
Received June 1, 2021, accepted June 13, 2021, date of publication June 28, 2021, date of current version July 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3093160

AVATAR: NN-Assisted Variation Aware Timing
Analysis and Reporting for Hardware
Trojan Detection
ASHKAN VAKIL 1, ALI MIRZAEIAN 1, HOUMAN HOMAYOUN 2,
NAGHMEH KARIMI 3, (Member, IEEE),
AND AVESTA SASAN 1, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030, USA
2Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA 95616, USA
3Department of Computer Science, University of Maryland Baltimore County, Baltimore, MD 21250, USA

Corresponding author: Ashkan Vakil (avakil@gmu.edu)

This work was supported by the Defense Advanced Research Projects Agency Defense Advanced Research Projects Agency-Air Force
Research Lab (DARPA-AFRL) under Grant FA8650-18-1-7820.

This work did not involve human subjects or animals in its research.

ABSTRACT This paper presents AVATAR, a learning-assisted Trojan testing flow to detect hardware Trojans
placed into fabricated ICs at an untrusted foundry, without needing a Golden IC. AVATAR is a side-channel
delay-based testing solution that is assisted by a learning model (process watchdog) for tracking the process
drift and systematic process variation. AVATAR’s process watchdog model is trained using a limited number
of test samples, collected at test time, to tightly correlate the Static Timing Analysis results (generated at
design time) to the test results (generated from clock frequency sweeping test). The experimental results
confirm that AVATAR detects over 98% of (small) Trojans inserted in the selected benchmarks. We have
complemented our proposed solution with a diagnostic test that 1) further reduces the false-positive rate of
AVATAR Trojan detection to zero or near zero, and 2) pinpoints the net-location of the Trojan Trigger or
Payload.

INDEX TERMS Hardware trojan, clock frequency sweeping test, neural network, side channel analysis,
process variation, process drift.

I. INTRODUCTION
To reduce the fabrication cost, scale with market demand,
and access to the state-of-the-art technology, the manufac-
turing supply chain of Integrated Circuits (IC) is widely
and globally distributed [1]. Such broad globalization has
raised many concerns over the security and trustworthiness
of ICs when untrusted providers and facilities are included
in the supply chain [2]. One such security concern is the
risk of Hardware Trojan (HT) insertion by an adversary in
the supply chain. An HT is a malicious modification to a
circuit to control, modify, disable, or monitor it’s logic or leak
sensitive data [2]. The concerns over Hardware Trojan was
raised by US DoD in 2005 [3] The spectrum of harm caused
by HT is broad. It can range from passive HT for activity
monitoring or stealing information to weaponized HT that

The associate editor coordinating the review of this manuscript and

approving it for publication was Tyson Brooks .

could cause catastrophic consequences in the critical military,
space, or medical applications [4]. Moreover, many recent
studies [5]–[7] explained the feasibility of such attacks adding
to the concern. An example of such study is the A2 Trojan
using a single gate in [8], illustrating how an adversary could
weaponize this single gate Trojan for raising her user privi-
lege from an ordinary to root privilege through a sequence of
rare yet well-defined operation (e.g., sequence of divide by
zeros). In addition, several military mishaps in the past are
attributed to the presence of hardware modification [9]–[11].
Thereby, detecting HT is highly crucial, and it has become a
significant concern for governments and industries.

One solution for detecting HT is through destructive
reverse-engineering schemes to check and ensure that the
manufactured chips’ logical structure and functional integrity
is untouched. However, IC reverse engineering requires sig-
nificant investment, is extremely challenging in advanced
geometries, and is quite a time and resource consuming.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 92881

https://orcid.org/0000-0002-5029-8330
https://orcid.org/0000-0003-3266-6416
https://orcid.org/0000-0001-8904-4699
https://orcid.org/0000-0002-5825-6637
https://orcid.org/0000-0002-4052-8075
https://orcid.org/0000-0001-8691-0141


A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

One may argue that a Trojan-induced logic-change can be
detected during the manufacturing test process. However,
HTs are stealthy in nature, and are designed such that they
are rarely activated. This makes detecting the HT during
manufacturing testing highly difficult if not impossible.

Another approach to detect HT is through comparison with
a Golden Model. Such comparison could be made based on
dynamic, or leakage power signature [12]–[15] or expected
delay of individual timing paths [16]–[18]. However, these
side-channel Trojan detection solutions are not applicable
if such a Golden IC cannot be obtained or produced. More
precisely, in scaled geometries, the number of target foundries
is limited to one or only a few. In addition, the process and
parametric signatures of the ICs manufactured (in the same
technology node) are different across foundries due to the
subtle differences in their processing technology.

Considering the shortcoming of the current Trojan detec-
tion solutions mentioned earlier, there is an imperative
demand for a low-cost, precise, and efficient alternative
Golden-IC-free Trojan detection scheme. Accordingly, in this
paper, we propose a robust flow for HT detection, denoted as
AVATAR, that is based on side-channel delay test and analy-
sis. Our proposed scheme, unlike the previouswork [16], does
not rely on the availability of a Golden IC. Instead, we use
a machine learning approach in which a learning model is
trained to predict the slack of each timing path via path
features extracted from the design database. In other words,
we train a Neural Network model that tracks the non-linear
changes in the behavior of timing paths. The learning model
is trained at test time using a limited number of delay samples
(used as the label for our training set) collected from the
Clock Frequency Sweeping Test (CFST). More specifically,
the contributions of this paper are as follow:
• Highlighting how process drift (defined as improvement
in fabrication process overtime that is not reflected in the
SPICE models released to a design house, after the pro-
cess is available) could result in unseen and unaccounted
timing slack that could be exploited to insert stealthy
Trojan;

• Proposing a learning-assisted process-tracking watch-
dog that is trained at test time (using a limited number
of test samples collected from Clock Frequency Sweep-
ing Test) to track the impact of process drifts on the
delay/slack of each timing-path in the fabricated IC;

• Proposing a Golden-IC-free Trojan detection test flow
that uses the neural-assisted process-tracking watchdog
to correlate the Static Timing Analysis (STA) results
to the test results, and illustrating its effectiveness and
superior sensitivity for Trojan detection.

• Proposing a diagnostic solution (which is conducted if
our flow detects a Trojan) for 1) reducing the False
Positive rate of our proposed Trojan detection solution;
2) locating the HT’s possible trigger and payload loca-
tion in the IC under test, to facilitate and speed up
further physical and optical investigations, by removing
the need for scanning the entire IC for HT.

The rest of this paper is organized as follow: Section II
describes the previous works on HT detection. Section III
describes the adversarial HT threat model used in this paper
and explains a body of challenges posed on HT detection
when using side-channel delay analysis due to process vari-
ation and process drift (variability). Section IV describes
our proposed solution, AVATAR, in detail and explains how
aforementioned challenges are addressed. Section V presents
the results, and finally, Section VI concludes this work.

FIGURE 1. (Up): Trojan taxonomy, (middle): Trojan trigger circuit
types, (bottom): Trojan impact.

II. PREVIOUS WORK ON HW TROJAN DETECTION
In practice, an HT can be inserted at any stage of the
design flow [2], [11], [19]–[21]. As depicted in Figure 1,
A Trojan mainly consists of 1) Trojan’s Trigger (TT),
2) Trojan (sequential or combinational) triggering Circuit
(TC), and 3) Trojan Payload (TP). Upon activation of the
TC, a Trojan delivers its payload which can result in a denial
of service in the whole or part of the circuit, corruption
of the circuit’s functionality, an alteration in the character-
istic of the circuit such as aging factors, or leaking secret
information [2], [11].

Countermeasures against HT can be categorized into the
design-for-security, run-time monitoring, and detection solu-
tions [11]. The design-for-security approaches opt to reduce
the chances of Trojan insertion (e.g., through hardware obfus-
cation). However, they can neither guarantee a Trojan free
IC nor detect them. The run-time techniques monitor the
functionality of the IC (usually through snapshots of its
operation) at run-time [22], and compare it against known
behavior signatures. However, if the Trojan impact does not
persist, it does not create the expected signature, or affects
the IC’s behavior in a way that is not modeled (in the mon-
itoring solution), the monitoring schemes will fail to detect
the Trojan. On the other hand, detection approaches aim to
directly or indirectly detect the presence of HT. Detection
solutions could be destructive or non-destructive [11]. The
destructive solutions, that could provide an ultimate proof
for Trojan’s presence in the selected IC, require full reverse
engineering of the IC.

The non-destructive detection approaches can detect
the HT by either activating them or via side-channel

92882 VOLUME 9, 2021



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

analysis [2], [11], [23]. The former relies on finding a set of
input patterns that trigger the possible Trojan such that the
Trojan results in a noticeable impact (e.g., change in expected
output). On the other hand, the side-channel based detection
methods attempt to identify the Trojan presence through
side-channel information obtained from an IC, e.g., power
consumption [24]–[27], electromagnetic emanations [28],
or path delays [16]–[18].

Detecting HT by activating them duringmanufacturing test
is significantly challenging. In principle, HT are designed to
be activated through a rare sequence or combination of events,
only known to the adversary [11], [16]. Testing an IC exhaus-
tively using all sets of possible patterns is not practically
feasible [16]. Note that not all HT alter the functionality. For
example, an HT may be designed to leak secret information
(with antenna or noise); making such Trojan immune to
activation-based solutions as the functional impact of such
HT is not observable.

Trojan activation solutions’ limited coverage has encour-
aged the research to focus on side-channel analysis-based
detection techniques. One widely studied Trojan detec-
tion direction is through side-channel power analysis
that focuses on power consumed by The Trojan Circuit
(TC) [12]–[15], [26]. However, Trojan circuitry is small and
it induces little change in power that may not be easily
differentiated from process variation related change (from
one IC to another). Hence, to improve detection, the TC
should be partially or fully activated. Therefore it is better
suited for HT, trigger of which is connected to shorter timing
paths with a higher degree of controllability. At the same
time, the power signature of the TC should be significant
enough to stand out (make a noticeable change in the power
consumption of the IC) as the demanded current of an IC
can be monitored with limited precision (through package
balls or, at best case, through power delivery networks pads).
Hence, the observed current signature is the accumulation
of the transistors’ current needed for the normal function of
the IC and those added for implementation of TC. Therefore,
the size of a TC should be large enough to be observable using
such techniques.

The delay side-channel test, on the other hand, focuses on
the change of the delay and measures path delays to detect
a Trojan [29]. The delay analysis proposed in [17] monitors
the critical timing-paths to detect HT. However, it fails to
consider the near-critical or shorter timing paths. The authors
of [18] insert shadow registers to measure the delay of each
timing-path. However, this results in a large area overhead.
Finally, the solution suggested by [16] uses Clock Frequency
Sweeping Test (CFST) to detect HT. However, it relies on the
existence of a Golden IC for delay comparison.

There exist a body of prior art solutions that use machine
learning to remedy the impact of noise in the power/current
profile of side-channel analysis [30]–[32]. Authors in [30]
use the Extreme LearningMachine algorithm to detect HT by
analyzing the power consumption and observing the resulting
current portfolio as an input feature to their machine learning

solution. The major limitation in this work is the size of
detectable Trojans. According to this paper, the HT size
ranges from 0.15%, 0.40%, or 0.81% of the original chip
to create a distinguishable current profile. In comparison,
AVATAR can detect small hardware Trojans payload or trig-
ger. Hence, it could detect HTs constructed using few or even
one gate.

In [31], authors extracted the timing signature of Golden
IC and reduced the dimension of attributes using Principle
Component Analyzer (PCA). This data is then used to train a
Decision Tree, a Bayesian Classifier, and a K-Nearest Neigh-
bor model. After optimizing the models via cross-validation,
they determine the trustworthiness of the IC under the test.
Authors in [32] evaluated their approach on fabricated chips.
They applied PCA and a Support Vector Machine to analyze
the transmission power information of the chip. This work
only detects HTs that distort the transmission power, and it is
not applicable for other cases. Besides, their training depends
on the existence of a Golden IC.

AVATAR provides several advantages compare to
side-channel power detection solutions including [30]–[32].
1) It doesn’t require access to a Golden IC for Trojan detec-
tion. 2) it doesn’t require full or partial activation of the
Trojan circuit. An inactive Trojan can still be detected using
AVATAR as the added delay, either due to added capacitive
load of TT or added delay of TP, is permanently present and
measurable.

III. TROJAN AND VARIABILITY MODEL
This section first describes our Trojan treat model. It then
explains the challenges that process variability and process
drift pose to detect HT detection when using side-channel
delay analysis.

A. TROJAN THREAT MODEL
We assume that the adversary is an untrusted foundry with
access to the Graphic Database System format (GDSII) of the
design, aiming at inserting a Trojan that is triggered based on
a combination or sequence of rare events. We assume that the
Trojan has several Triggers and at least one payload. How-
ever, our proposed Trojan detection solution is also applicable
to Trojans with no Payload (inserted for monitoring pur-
poses). We further assume that the same HT is inserted in all
fabricated dies. We also assume that the foundry can skew the
process (making faster transistors) to create available slack
for the insertion of HT in desired timing paths withoutmaking
the overall delay of timing path larger than the delay reported
(or expected) by STA at design time. Trojan detection, in our
solution, is performed in a trusted facility.

B. TROJAN DETECTION CHALLENGE: VARIABILITY
The TT of the Trojans considered in this study poses an
additional capacitive load on its driving cell, resulting in a
slower rise and fall, while its TP adds at least one gate delay
to its victim timing path. Note that the added delay could be
more than a single gate; this is because a large and complex

VOLUME 9, 2021 92883



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

TC may also affect the delay of timing path hosting the TP
if the sum of worse-case trigger sub-path delay and TC delay
is larger than the delay of sub-path leading to the TP. In this
paper (to address a more challenging scenario), we assume
that TC is small, and the increase in the delay of the timing
path hosting the TP is limited to a single gate delay.

The AVATAR scheme relies on side-channel delay analysis
and detects HT by tracking and analyzing the changes in
the delay resulted from tested timing-paths. AVATAR does
not rely on the availability of a Golden IC yet relies on the
timing model generated using Static Timing Analysis (STA)
at the design time. However, the STA data can be significantly
different from delay information calculated at the test time.
The difference is due to pessimistic margins considered in
generating GDSII file to account for various sources of vari-
ability including Process Variation and process drift. What
follows discusses the sources of such variations, and how they
can be exploited by an adversary to insert stealthy HT. Then,
in Section IV, we describe the modeling of different sources
of variability and how to improve the probability of Trojan
detection by mitigating or modeling their impact.

1) RANDOM PROCESS VARIATION
The random process variation refers to the variations in the
physical and electrical properties of transistors due to the
physical limitations faced during the fabrication process [33].
The random process variation impacts the delay and drive
strength of fabricated transistors and makes Trojan detec-
tion more difficult as the test engineer needs to differentiate
between the delays imposed by random process variation and
the timing impact of an HT. Figure 2 illustrates the effect of
the random process variation on the slack of timing paths.

FIGURE 2. The impact of random process variation on the delay of a
timing-path when sampled across multiple dies (after fabrication).

2) PROCESS DRIFT
The SPICE model for the fabrication process in a new tech-
nology node is released soon after the process is stabled and
is used to characterize the standard cell libraries deployed
in a physical design house. The SPICE model and stan-
dard cell libraries are padded with carefully crafted margins

FIGURE 3. Improvement in the process over time non-linearly changes
the delay of different timing-paths (process drift). The process drift
affects each timing-path differently.

to guarantee a high yield. Furthermore, the foundry keeps
improving the process over time to improve yield and reduce
cost and may update the process by deploying newer and
more capable stepping devices. Hence, the fabrication pro-
cess and the released SPICE model drift apart over time.
The improvement in the process builds large unused slacks
in a fabricated IC that is designed using the older SPICE
model. This practice poses a security problem as these unused
and hidden timing slacks (to the test engineer) can be used
by an adversary in the untrusted foundry to design stealthy
hardware Trojan(s). Figure 3 illustrates the impact of the
Process Drift on the slack of timing paths.

3) SYSTEMATIC PROCESS VARIATION
Systematic Process Variation is the result of imperfection
in one or several process steps, as a result of which, a sys-
tematic shift occurs in the behavior of transistors or wires.
For example, the systematic shift may speed up all NMOS
transistors, increase the capacitance of a given metal layer,
or reduce PMOS transistors’ strength. Unlike random process
variation (mitigation of which is disclosed when we describe
our IC classification methodology), the systematic (inter-
die) process variation affects all devices similarly. Therefore,
systematic process variation behaves similarly to process
drift, with the difference that process drift is the intended
consequence of improving the fabrication process. On the
other hand, the systematic process variation is an unintended
consequence of imperfection in one or several processing
steps. For example, if during the Chemical Mechanical Pol-
ishing step, the height of a specific metal layer, e.g., M4, was
less or more than the process defined height, the expected
resistance, and capacitance of all M4 net segments systemat-
ically shifts. In practice, the systematic process drift can be
treated similarly to process drift.

IV. PROPOSED HW TROJAN DETECTION SOLUTIONS
Our proposed HT detection solution, denoted by AVATAR,
integrates multiple variation modeling and mitigation tech-
niques into a side-channel delay analysis solution for HT
testing. Employing these modeling and mitigation solutions
allows us to characterize and alleviate the impact of process
variation and process drift to improve the correlation between
the expected timing model and the fabricated ICs’ timing
behavior.

92884 VOLUME 9, 2021



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

The process drift and systematic process variation aremod-
eled with an NN-watchdog, which is trained using sampled
timing path delays at test time. The details of our proposed
NN-watchdog is further discussed in Section IV-A.

We model the random process variation using Parametric
On-Chip Variation (POCV) [34] at design time and deploy
a delay-averaging technique on path delay measurements
obtained across multiple ICs to cancel the delay impact of
process variation. The details of our proposed solutions are
also discussed in Section IV-B.

A. MODELING AND TRACKING THE PROCESS DRIFT
Process drift results in a non-uniform shift in the delay of
different timing-paths. To model the timing impact of process
drift, we train a Neural Network (NN) that acts as a process
tracking watchdog (NN-watchdog). This NN-watchdog pre-
dicts the slack difference between the delay reported by STA
at design time and sampled delay from fabricated IC at test
time. To train the NN-watchdog, we use a labeled data-set
in which each labeled data point is a collection of 48 input
feature values and a label (output) value. The input features,
detail of which is captured in Table 1, are extracted from
physical design and timing engine EDA tools. The label for
each data point is the difference between the slack reported by
STA at design time and that obtained from Clock Frequency
Sweeping Test (CFST) at test time.

TABLE 1. Description for each of 48 features, extracted from
each timing-path to build the NN training set. (LP: Launch portion of
timing-path, CP: Capture portion of timing-path, DP: Data portion of
timing-path, M: Metal Layer, x: drive strength of the gate).

To assess the effectiveness of NN-watchdog (and for the
lack of access to fabricated ICs), we modeled the process
drift (and systematic process variation) by extracting the shift
in delay values from SPICE simulations, performed using a
skewed SPICE model. For this purpose, we first extracted
the SPICE model for each timing-path in the input training.
Then, to mimic a systematic process drift, the SPICE model
was skewed such that the NMOS and PMOS transistors
were ∼X% faster, and the Metal capacitance for Metal
layers 1 to 7 derated by Y%. The selection of X and Y
gives us a consistently faster or slower process model. For
example, the selection of (X ,Y ) = (5, 5), (0, 0), (−5,−5)
produces Fast, Typical, and Slow process models in our
simulations.

In this paper, we have evaluated 3 different models for
predicting the process-induced change in the timing path
delays. Details of each model is given next:

1) LINEAR REGRESSION (RIDGE REGRESSION) MODEL
(BASELINE)
Ridge Regression [35] is a regularized linear regression
model and it is useful for modeling and tracking multi-
collinearity phenomena.

2) MULTI-LAYER PERCEPTRON REGRESSION
Multi-Layer Perceptron (MLP), is a non-linear neural net-
work composed of an input layer, one or more hidden layers,
and an output layer (Fig. 4-top). Details and setup of MLP
regressor used in this paper is summarized in Table 2.

FIGURE 4. (Top): Abstract view of a Multi-Layer Perceptron (MLP)
constructed as a fully-connected NN. (Bottom): A Random forest (Rf) as
two base models to form test-time process watchdog.

TABLE 2. Hyper-parameters of regressor models used in this table.

3) STACKING REGRESSION MODEL
The structure of Stacking Regression model [36], which
is also known as stacked generalization [37], is depicted
in Figure 5. The Stacking Regression is an ensemble learning
technique in which different estimators are arranged into
two layers to form a regressor with lower variance in com-
parison to each (member) regressor. More precisely, at a
two-layer stacked regressor (Figure 5-top), we used regres-
sors XGB [38], Enet [39], Lasso [40], Ridge [35], MLP [41],
and RandomForest [42] for our first layer regression. The
predictions of these regressors, ŷη1 to ŷη6 , are stacked together

VOLUME 9, 2021 92885



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

FIGURE 5. Top figure shows a two-layer stacked regressor. Bottom
figure shows the cross-validation method used for obtaining hyper
parameters at a two layer stacked regressor.

and fed to the second layer of regressor(s). In general, the sec-
ond layer may also consist of multiple regressors. The overall
prediction ŷfin is obtained by averaging the results of the sec-
ond layer regressors. In our model, we have only deployed a
single Lasso [40] regressor in the second layer, as including
additional regressor result in only negligible improvement in
the model’s prediction performance at the cost of increased
complexity.

Among the regressors used in two-layer stacked regres-
sors, Enet, Lasso and Ridge are linear. In these models,
the difference in the performance stems from their associated
regularization penalty. More precisely, Equation 1 shows the
optimization problem formulated for Enet.

Ŵ = argmin
W

(‖y− XW‖2 + λ2 ‖W‖2 + λ1 ‖W‖) (1)

In this equation, X is the input features, see Table 1,
W denotes the corresponding weight for each feature, and λ1
and λ2 are the hyper-parameters for tuning the contribution of
L1 and L2 norms of weights, respectively. Lasso andRidge are
special cases of Enet in which Lasso only considers L1 norm
of parameters (‖W‖ =

∑N
j=1

∣∣Wj
∣∣) while Ridge considers L2

norm of parameters (‖W‖2 =
∑N

j=1

∣∣Wj
∣∣2) for regularization.

Random Forest and XGB can be considered as ensem-
bles of decision-trees. The main difference between these
two categories is the way that decision trees are combined.
In Random Forest, also known as a bagging-based algorithm,
a subset of features is randomly selected to form a forest of
decision trees, see Fig. 4-bottom. Each of these trees is trained

independently, and the final regression model is determined
by averaging the result of each decision tree. In XGB, also
known as a boosting-based algorithm, decision trees depend
on each other, and through cascading, the error of previous
trees is minimized (Boosting). Details and setup of each
regressor used in the stacked model (which is used in this
paper) are summarized in Table 2.
The six regresses in the stackingmodel were down-selected

from a larger pool of regression models that we tested. Each
of the member models was selected because they could reach
a higher regression accuracy on a subset of input samples.
After combining these regressors, the resulting stacking
model had a lower variance compare to each member. More-
over, this selection represents different classes of regression
models, each trained with a different loss function. Note
that linear models contribute the least to the final regression
accuracy, and removing one or two of the linear models from
the stacking model has a small impact on regression accuracy
(e.g., 2% drop if two of linear models, Lasso and Ridge, are
removed). However, in the case of HT detection, even 2%
improvement in model accuracy is substantial and counts.
Considering that our goal was to achieve the highest possible
regression accuracy, we only eliminated regressors (from our
original pool) whose elimination affected the accuracy of the
regression model less than 0.5%.
Figure 5-bottom shows the cross-validation technique for

defining the hyper-parameters of each one of the used regres-
sors. Cross-validation consists of four steps: 1) Randomly
partitioning the training set into k equal sets, also known
as K-fold. 2) Holding out one of the training sets, high-
lighted with red, from the (k-1)-remaining folds, and training
on the (k-2)-fold. The left-out fold, highlighted with gray,
is used for validation. This procedure continues for (k-1)
times, which results in a stack of prediction of (k-1)-folds,
which is stored in YFi . 3) Training the layer two regressors
based on the obtained dataset, YFi , and evaluating the level-2
regressors based on the holdout set, Fi. 4) Selecting the
hyper-parameters that result in a lower average loss. Once
the hyper-parameters are corrected, both layers are trained on
the whole training set, without k-folding, and the final results
are reported by evaluating the trained stacked model on the
test set.

FIGURE 6. Process variation classification.

B. MODELING AND MITIGATING PROCESS VARIATION
Figure 6 depicts the classification of process variation. In this
paper, process variation is categorized into two major classes:
1) Random Class that includes the independent intra-die

92886 VOLUME 9, 2021



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

FIGURE 7. Computing the mean delay (µ) of a timing path using CFST delay measurements with step size S, clock period T
across N sample dies, where N =

∑m
i=1 Ci .

random process variation, and 2) Persistent class including
all forms of inter-die variability and the correlated intra-die
variations.

1) MODELING THE PROCESS VARIATION
In this paper, the persistent process variation is modeled
similarly to process drift. To emulate the persistent process
variation (within the same process corner), we created two
additional derivatives (slightly modified copy) for each of
our skewed SPICE models. Each of the skewed SPICE mod-
els (originally used to model process drift) are additionally
altered to make the transistors in the first derivative 1%
slower, and the second derivative 1% faster.

To model the random process variation, each of the SPICE
simulations is subjected to 100Monte Carlo simulations. This
is to emulate the CFST performed on 100 different dies in
the same speed-bin where the threshold voltage (Vth), Oxide
thickness (Tox), and channel Length (L) are varied based on
a normal distribution. Accordingly, we model the variation
of path delays from chip to chip according to the expected
variations in a 32nm technology node.

2) MITIGATING THE PROCESS VARIATION
To mitigate the process variation at test time, we use two
different mechanisms to deal with random and persistent
process variations:

a: PERSISTENT PROCESS VARIATION
We perform speed binning on fabricated ICs and divide
them into different speed bins (Fast, Normal, and Slow),
arguing that ICs in the same bin are similarly affected by
the persistent process variation. Then for each bin, we train
an NN-watchdog that could predict the impact of persistent
process variation (and simultaneously process drift) on each
timing path delay.

b: RANDOM PROCESS VARIATION
To reduce the impact of random process variation, using
the formulation presented in Figure 7, we collect the delay
of each timing path (in our test set) from many ICs and
compute their average delay to be used in our HT detection
solution. When the timing-path delay is averaged across N
different dies, the standard deviation of the random variable

representing the average delay is N times smaller than the
standard deviation of individual samples. To illustrate this,
assume that there are N independent samples (considering
that variation has resulted from local and random process
variation) for the timing path Pi, where each X(i,n) is a ran-
dom variable representing a delay measurement for a given
timing-path from a tested IC with index (i, n). Assume that
the mean and standard deviation of X(i,n) are µ(i,n) and σ(i,n),
and the mean and standard deviation of the averaged random
variables X̄i are E(Xi) and V = VAR(Xi), respectively. Equa-
tion 2 describes the average of the random variable over N
samples.

X̄ =
1
N

∑N

n=1
X(i,n) = E(X̄i)+ VAR(X̄i) (2)

Accordingly we have:

E(X̄i) = E(
1
N

∑N

n=1
X(i,n)) =

1
n
E(
∑N

n=1
X(i,n)) (3)

VAR(X̄i) = VAR(
1
N

N∑
n=1

X(i,n))

=
1
N 2VAR(

N∑
n=1

X(i,n)) =
σ 2

N
(4)

As illustrated, by averaging the delay over N ICs, the stan-
dard deviation (σ ) could bemade

√
N times smaller, while the

mean (µ) remains unchanged. Now consider the case where
an HT is added to the timing path: the averaged (mean) delay
will be shifted compared to that expected from the process
(which is predicted byNN-adjusted slack obtained fromSTA)
and its impact could not be hidden by process variation.

The above equation assumes that the value of each ran-
dom variable could be precisely measured. However, when it
comes to measuring the delay of timing paths, we are limited
by the barrier posed on us by the tester’s step size (when
performing the clock frequency sweeping). In other words,
the tester’s step size is a discrete value (for example, 10ps).
Hence, our equation for mean value has to consider the step
size of the tester. This concept is illustrated in Figure 7.
Assume that the T is the clock period of the IC under clock
frequency sweeping test, and we perform a clock frequency
sweeping with step size S. Let m be the number of steps
tested. For a given timing path, assume that Ci is the number
of ICs (samples) in which the selected timing path (under test)

VOLUME 9, 2021 92887



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

passes the setup timing test at step i, but it fails at step i+ 1.
We refer to this step as a start-to-fail frequency step. Using
this set of assumptions, the mean value of the quantized start-
to-fail frequencies is obtained from:

µ =

∑m
i=1 Ci × (T−i× S)∑m

i=1 Ci
(5)

FIGURE 8. AVATAR Trojan Detection Flow: The model includes changes in
the design and test stages. In the test stage, if the timing paths are too
short and beyond the CFST test’s reach, they will be subjected to power
side-channel Trojan detection as described in [26] (not covered in this
paper). Otherwise, timing paths are subjected to side-channel delay
analysis. Our model uses an NN that servers as a process watchdog for
tightly correlating the STA reported data to delay collected at test time.
The NN model is trained using a limited number of delay samples
collected using the CFST test and path features collected from the design
database. If the Trojan detection flow flags detection of one or more HT,
we perform a subsequent diagnostic test in which a) the false positive
rate is significantly reduced, and b) the nets hosting the TT or TP are
identified.

C. AVATAR TROJAN DETECTION FLOW
Figure 8 shows the overall flow of the AVATAR Trojan
detection solution. In our model, the design house is trusted.
However, the fabrication and functional testing of the IC may
be carried in an untrusted foundry. The fabricated ICs are then
shipped to a trusted facility for Trojan testing. Our proposed
changes to the design flow and steps added for Trojan testing
is described next:

1) SENSITIZATION
This step involves a set of physical design constraints, design
methodologies, and Engineering Change Orders (ECO) that
make the design more sensitive to TT or TP of a hardware
Trojan; thereby making HT more visible if inserted. Tech-
niques used for sensitizing the design include 1) limiting the
size and drive strength of logic cells to X4 or X8 as the
delay of smaller gates is more sensitive to payload change.
2) Running aggressive low power optimization ECOs at tim-
ing closure. The above techniques result in under-driving
each gate’s fanout, making them more sensitive to payload

Algorithm 1Generating a Training Set for the NN-Watchdog
1: Ssize← Required test set size
2: M← Number of timing path segments
3: T ← Operating frequency of the IC
4: Tmax ←Max frequency of the tester equipment
5: δ← (Tnom − Tmax)/M
6: for (S = 0; S <M; S++) do
7: TPaths ← Select Ssize/M worse timing path in the

range (T−(S+1)×δ < delay(Timing path)< T−S×δ)
8: end for
9: for all path in TPaths do
10: feature(path)← Extract path features from STA
11: STA(path)← Extract path slack from STA
12: Slack(path) = 0
13: end for
14: for all die in Dies do
15: for all path in TPaths do
16: CFST(die, path)← path Slack of CFST on die
17: Slack(path) + = CFST(die, path)
18: end for
19: end for
20: for all path in TPaths do
21: Slack(path) = Slack(path)/Size(Dies);
22: 1slack (path) = Slack(path) − STA(path) F label
23: data-points(path)← (features(path), 1slack (path))
24: end for

change. 3) reducing routing resources in areas in need of
protection for HT requiring an adversary to rely on a compli-
cated and long route (with significant capacitive impact), and
4) Reducing unused space (via increasing the area utilization)
to limit the chances of Trojan insertion.

2) FABRICATION
The final GDSII submitted to the foundry for fabrication,
the functionality of the fabricated ICs tested in the untrusted
foundry where the working ICs will be sent to a trusted
facility for Trojan detection.

3) GENERATING A TRAINING SET FOR THE NEURAL
NETWORK
The flow for generating the set used for training the
process-tracking neural network model is shown in
Algorithm 1. To generate such a set, we need to select
and extract features from a selected group of timing
paths. The selected group should represent a variety of
timing-path topologies that exist in the design. Simultane-
ously, the selected timing paths should have large enough
delays to be testable using CFST at test time. However,
accounting and including all path topologies (all register-
to-register timing paths) in a training set, in a large design,
will result in a massive test set, and it is beyond the need
of NN for training. To simplify the training set generation,
we decided to break the range of testable frequencies intoM

92888 VOLUME 9, 2021



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

(in our case, M = 10) segments. Let’s consider the nominal
frequency of the netlist to be F = 1/T , and the maximum
testable frequency to be Fmax = 1/Tmin. By breaking the
testable range intoM segments, each segment covers a range
of delays equal to T−Tmin

M . The desired number of timing
paths, Ssize in the training set of our model, is 50× to 100× of
the number of input features, which is about 2500 to 5000 tim-
ing paths. Then to select the timing paths, we query the
STA engine for Ssize/M worst timing paths in each of the M
testable delay segments. If a delay segment does not contain
enough timing paths to satisfy the training size requirements,
we add additional timing paths from other delay segments to
reach the desired training set size. The goal here is to select
timing paths covering a range of different delays and timing
path topology. In the next step for generating the training set,
as shown in Algorithm 1, the path’s features are extracted
from the design-time EDA tools. Some of the path features
are extracted from STA and some from the PnR tool. Then
each selected timing path is subjected to the CFST test, where
the timing slack of each selected timing path is recorded (by
measuring it across multiple ICs and averaging the result) as
the label. This training set is used in the next step to train
a NN that acts as a process (drift and systematic variation)
tracking watchdog. Note that the delay of the timing paths
(in lines 17 and 21 of the algorithm) is averaged across many
dies to extract the mean delay of the timing path and to
remove the effect of process variation.

4) TRAINING THE NEURAL NETWORK
The neural network that acts as a process tracking watch-dog
is trained using the methodology described in section IV-A.
As previously described, the trained neural network will track
the change in delay due to process drift and systematic pro-
cess variation. When provided with features of a test sample
(of a timing path), the NN-watchdogwill generate an estimate
on the expected difference between CFST reported test delay
of the timing path, and the delay reported by the static timing
model (generated at design time).

5) GENERATING TEST SET FOR TROJAN DETECTION
To detect a Trojan, we need to detect the change of slack in
affected timing paths due to TT or TP presence. As Figure 1
shows, the TT adds capacitive load to the driving cell of an
observed net, and the TP inserts one (or more) additional
gate(s) in the victim net. Without a Golden IC, we do not
know which nets have been victimized. Hence, we need to
check for the delay change of timing paths by investigating
each net included in the suspicious timing paths, i.e., the
timing paths whose slack appeared to be larger than expected
when doing frequency sweeping test. We define a Pin-to-Pin
Wire (P2P-wire) as a net connecting the output pin of a driver
cell (or a primary-input) to the input pin of one of its fanout
cells (or a primary-output). Hence a gate with a fanout of 4
has 4 P2P-wires. Each P2P-wire will be tested for rise and
fall transitions. To increase the detection rate and to account
for random process variation, this process may repeat for

N different timing-paths passing through each net (similar
approach to N-detect testing). The second criterion for select-
ing the timing-paths is the maximum frequency of the tester
equipment; the selected paths’ delay should be larger than the
limit imposed by the maximum reachable frequency of the
tester equipment. If the P2P-wire in no timing-path is long
enough for CFST, it cannot be subjected to side-channel delay
testing. However, such timing-path could be used as a candi-
date for Trojan detection via power-based detection schemes.
This is because timing-paths with a smaller number of cells
often exhibit better controllability and are better suited for
the power-based Trojan detection schemes (e.g., [24], [25],
[27], [29]) that rely on full or partial activation of a Trojan.
We generate the Path Delay Fault (PDF) test vectors for the
long timing-path candidates using an Automatic Test Pattern
Generation tool (ATPG). Suppose the ATPG fails to generate
a test pattern for exclusive PDF testing of a given net in a
suspicious timing path (in other words, no other timing path
exists that contains the targeted net while it does not contain
any of the other nets in the suspicious timing path). In that
case, a sequence of nets (preceding or proceeding the target
net) is selected for test pattern generation.

6) TROJAN SIGNATURE DETECTION
Fig. 9 illustrates the conceptual view of the steps taken in
the proposed Trojan signature detection scheme. In simple
terms, the Trojan detection is the comparison of the slack
reported by STA, which is adjusted by NN-watchdog, against
the collected CFST test data. If the shift in slack is larger
than the expected value (a large discrepancy between the
NN-adjusted slack reported by STA and that recorded at test
time), the timing path is considered as likely-affected by
Trojan.

Algorithm 2 describes our proposed Trojan detection flow.
As depicted, after selecting a set of timing paths for PDF
testing, we speed-bin the fabricated dies. In the next step,
we collect the NN-watchdog training data using the flow
described in algorithm 1. Then, we train a process tracking
NN-Watchdog for each bin and extract the standard deviation
of each NN-Watchdog in predicting the shifted delays. For
each bin, we perform CFST and measure the start-to-fail
frequencies for the selected timing-paths. The slack differ-
ence (δ) between the mean of slacks reported by the CFST
and the NN-watchdog adjusted slack from STA (in the same
bin) represents the likelihood of a timing path being affected
by a Trojan. To make a binary decision, we use a detection
threshold to assess the significance of δ and classify the
timing paths into genuine, or Trojan affected classes.

In choosing a value for theHT-Detection threshold, we face
a trade-off between false-positive rate and HT detection accu-
racy. The false-positive could result from 1) inaccuracy in the
STA, 2) inaccuracy of NN, and 3) random process variation
for sampling over a small number of ICs. The threshold
used for detection should be large enough to account for
the uncertainties above to reduce the false-positive rate, and
small enough to prevent false-negatives. Since we average

VOLUME 9, 2021 92889



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

FIGURE 9. Our proposed Trojan detection flow’s conceptual view: The timing path features are extracted from STA and PnR EDA tools at design
time. The features are input to a trained NN-watchdog that predicts the shift in the timing path slack due to process drift and systematic process
variation. The timing path is also subjected to the CFST test at test time, and the timing path slack is observed (by averaging across multiple ICs).
If the difference between the STA reported delay adjusted based on NN-watchdog’s shift-prediction and the CFST suggested delay is greater than
a safe threshold, the timing path is marked as a suspicious Trojan timing path. Please also see our proposed diagnostic solution, following the
Trojan detection for reducing the false positive rate.

the delay of each timing-path over many IC samples, timing
impact of random process variation in the average delay could
be reduced to a desirable range. However, we still have to
account for the inaccuracy of the NN and persistent variation.
Hence, we define the detection threshold to be Tth = n ×
max(σNN , σPV ), in which the σPV is the expected variance of
persistent process variation (excluding random) and σNN is
the standard deviation of the NN. Since σNN is the aggre-
gated impact of NN inaccuracy (for under or over-fitting)
and impact of persistent process variation, the variance of
σNN tends to be larger than σPV , and we can simply use
Tth = n× σNN (n is selected as 4 in algorithm 2).

FIGURE 10. a) Contingency table (confusion matrix) for a binary classifier;
b) distribution of true negative and true positive samples; c) Youden [43]
method for threshold extraction.

To verify the choice of threshold values Tth, we utilized
Youden [43] method to extract the threshold value from a
Receiver Operating Characteristic (ROC) curve that we gen-
erate over our SPICE simulation data (details in Section V).
Figure 10 defines a few analysis related terms (True Positive
(TPos), False Positive Rate (FPos), False Negative (FNeg),
and True Negative (TNeg)), and illustrates how the ROC
curves are obtained. As illustrated in this figure, the Youden
method chooses the threshold value that corresponds to the
optimum cut-off point between TPos and FPos. Note that at
test time, we do not know which timing-paths are affected
by HT. Hence, the optimal threshold of detection cannot be
determined by Youden method.

Change in the temperature affects the speed of transistors
and alters the RC characteristics of the connecting wires.
However, the temperature change is an intensely slow phe-
nomenon. At test time, a test vector is loaded into the scan
chain using a slow clock then the circuit operates at-speed for
two cycles (launch and capture) using a fast clock. Finally,
the scan offloaded using a slow clock. The heat dissipation
when using a slow clock is quite low, and the duration of the
at-speed test is only two cycles for each test pattern, limiting
the extent of temperature changes to a fraction of a degree
Celsius. Hence, the die temperature can be tightly controlled
at test to discount the delay impact of temperature variations.

To proceed with Trojan detection, as described in
Algorithm 2, we first separate the fabricated dies according to
their speed and performance into different speed-bins. Then,
we train a process tracking NN-Watchdog for each bin and
extract the standard deviation of each NN-Watchdog in pre-
dicting the shifted delays. In the next step, we perform CFST
and measure the start-to-fail frequencies for different timing-
paths. If the mean value of the slack difference between the
slack reported by the CFST and the NN-watchdog adjusted
slack from STA (in the same bin) is less than our detection
threshold, the path classified as Trojan-Free.

A Trojan is detected if one of its TTs or TPs (Trojan signa-
tures) is detected in the previous step. In the result section,
in addition to reporting the rate of TT and TP detection,
we also report the overall Trojan detection performance of
our solution. In this case, a Trojan is detected if our proposed
solution can detect at least one of its triggers or payload(s).

D. DIAGNOSTIC ANALYSIS
AVATAR could classify a timing path as likely affected by
Trojan for two reasons: 1) The timing path hosts the trigger
or payload of HT, resulting in a true-positive, 2) the timing
path is severely affected by process variation such that the
resulting increase in the path delay is greater than the thresh-
old, resulting in a false-positive. Our proposed diagnostic
test, as illustrated in Fig. 11 opts to deeply investigate the
detectedHT and extract the reason behind the increase in each

92890 VOLUME 9, 2021



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

FIGURE 11. Diagnostic Test: (left): an HT free design where a suspicious net is tested for HT through many timing paths passing through it.
The delta difference between predicted delay (NN adjusted STA delay) and CFST test delay (collected from multiple ICs) for each timing path
is computed. In a HT-free design, the process variation results in a variation of the resulting delta value, but the mean of this delta difference
is close to 0. (right): A design with HT on the suspicious net. The delta difference, in this case, is also a distribution. However, the existence
of HT pushes the mean of this distribution away from 0. (bottom): The distribution of delta difference for the design with and without HT is
shown. The HT is detected if the mean value of the delta difference distribution is greater than the detection threshold obtained from
Algorithm 2.

timing path’s delay resulted in detecting such a Trojan. This
diagnostic step’s benefit is twofold: 1) reducing false positive,
2) pinpointing to the location of HT.

Algorithm 3 captures the flow of our proposed diagnostic
solution. The overall strategy is quite simple and based on the
following assumption: In a false positive case, the increase
in the delay is due to process variation, and the total delay
increase is distributed over different segments of the suspi-
cious timing paths. Thus, by selecting N timing paths (that
share least number of nets with the suspicious timing path
whose net segments are being tested), we expect a small
increase in the delay of N chosen paths compared to the
NN-adjusted timing model prediction.

To run our diagnostic test, we select N timing paths that
pass through the selected net for each net in the suspect timing
path such that the selected timing path and the suspicious
path do not include any common path segments other than
the selected net. Then the delay of each of these timing paths
is assessed against our NN-adjusted timing model. The delta
δ between the average delay of that timing path reported by
the CFST test and the delay of that timing path expected from
our model is computed using:

δ = µS (bin, tp)− AS(tp) (6)

We then compute the mean of δ (µδ) across all selected
timing paths passing through that net. If the µδ is smaller
than a threshold value (close to 0), then the CFST slack and
adjusted slack for all timing paths through that net match

(no mean-shift), indicating no Trojan and the net is removed
from the suspicious list. However, suppose µδ is a positive
number larger than the threshold. In that case, that indicates
a mean-shift in the difference between predicted delay (NN
adjusted delay) and recorded CFST delay across all timing
paths passing through that net. This is an indication of a
Trojan. In this case, the algorithm also pinpoints the location
of the Trojan (the net where the means shift in the distribution
of delays occurs). If it is not possible to select N exclusive
timing paths passing through a single net, a set of nets are
selected to point to the HT location. Using this scheme,
we reduce the false-positive rate of AVATAR, thus increasing
the detection precision.

V. RESULTS AND DISCUSSION
This section depicts the accuracy of the NN-Watchdog in
tracking the process drift, and presents the results of applying
our proposed test flow, AVATAR, for Trojan detection.

A. NN-WATCHDOG ACCURACY
The NN-watchdog model is trained to predict the difference
between the slack reported by the STA engine (at design time)
and CFST (at test time). We evaluated the effectiveness of
NN-watchdog on the three largest IWLS benchmarks [44]
(Ethernet, S38417, and AES128). For training and test pur-
poses, We collected a labeled dataset for each of these bench-
marks using the methodology described in Algorithm 1 in
section IV-C. We divided the dataset into a training and a test

VOLUME 9, 2021 92891



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

TABLE 3. The Accuracy of Three NN-Watchdog regression model (Ridge Regression, MLP and Stacking-regressor) trained for different benchmarks on
NGTM-10. The µ and σ are the Mean and Standard deviation of the regression error over the validation set. As discussed in Section IV-A, the Fast, typical
and slow process are simulated using skewed SPICE model with (X,Y) = (5,5), (0,0), (−5,−5), respectively. µ and σ are reported in pico seconds.

Algorithm 2 AVATAR Trojan Signature Detection Flow
1: N = # paths to be tested through each net in the design
2: Nets← all nets in the design.
3: for all net in Nets do F net selection for PDF test
4: Tpath + = select N paths passing through net
5: end for
6: Speed-bin all dies and assign them to B bins.
7: for all bin in B do F NN training
8: NNbin← Use Algorithm 1 to Train a NN-watchdog
9: σNNbin ← the standard deviation of NNbin

10: for all die in bin do
11: Slack = 0
12: for all path in Tpath do
13: CFST(bin,die,path) ← Timing path slack

measured by CFST die in the bin
14: Slack(bin,path) + = CFST(bin,die,path)
15: end for
16: end for
17: for all path in Tpath do
18: µS (bin,path) = Slack(bin,path)/sizeof(bin)
19: end for
20: end for
21: Tth = 4× σNNbin F 4σ threshold to reduce false positive
22: for all path in Tpath do
23: STA(path)← query the slack of path from STA
24: NNWatchdog(path)← slack shift from NNbin(path)
25: AS(path) = STA(path) + NNWatchdog(path)
26: δ = µS (bin,path) − AS(path) F Adjusted Delay
27: if (δ > Tth) then F Trojan Classifier
28: Likely Trojan Set← path
29: end if
30: end for

set with 80% and 20% of samples in each set accordingly.
Besides, we evaluated the effectiveness of three regressors
1) Ridge, 2) MLP, and 3) Stacking-Regressor. Ridge is a
linear regressor that has enhanced efficiency when it comes to
parameter estimation problems. We use this model as a base-
line. MLP, see Figure 4, is a non-linear regression (used in
our previous work, LASCA in [45]). The stacking-Regressor
(Fig. 5) is an ensemble of both linear and non-linear regres-
sors, and represent our improved NN-watchdog model in this
paper.

Table 3 depicts the mean and standard deviation of
the NN-watchdog in predicting the shift in the delay of
timing-paths when subjected to process drift. The process

Algorithm 3 Diagnostics
1: bin← the speed bin that this IC is allocated to
2: NNbin← NNbin trained for bin in Alg. 2
3: µS ← vector of mean values from Alg. 2
4: MP←Malicious Paths detected by AVATAR in Alg. 2
5: tth← Detection threshold from Alg. 2
6: n← 50 F number of new paths for diagnostics test
7: dth← threshold for diagnostics
8: for all path in MP do
9: LNets← list of nets in path
10: end for
11: U = unique(LNets) F remove repeated nets in the list
12: for all net in U do
13: Pinc← timing paths inMP that include net net
14: for all path in Pinc do
15: Lexc← all nets in timing path path except net
16: end for
17: Ltest ← get n timing paths that include net and

contains least number of nets in Lexclude
18: for all tp in Ltest do
19: STA(tp)← query the slack of tp from STA
20: NNwatchdog(tp)← slack shift from NNbin(tp)
21: AS(tp) = STA(tp) + NNwatchdog(tp)
22: 1 + = µS (bin, tp) − AS(tp)
23: end for
24: µδ = 1 / size(Ltest ) F average shift over all paths
25: if (µδ > tth) then
26: Ldiagnostic append(net)
27: end if
28: end for

drift is represented using Fast, Typical, and Slow process
corners which are simulated using skewed SPICE model
with (X,Y) = (5,5), (0,0), (−5,−5), respectively as dis-
cussed in Section IV-A. As illustrated, all models gener-
ate acceptable value for mean delay. The non-linear models
(MLP and Stacked) result in a considerably smaller standard
deviation across the board. As illustrated, the standard devi-
ation in stacked regressor has also considerably improved
compared to MLP, showcasing ensemble learning solutions’
power in generating superior models. The lower standard
deviation of the stacking-regressor model makes its predic-
tion (of slack change) more accurate, resulting in a more
precise Trojan detection solution, when integrated into our
flow.

92892 VOLUME 9, 2021



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

B. HW TROJAN DETECTION ACCURACY
In this section, we first describe our experimental setup, and
then describe our simulations results:

1) SETUP
We have evaluated AVATAR Trojan detection accuracy on
three largest IWLS benchmarks [44] (Ethernet, S38417 and
AES128). We designed and inserted 90 HT into each bench-
mark. These HT are simple combinational HT with 4 input
triggers that are connected to selected nets (as Trigger Nets),
an AND-tree that generates the Trojan activation signal, and
a single 2-input XOR gate to deliver the payload of Trojan
to a target net. Nets selected for Trojan Trigger and Payload
insertion are carefully chosen from non-critical timing paths
with large available timing slack. The TT capacitive delay
impact is controlled by the distance of Trojan Circuit place-
ment (and first gate of the AND-tree) from the triggering net.
To keep the Trigger impact small, we place the Trojan Circuit
(first gate) within a 20um radius of the Trojan Trigger nets
(assuring small delay impact). The Trojan Circuit’s AND-tree
is also constructed using the smallest AND gate available in
the standard cell library, to minimize the gated capacitance
impact of the driver gate on the delay of the Trojan triggering
net. To illustrate our solution’s sensitivity, each Trojan Circuit
is added in a separate placed-and-routed netlist, meaning we
would have 90 placed-and-routed netlists for each bench-
mark, each containing a single HT circuit. Each benchmark
is hardened (physical design), and timing closed at 1.4GHz
in 32nm technology.

During NN-watchdog training, we do not know if a
timing-path selected for training contains a Trojan. Hence,
we also evaluated the impact of including Trojan affected
timing paths in the training set. We trained 5 NN-watchdogs
with 0, 1, 5, 10, and 15 Trojan paths included in their train-
ing set. Our goal is to evaluate if the inclusion of Trojan
affected timing paths (including trigger nets or payload nets)
in the model could poison the model to a point resulting in
Trojan evasion when affected timing paths are tested using
AVATAR.

The silicon CFST test emulated using SPICE simulation,
where the slack reported for each timing-path adjusted to the
neighboring higher clock sweeping frequency step, modeling
the CFST step size. The step size in the state-of-the-art tester
equipment can be as small as 10-15ps. Hence, we selected
the step size of the tester as 15ps. At this point, we also con-
sider the impact of random process variation (see Figure 6).
For this purpose, each SPICE simulation is subjected to
200 Monte Carlo simulations (modeling CFST performed on
200 different dies in the same speed-bin), where the threshold
voltage (Vth), Oxide thickness (Tox) and channel Length (L)
are varied to model the variation of path delays from chip
to chip. Similar to [16], we have limited the random process
variation to 5%.

In our simulations, we assessed the effectiveness of Trojan
detection using two mechanisms for building our refer-
ence (Golden) timing model:

a: SHIFTED STA (SSTA)
In which we use the STA results as our reference Timing
Model to detect HT. The process drift makes the direct usage
of STA results quite ineffective. To account for process drift
in SSTA,we have computed a static shift value, obtained from
averaging the observed shift from many sampled timing-
paths, and have shifted all reported slacks by STA using this
value. For this approach, we have set the detection threshold
to the fixed value of 45ps, which is the delay of a 2-input
NAND gate in our standard cell library.

b: NEURAL SHIFTED GOLDEN TIMING MODEL (NGTM)
In which we modeled the process drift and systematic
process variation using our proposed NN-watchdog. Then
we augment the STA results with the predicted shift by
NN-watchdog (generating path-specific change in slack
based on path topology/features). To show the stacked learn-
ing model’s effectiveness, we have also evaluated the usage
of both MLP and stacked-regression as NN-watchdog. When
collecting a dataset for training the NN-watchdog, there is
no guarantee that the Trojan affected timing path(s) is not
included in the training set. Therefore, we have investigated
the accuracy of NGTM when the training set contains 0, 1,
5, 10, and 15 timing-paths affected by HT. In this approach,
we have set our Trojan detection threshold to 4 × σ of
regressor standard deviation. The choice of 4 × σ signifi-
cantly reduces the number of false positives. Comparing the
standard deviation of the stacked and MLP model, based on
Table 3, provides a valuable insight on why the NN-watchdog
designed using the stacked-regression model is expected to
be more sensitive/accurate compare to the MLP-regression
model: It benefits from a lower detection threshold, while
statistically benefit from a similar false-positive rate.

To evaluate the quality of selected threshold values for
our proposed Trojan detection flow, we have extracted and
reported the optimal threshold from the ROC-curve using
Youden [43] method. Note the optimal threshold cannot be
extracted in real-life examples as it requires the ground-truth
table (knowing exactly which timing path are and are not
affected by Trojan), and could only be used for quality assess-
ment purposes. The Youden method generates a different
detection threshold for each of TT and TP based ROC curve.

Figure 12 captures the result of TP detection in Fast
(X,Y) = (5,5) speed bin. The top row compares the accu-
racy of SSTA and NGTM in detecting TPs. The bottom row
reports the false positive rate of detection for each model
across different benchmarks. This figure evaluates Trojan
detection’s effectiveness when each of the Stacked-regression
and MLP-regression models (for predicting the shift in slack)
is used. The NGTMmodel is reported five times (NGTM-X),
where each has been trainedwithX HT included in their train-
ing set, whereX ∈ [0, 1, 5, 10, 15]. As reported, the inclusion
of a small number of HT samples in our data set mini-
mally impact the detection rate of AVATAR (using NGTM)
on the test set, as the detection rate and false-positive rate

VOLUME 9, 2021 92893



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

FIGURE 12. Trojan Payload detection results for 3 benchmarks. (top): Detection rate, (bottom): False positive rate. The SSTA bar
represents the HT Payload detection using a (Mean shifted) STA. The NGTM bars represent the Trojan Payload detection when
Neural-assisted timing model is deployed. Each bar shows the NN trained when X HT are included in the training set, with
X ∈ {0,1,5,10,and15}.

of AVATAR for NGTM-0 is similar to the NGTM-X for
X ∈ [0, 1, 5, 10, 15]. The similarity of detection rate and
false-positive rate is simply because the number of HT is not
statistically significant to affect the training (e.g., 15 Trojan
data versus 20K Trojan free data points) process.

The NGTM not only results in a significant increase
in the TP detection rate (to over 95%) but also signif-
icantly depresses the false positive rate. This confirms
NN-watchdog’s ability in modeling the complicated, non-
linear, path-specific shift of delays resulting from process
drift. Finally, note that a small number of HT in the training
set does not affect the accuracy of trained NN-watchdog
as the impact of a few samples in a large training set is
statistically insignificant.

Figure 13 depicts the result of our TT detection in the
FAST speed bin with (X,X) = (5,5). Like the TP case,
it compares the effectiveness of SSTA and multiple forms of
NGTM (Trojan contaminated model) for detecting TTs. The
figure shows how the improvement in the standard deviation
of NN-watchdog significantly improves the detection rate
for TTs (over 40% in some cases). As shown, NGTM has
a lower rate for detecting TTs than TPs due to the smaller
impact of TT on the delay of affected observed nets com-
pared to TP (which is at least equal to one gate delay).
Like the TP case, we observe that contamination of the
training set with few HT data points does not impact the
accuracy of trained NN-Watchdog. As illustrated, the choice
of the learning model (MLP vs. Stacked) for training the
NN-watchdog has a significant impact on Trojan detection
accuracy. As illustrated the stacking-regression, for having a
smaller threshold (selected based on 4 × σNN of regression

model error) could improve the detection rate by 10% to
15%, resulting in over 95% Trojan detection rate. This is
when the false-positive rate of the overall solution, when
constructed based on the stacking-regression model, is equal
to or lower than its MLP-based counterpart. The selection
of the Youden threshold for detection, although significantly
improves the TT detection, results in higher false positive, and
perhaps is not a preferred mechanism for setting the detection
threshold.

Figure 14 illustrates the ROC curve fromwhich the Youden
threshold (as described in Section IV-C) is extracted for
NGTM-10. The Youden value for other NGTM models is
extracted using similar ROC curves. Table 4 compares the
threshold values obtained from using theYoudenmethodwith
our proposed threshold of 4×σNN of regression model error.
For having a different ROC curve, the threshold obtained
from the Youden method is different for TT and TP detection.
However, the 4 × σNN threshold is fixed for both TT and
TP (because the same NN for detection of TT and TP is
used). As illustrated, the Youden threshold is smaller (for
both TT and TP detection) than our proposed threshold. This
explains whyHT detection using theYouden threshold results
in a higher detection rate in Fig. 13 and 12 for TT and TP
detection. But, also as illustrated in these figures, the smaller
threshold comes at the expense of a significantly higher
false-positive rate. This table also compares the threshold
values obtained using the stacking learning solution (in this
work) and when using anMLP solution (in our previous work
in [45]. As illustrated, the higher accuracy of the stacking
model has resulted in a significant improvement in resulting
threshold values. This explains why the AVATAR solution

92894 VOLUME 9, 2021



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

FIGURE 13. Trojan trigger detection results for 3 benchmarks. (top): Detection rate, (middle): Detection rate for sensitized designs, and
(bottom): False positive rate.

TABLE 4. Threshold values used for TT and TP Trojan detection in Fast-bin in Algorithm 2 when using NGTM-10 model.

by using a stacking learning model outperforms our previous
work (LASCA).

The TTs are more stealthy as they can be engineered
to have a minimal delay impact on affected timing-paths.
Connecting TTs to gates with high drive strength and low
threshold voltage, and limiting their capacitive delay by mak-
ing the TT nets short could result in a very small change in
the delay of affected timing-paths. However, as discussed in
section IV-C, we can sensitize the design to Trojan triggers
by placing a cap on the size of standard cells used in the
design, increasing the utilization in areas-to-be-protected,
and by forcing high routing density over area-to-be-protected.
This would force the adversary to connect the TT to cells
with smaller drive strength and use longer nets to connect
the Trojan trigger to the Trojan logic (TT placed further
away). Figure 15 shows our SPICE setup for measuring the

delay impact of a Trojan Trigger when placed in different
distances from its driving cell. We have used a distributed RC
model for metal 3 of a process in 32nm technology. We have
simulated the impact of increasing the TT distance (and its
capacitive delay) on the delay of a timing-path constructed
using 5 NAND gates. Let’s assume our detection threshold is
25ps; As illustrated, the TT needs to introduce an additional
capacitance equal to a net that drives the TT logic placed
40um away from the affected net to add a 25ps delay increase
in the delay of the timing-path. Hence, sensitization could be
an effective means for increasing the detection rate of HT.

Table 5 captures the results of TP Trojan detection in all
speed bins and also compares the impact of avoiding speed
binning (no-binning). As reported, the speed binning provides
more accurate results for TP detection compared to the
No-speed-binning case. This is because the standard

VOLUME 9, 2021 92895



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

FIGURE 14. Associated ROC curve for (top): TP, and (bottom): TT, when
NGTM-1 models are used. ROC curves capture the True positive rate
versus False positive rate.

FIGURE 15. Impact of the distance of Trigger gates from the targeted
path, on path delay.

TABLE 5. Percentage of False Positives (FPos) and True Positives (TPos)
when AVATAR, as described in Algorithm 2 is used for detection of TP with
different binning strategies (Slow, Typical, Fast, and no Binning). For this
simulation, the NN (process-watchdog) is trained using a Trojan in
dataset (NGTM-1 model).

deviation of the NN-watchdog when trained over individual
bins is smaller as delays are less affected by persistent process
variation.

C. OVERALL TROJAN DETECTION
As discussed in section IV-C, a Trojan is detected even if one
of its Triggers and Payload(s) is detected. The probability
of Trojan detection could be expressed as P(Detection) =
1 − P(Evasion). Trojan evasion happens when none of the
Triggers or Payload(s) are detected. Consider the Probability
of detecting the jth Payload to P(Pj) and probability of detect-
ing the ith Trigger of the Trojan to the P(Ti). In this case,
P(Detection) for a Trojan with N payloads and M triggers
could be expressed as:

P(Detection) = 1−
M∏
j=1

(1− P(Pj))×
N∏
i=1

(1− P(Ti)) (7)

For example, let’s consider the benchmark Ethernet, using
theNGTM-0model. TheHT used in this paper have 4 triggers

TABLE 6. Trojan detection performance of AVATAR. Percentage of True
positive for Trojan payload detection is denoted as TD(payload), Trojan
trigger detection is denoted by TD(trigger), and overall Trojan detection is
denoted by TD(Trojan). The SSTA is the baseline used for comparison as
statically shifted STA results used for Trojan detection.

and 1 payload. The probability of detecting Payload (in our
experimental setup) is 96.67% (missing 3/90 payloads), while
the probability of detecting a Trigger is 75.27% (missing
89/360 Triggers). plugging this information in equation 7
indicates 99.98% (close to 90/90) chances of Trojan detec-
tion. Therefore, we expect the rate of Trojan detection to be
higher than that of TT or TP detection. Table 6 captures the
result of our Trojan detection and compare that to Trojan
detection of our baseline (SSTA). As reported, the overall
Trojan detection of our proposed solution is between 97.78%
to 100%, which is higher than TT (67.78% to 88.89%) or TP
(93.33% to 97.78%) detection rate. Note that in this paper,
we have considered small HT with 4 Triggers and a single
XOR as Payload.

TABLE 7. In this table, the result of our diagnostic test for reducing the
false-positive rate of our proposed model is reported. The diagnostic test
is also able to pinpoint the location of nets hosting the Trojan Trigger or
Payload. The expected number of suspect nets (by the model) after
running the diagnostic test is indicated by E(n).

D. RESULTS OF DIAGNOSTIC ANALYSIS
Our diagnostic test flow, as described in section IV-D, signif-
icantly reduces the false-positive rate of our Trojan detection
solution. The result of running our diagnostic test is reported
in Table 7. As shown in this table, the diagnostic test can

92896 VOLUME 9, 2021



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

TABLE 8. HT circuits used from the TrustHub benchmarks.

significantly reduce the false positive rate, bringing it down to
zero false positives for most NGTM, regardless of regressor
choice (MLP vs. Stacking). Note that the choice of regres-
sion model determines our Trojan detection accuracy, and
the diagnostic test flow does not help with increasing the
detection accuracy. Hence, although our diagnostic test could
impressively suppress the false-positive rate, the stacking
learning model still has a clear advantage over the MLP
model (or other liner models). In a few cases, the diagnostic
test cannot reduce the false positive to zero. The reason for
this observation is that the majority of timing paths selected
for the diagnostic test are affected by process variation such
that they see a slight increase in their delay, which is com-
parable to the Trojan Trigger impact. Besides, in some cases,
the diagnostic test cannot generate enough timing paths that
consist of a small portion of a malicious path, limiting the
analysis on each segment (net) of a malicious timing path.
To further reduce the false positive, one may a) increase
the number of timing paths chosen for the diagnostic test,
b) run the diagnostic test on a different die (if the Trojan is
inserted in all dies), c) change the selection of timing paths
used for diagnosis, or d) increase the detection-threshold
for Trojan detection (trading off accuracy vs false-positive
rate). We have purposely not repeated the experiment with
additional timing paths to illustrate that the diagnostic test
could still miss some of the false positives and highlight the
need for repeating the diagnostic test with one of the solutions
proposed above.

Another advantage of our proposed diagnostic test, as pre-
viously suggested, is its ability to pinpoint the location (net)
containing the Trojans’ TT or TP. In some cases, however,
we cannot produce enough test patterns for a single sus-
picious net, and we have to consider a set of nets for the
diagnostic test. In such a case, the number of nets that should
be diagnosed for Trojan is more than one. Table 7 summarizes
the result of our diagnostic test. As indicated, the expected

number of timing paths that may have a TT or TP Trojan,
denoted by E(n), is between 1 and 2 timing paths. E(n) ’s
small value would significantly help with next-step verifi-
cation for partially or fully-invasive Trojan detection (for
verification) and save significant time scanning the IC for the
Trojan.

We finally like to mention that the tester equipment’s
max frequency limits the type of timing-paths that could be
subjected to AVATAR for a Trojan test. Besides, the mini-
mum step size (min change in clock frequency) of the tester
equipment limits the size of Trojan that could be detected
by AVATAR. For example, if the Trojan delay is 20ps, with
a tester step size of 100ps there is a good chance that the
Trojan skips detection if the timing paths’ original delay is
not close to the boundary of frequency bucket, which is set
by the tester’s step size.

E. OTHER TROJAN BENCHMARKS
Regardless of the HT activation mechanism (e.g., combina-
tional or sequential), the Trigger or Payload of an HT affects
the delay of all timing paths passing through the affected
net. Hence, as a side-channel delay solution, the accuracy of
the AVATAR is independent of the HT activation mechanism
and only a function of how significant the added capacitance
of Trigger or added delay of Payload is. That is why in the
first section of our experimental results, we investigated the
chances of HT detection using a single Payload and small
triggers by only using simple combinational HT circuits.
However, for the sake of completeness, we have also tested
our solutions using several HT benchmarks in TrustHub
benchmark suit [46], [47]. Unfortunately, all HT benchmarks
at the ‘‘Fabrication stage’’ on TrustHub only contain the
HT-inserted circuit’s Design Exchange Format (DEF). They
are missing the technology library, constraint file, and the
GDSII of the HT-free circuit. Please note that we assume

VOLUME 9, 2021 92897



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

TABLE 9. Trojan detection result for the TrustHub benchmarks.

that AVATAR has access to GDSII of HT-free circuit in our
flow, and only the fabricated IC is untrusted. To settle this
shortage, we take the HT benchmarks from the Gate Abstrac-
tion level (where both HT-free and HT-inserted netlists are
available) and take the gated netlists through physical design
in 32nm technology. Later, we extract the HT circuit from
the malicious benchmark and manually add it to the clean
and routed netlist. We then run incremental placement and
routing for legalization. To simulate the fabricated chips and
to assign the labels in a dataset, we take the malicious bench-
marks through SPICE simulation with the settings similar to
Section V-B to model a typical process drift (mentioned in
Section IV-A), process variation, and tester’s step size limit.
Finally, we extract the slack of timing paths, and following
Algorithm 1, we prepare the train-set of the NN-watchdog.

The training and test set preparation and the training of
the NN-watchdog (stack learning model) are done using the
methodology described previously with the difference that
this time, we made sure that the HT is included in the training
set to model the worst-case scenario. Table 8 explains the
HT types used from the TrustHub benchmark. The result of
our HT detection solution on these benchmarks are reported
in Table 9. Note that HT benchmarks range within ‘‘sequen-
tial Trojans, combinational Trojans, or Trojans with no Pay-
load.’’ As shown in Table 9, AVATAR was able to detect all
HT benchmarks by detectingmost triggers and all payload for
each HT circuitry. This is consistent with the results reported
for our simple HT circuit, where the Trojan payload detection
rate was significantly higher than the Trojan trigger detection
rate. Also, note that it is only enough to detect one of its
Triggers or payload(s) to detect an HT. Also, note that the
number of false positives is quite low, and our diagnostic test,
as expected, can significantly reduce this false positive rate.

VI. CONCLUSION
In this paper, we presented a promising learning-assisted
methodology for Trojan detection based on side-channel
delay analysis (using clock frequency sweeping) that does not
require the availability and usage of a Golden IC. For Trojan
detection, Our proposed solution relies on 1) sensitizing the
netlist at design time to amplify the impact of HT, 2) training

aNeural Network at test time that is used as a process tracking
watchdog to model the process drift (while accounting for
process variation), and 3) clock frequency sweeping test to
find the start to fail frequencies for different timing paths.
Our proposed solution is complemented with a diagnostic test
that could reduce the false positive rate of our Trojan Trigger
and Trojan Payload detection to zero (or near zero), while
pinpointing to the location of HT for True-positive cases.
We have reported that AVATAR could achieve over ∼98%
Trojan detection rate over selected benchmarks.

REFERENCES
[1] A. Yeh, ‘‘Trends in the global IC design service market,’’DIGITIMES Res.,

Mar. 2012.
[2] M. Tehranipoor and F. Koushanfar, ‘‘A survey of hardware Trojan taxon-

omy and detection,’’ IEEE Des. Test Comput., vol. 27, no. 1, pp. 10–25,
Jan. 2010.

[3] D. S. Board. (2005). Task Force on High Performance Microchip Supply.
[Online]. Available: http://www.acq.osd. mil/dsb/reports/ADA435563.pdf

[4] N. Karimi, J.-L. Danger, and S. Guilley, ‘‘On the effect of aging in detecting
hardware Trojan horses with template analysis,’’ in Proc. IEEE 24th Int.
Symp. On-Line Test. Robust Syst. Design (IOLTS), Jul. 2018, pp. 281–286.

[5] A. Rawnsley, ‘‘Fishy chips: Spies want to hack-proof circuits,’’ Wired,
Jun. 2011.

[6] R. Johnson, ‘‘The Navy bought fake Chinese microchips that could have
disarmed USmissiles,’’ Business Insider, NewYork, NY, USA, Tech. Rep.,
Jun. 2011.

[7] S. Skorobogatov and C. Woods, ‘‘Breakthrough silicon scanning discovers
backdoor in military chip,’’ in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst. Berlin, Germany: Springer, 2012, pp. 23–40.

[8] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, ‘‘A2: Analog
malicious hardware,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2016,
pp. 18–37.

[9] S. Adee, ‘‘The hunt for the kill switch,’’ IEEE Spectr., vol. 45, no. 5,
pp. 34–39, May 2008.

[10] Y. Alkabani and F. Koushanfar, ‘‘Consistency-based characterization for
IC Trojan detection,’’ in Proc. Int. Conf. Comput.-Aided Design (ICCAD),
2009, pp. 123–127.

[11] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, ‘‘Hardware Trojan
attacks: Threat analysis and countermeasures,’’ Proc. IEEE, vol. 102, no. 8,
pp. 1229–1247, Aug. 2014.

[12] H. Salmani and M. Tehranipoor, ‘‘Layout-aware switching activity local-
ization to enhance hardware Trojan detection,’’ IEEE Trans. Inf. Forensics
Security, vol. 7, no. 1, pp. 76–87, Aug. 2011.

[13] R. Rad, J. Plusquellic, and M. Tehranipoor, ‘‘Sensitivity analysis to hard-
ware Trojans using power supply transient signals,’’ in Proc. Int. Workshop
Hardw.-Oriented Secur. Trust, 2008, pp. 3–7.

[14] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey, ‘‘Hardware
Trojan horse detection using gate-level characterization,’’ in Proc. 46th
Annu. Design Automat. Conf., 2009, pp. 688–693.

92898 VOLUME 9, 2021



A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

[15] D. Du, S. Narasimhan, R. S. Chakraborty, and S. Bhunia, ‘‘Self-
referencing: A scalable side-channel approach for hardware Trojan detec-
tion,’’ in Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst.Berlin,
Germany: Springer, 2010, pp. 173–187.

[16] K. Xiao, X. Zhang, and M. Tehranipoor, ‘‘A clock sweeping technique
for detecting hardware trojans impacting circuits delay,’’ IEEE Des. Test,
vol. 30, no. 2, pp. 26–34, Apr. 2013.

[17] Y. Jin and Y. Makris, ‘‘Hardware Trojan detection using path delay fin-
gerprint,’’ in Proc. IEEE Int. Workshop Hardw.-Oriented Secur. Trust,
Jun. 2008, pp. 51–57.

[18] J. Li and J. Lach, ‘‘At-speed delay characterization for IC authentication
and Trojan horse detection,’’ inProc. IEEE Int. WorkshopHardw.-Oriented
Secur. Trust, Jun. 2008, pp. 8–14.

[19] H. Li, Q. Liu, and J. Zhang, ‘‘A survey of hardware Trojan threat and
defense,’’ Integration, vol. 55, pp. 426–437, Sep. 2016.

[20] N. Jacob, D. Merli, J. Heyszl, and G. Sigl, ‘‘Hardware Trojans: Current
challenges and approaches,’’ IET Comput. Digit. Techn., vol. 8, no. 6,
pp. 264–273, Nov. 2014.

[21] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
‘‘Hardware Trojans: Lessons learned after one decade of research,’’ ACM
Trans. Design Autom. Electron. Syst., vol. 22, no. 1, pp. 1–23, Dec. 2016.

[22] S. R. Hasan, C. A. Kamhoua, K. A. Kwiat, and L. Njilla, ‘‘Translating
circuit behavior manifestations of hardware Trojans using model checkers
into run-time Trojan detection monitors,’’ in Proc. IEEE Asian Hardw.-
Oriented Secur. Trust (AsianHOST), Dec. 2016, pp. 1–6.

[23] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty, ‘‘Towards
Trojan-free trusted ICs: Problem analysis and detection scheme,’’ in Proc.
Design, Automat. Test Eur., Mar. 2008, pp. 1362–1365.

[24] R. Rad, J. Plusquellic, andM. Tehranipoor, ‘‘A sensitivity analysis of power
signal methods for detecting hardware Trojans under real process and
environmental conditions,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 18, no. 12, pp. 1735–1744, Oct. 2010.

[25] H. Salmani, M. Tehranipoor, and J. Plusquellic, ‘‘New design strategy
for improving hardware Trojan detection and reducing Trojan activa-
tion time,’’ in Proc. IEEE Int. Workshop Hardw.-Oriented Secur. Trust,
Jul. 2009, pp. 66–73.

[26] M. Lecomte, J. Fournier, and P. Maurine, ‘‘An on-chip technique to detect
hardware Trojans and assist counterfeit identification,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 25, no. 12, pp. 3317–3330, Dec. 2017.

[27] S. Wei and M. Potkonjak, ‘‘Scalable hardware Trojan diagnosis,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 6, pp. 1049–1057,
Jun. 2012.

[28] O. Söll, T. Korak, M. Muehlberghuber, and M. Hutter, ‘‘EM-based detec-
tion of hardware Trojans on FPGAs,’’ in Proc. IEEE Int. Symp. Hardw.-
Oriented Secur. Trust (HOST), May 2014, pp. 84–87.

[29] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, ‘‘Trojan
detection using IC fingerprinting,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2007, pp. 296–310.

[30] S. Wang, X. Dong, K. Sun, Q. Cui, D. Li, and C. He, ‘‘Hardware Trojan
detection based on ELM neural network,’’ in Proc. 1st IEEE Int. Conf.
Comput. Commun. Internet (ICCCI), Oct. 2016, pp. 400–403.

[31] F. K. Lodhi, I. Abbasi, F. Khalid, O. Hasan, F. Awwad, and S. R. Hasan,
‘‘A self-learning framework to detect the intruded integrated circuits,’’ in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2016, pp. 1702–1705.

[32] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, ‘‘Silicon demonstration of
hardware Trojan design and detection in wireless cryptographic ICs,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 4,
pp. 1506–1519, Apr. 2017.

[33] V. Wang, K. Agarwal, S. Nassif, K. Nowka, and D. Markovic, ‘‘A design
model for random process variability,’’ in Proc. 9th Int. Symp. Qual.
Electron. Design (ISQED), Mar. 2008, pp. 734–737.

[34] A. Mutlu, J. Le, R. Molina, and M. Celik, ‘‘A parametric approach for
handling local variation effects in timing analysis,’’ in Proc. 46th Annu.
Design Automat. Conf., 2009, pp. 126–129.

[35] M. Gruber, Improving Efficiency By Shrinkage: The James–Stein and
Ridge Regression Estimators. Evanston, IL, USA: Routledge, 2017.

[36] L. Breiman, ‘‘Stacked regressions,’’ Mach. Learn., vol. 24, no. 1,
pp. 49–64, Jul. 1996.

[37] D. H. Wolpert, ‘‘Stacked generalization,’’ Neural Netw., vol. 5, no. 2,
pp. 241–259, Jan. 1992.

[38] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785–794.

[39] H. Zou and T. Hastie, ‘‘Regularization and variable selection via the elastic
net,’’ J. Roy. Stat. Soc., B, Stat. Methodol., vol. 67, no. 2, pp. 301–320,
Apr. 2005.

[40] R. Tibshirani, ‘‘Regression shrinkage and selection via the Lasso,’’ J. Roy.
Stat. Soc., B, Methodol., vol. 58, no. 1, pp. 267–288, Jan. 1996.

[41] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York, NY, USA:
Springer, Aug. 2009, doi: 10.1007/b94608.

[42] T. K. Ho, ‘‘Random decision forests,’’ in Proc. 3rd Int. Conf. Document
Anal. Recognit., vol. 1, 1995, pp. 278–282.

[43] N. J. Perkins and E. F. Schisterman, ‘‘The inconsistency of ‘optimal’
cutpoints obtained using two criteria based on the receiver operating
characteristic curve,’’ Amer. J. Epidemiol., vol. 163, no. 7, pp. 670–675,
2006.

[44] IWLS 2005 Benchmarks. Accessed: Apr. 17, 2018. [Online]. Available:
http://iwls.org/iwls2005/benchmarks.html

[45] A. Vakil, F. Behnia, A. Mirzaeian, H. Homayoun, N. Karimi, and A. Sasan,
‘‘LASCA: Learning assisted side channel delay analysis for hardware Tro-
jan detection,’’ in Proc. 21st Int. Symp. Qual. Electron. Design (ISQED),
2020, pp. 40–45.

[46] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
‘‘Benchmarking of hardware Trojans and maliciously affected circuits,’’
J. Hardw. Syst. Secur., vol. 1, no. 1, pp. 85–102, Mar. 2017.

[47] H. Salmani, M. Tehranipoor, and R. Karri, ‘‘On design vulnerability anal-
ysis and trust benchmarks development,’’ in Proc. IEEE 31st Int. Conf.
Comput. Design (ICCD), Oct. 2013, pp. 471–474.

[48] A. Apache. Redhawk. Accessed: Apr. 17, 2018. [Online]. Available:
https://www.apache-da.com/products/redhawk

ASHKAN VAKIL received the B.Sc. degree in
electrical engineering from Mazandaran Univer-
sity, Mazandaran, Iran, and the M.Sc. degree
in electrical engineering from the University of
Bridgeport, CT, USA, in 2015. He is currently
pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering, George
Mason University. He has worked earlier on nano-
electronic and carbon nano tube conductivity. His
research interests include the areas of low power

design, variation modeling, and hardware-trojan detection and security.

ALI MIRZAEIAN received the B.Sc. and M.Sc.
degrees in computer engineering from the Isfahan
University of Technology (IUT), Isfahan, Iran,
in 2013 and 2016, respectively. He is currently
pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering, George
Mason University. His research interests include
accelerator design for neural networks and neural
network security.

HOUMAN HOMAYOUN received the B.Sc.
degree in electrical engineering from the Sharif
University of Technology, Tehran, Iran, in 2003,
the M.Sc. degree in computer engineering from
the University of Victoria, Victoria, BC, Canada,
in 2005, and the Ph.D. degree from the Department
of Computer Science, University of California at
Irvine, Irvine, CA, USA, in 2010. He is currently
an Associate Professor with the Department of
Electrical and Computer Engineering, University

of California at Davis, Davis, CA. He was the Technical Program Co-Chair
of the GLSVLSI 2018 and the General Chair of the 2019 GLSVLSI Confer-
ence. Since 2017, he has been serving as an Associate Editor for the IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS.

VOLUME 9, 2021 92899

http://dx.doi.org/10.1007/b94608


A. Vakil et al.: AVATAR: NN-Assisted Variation Aware Timing Analysis and Reporting for HT Detection

NAGHMEH KARIMI (Member, IEEE) received
the B.Sc., M.Sc., and Ph.D. degrees in computer
engineering from the University of Tehran, Iran,
in 1997, 2002, and 2010, respectively. She was
a Visiting Researcher with Yale University, and
a Postdoctoral Researcher with Duke University
and NewYork University. She joined University of
Maryland Baltimore County, as an Assistant Pro-
fessor, in 2017, where she leads the Secure, Reli-
able and Trusted Systems (SECRETS) Research

Laboratory. Her current research interests include hardware security and
VLSI testing and reliability. She was a recipient of the National Science
Foundation CAREER Award, in 2020. She serves as an Associate Editor
for the Journal of Electronic Testing: Theory and Applications (JETTA)
(Springer).

AVESTA SASAN (Senior Member, IEEE) received
the B.S. degree in computer engineering, the M.S.
and Ph.D. degrees from the Department of Elec-
trical and Computer Engineering, University of
California at Irvine, Irvine, in 2005, 2006, and
2010, respectively. In 2010, he joined the office of
the Chief Technology Officer at Broadcom Cor-
poration. He worked on the physical design and
implementation of ARM processors, serving as a
Physical Designer, Timing Sign off Specialist, and

the Lead of signal and power integrity sign off in this team. In 2014, he was
recruited by Qualcomm’s office of VLSI technology. In this role, he devel-
oped different methodologies and in-house EDA’s for accurate sign-off and
analysis of hardened ASIC solutions. He joined George Mason University,
in 2016, and he is currently serving as an Associate Professor with the
Department of Electrical and Computer Engineering. His research interests
include low power design and methodology, hardware security, computer
security, cybersecurity, accelerated computing, approximate computing, and
neuromorphic computing.

92900 VOLUME 9, 2021


