifiability from the
intractable sea of gates, the substantial calibration cost,
the high power consumption due to their always-on status,
and finally the low failure rate detection due to dealing
with physical quantities separately (e.g., voltage alone,
temperature alone) make the analog sensors less attractive
than the digital opponents [25].
A Digital Sensor (DS) can be realized by inserting

a delay chain in the target circuitry. The idea is to
implicitly measure the time to propagate a transition
(a rising or falling edge) over such a path in different
operating conditions. In practice, the propagation time is
not really quantified, rather it is checked if the transition
manages to propagate to the end of the delay chain at
the considered frequency [26]. Fig. 1 shows a sample DS
sensor architecture in which a chain of buffers realizes the
critical path, and multiple D Flip-Flops (DFFs) sample the
delay of the transitions fed from a0. Based on the operating
conditions, i.e., voltage and temperature, as well as clock
frequency the setup time violation occurs in a different
sampling DFF. This sensor can be characterized using the
so-called Average Flip-Flop Number (AFN) [27], that is
extracted based on the flip-flop outputs in each voltage and
temperature combination, noted as (V,T) hereafter. What
follows discusses the AFN assessment in more detail.

Figure 1. The architecture of the target digital sensor.

In the sensor shown in Fig. 1, in each clock cycle Ci,
when this sensor is fed with a0, the first FNi flip-flops
are in phase A (say 0 → 1 → 0) and the next flip-flops
are in phase Ā (say 1 → 0 → 1) where 1 ≤ i ≤ n1,
n1 is the number of DFFs. Here FNi denotes to the
index of the first DFF whose phase is different from its
predecessors. For example, the waveform in Fig. 2 shows
the values of different DFFs of the sensor of Fig. 1 with
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n0=9 leading buffers followed by n1=43 buffers and DFFs
when operating under (V,T)=(1.2V, 27◦C). In this case
FNi is 31 in all clock cycles and accordingly AFN which
is considered as the average of the FNi values would be
31. Indeed averaging FN values over a number of clock
cycles is pursued to reduce the effect of unwanted noise.
In practice, the AFN value is found to be an appropriate
representative for the operating condition. Note that for
the conditions under which the circuit operates faster
(lower temperature and higher voltage) the AFN gets
higher values, while the AFN value is lower when the
circuit operates slower.

Figure 2. Waveforms of Fig. 1 in (V,T) = (1.2V,27◦C), where n0 =
9 and n1 = 43.

Fig. 3 depicts the AFN values in different operating
conditions for the sensor shown in Fig. 1 with 9 leading
buffers and 43 following buffers and DFFs. Note that for
the experiments presented in this section, the sensors were
implemented at the transistor level using 45 nm NAN-
GATE technology [28]. As clearly shown, the AFN value
depends on both voltage and temperature altogether.
As expected the impact of temperature increase can be
compensated with the increase of voltage and vice-versa.
This can be observed in the trend of AFN value change
in different voltage and temperature combinations as well,
thus confirming the applicability of the AFN metric in
sensing operating conditions. Indeed analog sensors miss
this capability by making decisions on raising alarms based
on monitoring one physical quantity at a time.

We benefit from the sensor’s AFN quantity for system’s
failure detection, and to predict if the system works
properly or not based on the operating conditions. To
do so the sensor’s AFN value is compared with a pre-
defined threshold value determined based on the worst
case condition in which the system is expected to work
properly, and an alarm is raised in cases that extracted
AFN is lower than the threshold value relates to the worst
case condition. We assume the worst case condition as
(V,T)=(1.0V, 85◦C) for the sensor we implemented here.
As Fig. 3 shows, the AFN in this condition is 17. Thus an
alarm is raised for the cases where AFN < 17; shown in
red in the figure depicting that the circuit operates slower
than expected, while the grey area shows the conditions

Figure 3. Contour graphs depicting AFN values in different (V,T)
conditions for the fresh (age:0) sensor shown in Fig. 1 where n0=9
and n1=43.

considered as safe. It is noteworthy to mention that this
threshold is tuned based on the application and user’s
configuration.
Indeed chips are designed in different temperature

grades (e.g., commercial, industrial, military, etc), i.e., a
different range of temperatures under which it is expected
to work properly. Thereby, to realize a sensor (similar to
the one shown in Fig. 1) that can cover the whole expected
range of operating conditions, it is required to have a well-
defined architecture in terms of the number of buffers and
DFFs that the sensor includes, what we call the sensor
dimension hereafter.
We have presented an algorithm for sensor dimensioning

in our prior work (Algorithm 1 in [27]) which determines
the number of DFFs and buffers embedded in the sensor
based on the “Best” and the “Worst” Case conditions the
circuit is supposed to work on properly (points A and
B in Fig. 3 in our case). Deploying our prior algorithm
(refer to [27] for more details) for dimensioning the sensor
in Fig. 1 realized using 45 nm NANGATE technology
while considering the “Best” and “Worst” conditions as
(1.0V,85◦C) and (1.4V,-10◦C), respectively recommends
embedding n0=9 leading buffers followed by n1=43 buffers
and DFFs. Although such dimensioning fits the sensor’s
expected operating range well, it fails to consider aging
effects occurring during the circuit lifetime.
In practice, the electrical behavior of the transistors

embedded in the deployed DS (similar to other CMOS
circuits) deviates from the original one during the sensor
lifetime. This deviation, so called aging, results in the
delay increase for the gates embedded in the sensor. To
show the necessity of considering aging degradation when
dimensioning the sensor, Fig. 4(a) and Fig. 4(b) depict
the AFN evolution for the same sensor after 4 and 7 years
of aging, respectively. As expected the sensor circuitry
becomes slower with aging, thus the AFN value decreases
over time for the same operating condition. This can be
observed as a shift of the red zone in Fig. 4(b) compared
to Fig. 4(a) and Fig. 3. Another important observation
is the trend of AFN value change in the aged sensors
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(a) 4-year old sensor

(b) 7-year old sensor

Figure 4. Contour graphs depicting AFN values in different (V,T)
conditions for the 4- and 7- year old sensors shown in Fig. 1 where
n0=9 and n1=43.

shown in Fig. 4(a) and Fig. 4(b) when operating under
high temperature and low voltage combinations. In these
cases as the sensor becomes slower and slower with aging,
the AFN value may not be reliable, i.e., the sensor may
need more DFFs to be able to correctly sample the setup
time violation occurring in the buffer chain. To alleviate
this problem, we improved the dimensioning algorithm
presented in [27] by considering aging effects. The new
algorithm is depicted below as Algorithm 2. As shown,
the number of buffers and DFFs is decided based on the
“Best” operating condition (point A when the sensor is
fresh) along with the “Worst Non-Functional” condition
(point C for the L-year old sensor where L is the expected
lifetime; L is assumed to be 7 in this paper). Note that
point C denotes the worst operating condition that the
circuit may experience but is beyond its range of proper
operation.
In Alg. 2 we first consider a chain of infinite number of

buffers each feeding a flip-flop and then trim the circuit
based on the operating conditions that the circuit may
experience. By “aging” simulation of this chain of buffers
and flip-flops under the “Worst” case condition that the
circuit may experience (not necessary working properly at
this condition; called “Worst Non-Functional” condition
earlier) the number of leading buffers is decided. Note
that the “aging” simulation is performed assuming the

Algorithm 2: Aging Aware DS Dimensioning al-
gorithm
input : Design kit for the target technology, desired

clock period, safety margin of K buffers
output: Sensor dimensions n0 and n1; values to be

used for architecturing the sensor aiming at
failure detection during run time

1 Build a netlist consisting of a DFF which samples its
inverted output, and feeding an infinite chain of
buffers; each buffer feeds also a separate flip-flop

2 Set the conditions to Non-Functional worst case
(e.g., slow process, high temperature, low voltage,
maximum expected age) — point, C in Fig. 3

3 Determine the position (N) of first sampling inversion
error by aging simulation for maximum expected
lifetime

4 Remove the Flip-flops connected to the first N buffers
5 Set the conditions to best case (e.g., fast process, low

temperature, high voltage, No age (i.e., age:0)) —
point A in Fig. 3

6 Determine the position (AFN_high) of first sampling
inversion error

7 return (n0 = N−K,n1 = AFN_high− n0 +K)

(a) Fresh (Age:0) sensor

(b) 7-year old sensor

Figure 5. Contour graphs depicting AFN values in different (V,T)
conditions for the fresh and 7-year old sensors shown in Fig. 1 where
n0 = 4 and n1 = 48.

longest expected lifetime (e.g., 7 years under a high aging
stress). We use the HSpice MOSRA for aging simulations.
Then we decide about the number of following DFFs and
buffers by considering the “Best” case operating condition
for the sensor. Note that the calculations are done based
on simulation using the same technology libraries that will
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eventually realize the sensor. Thereby, we consider a safety
margin including “K” to account for process variations.

Applying Alg. 2 to the sensor shown in Fig. 1 recom-
mends embedding n0=4 leading buffers followed by n1=48
buffers and DFFs. The related contour graphs for the fresh
(age:0) and the 7-year old sensors with this dimension are
shown in Fig. 5(a) and 5(b), respectively. As illustrated,
by considering the aging effects in Alg. 2, the trend of AFN
values are as expected even when the circuit is aged.

V. Conclusion
This paper demonstrates that security primitives re-

quires specific tests to ensure a high level of security.
Emblematic examples of properties to test are related
to hostile environment and threats: randomness quality,
leakage level, aging mitigation. The random variable gen-
eration, as provided by the TRNG for dynamic variable,
and PUF for device fingerprint, requires a validation by
statistical tests to ensure a minimum level of entropy.
PUF requires more complex tests, as it can be biased
by the circuit layout and damaged by dynamic noise.
The masking countermeasure is an efficient method to
protect hardware implementation of cryptographic blocks
against SCA. But is necessary to avoid glitches which can
unmask the sensitive values. This paper proposes a test
algorithm to automatically detect nets which could leak
secret information via glitches. The detection of FIA by
DS requires an accurate test to dimension the sensor. It
is shown that it is important to take into account the
aging when dimensioning the DS, in order to enhance the
reliability of detection over time.
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