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ABSTRACT. The physicist Sir William Thomson (also known as Lord
Kelvin) proposed in 1867 [56] [57] [58] that physical atoms were knotted
vortex tubes in the then postulated all pervasive fluid called ether. The
physicist Peter Guthrie Tait became so enamored with Thomson’s the-
ory that he undertook a study of the mathematical properties of knots,
thus giving birth to the field of knot theory.

Although scientific evidence has since shown conclusively that phys-
ical atoms are by no means knotted vortices in the sense of Thom-
son, Thomson’s theory has fragmented and relatively recently reemerged
in many much more sophisticated forms in both classical and non-
classical physics. With the work of Jones, Witten, and others, knot
theory has now begun to reassociate on a serious basis with its long lost
ancestor, physics [28].

The first section of this paper gives a brief survey of the early Thomson
atomic vortex theory as it developed within the James Clerk Maxwell
milieu. The paper then focuses on the modern legacies of this theory in
classical electrodynamics. In particular, the second and third sections of
this paper look at some of the recent developments on knotted magnetic
vortices and knotted electrostatic vortices, respectively.

In summary, this paper focuses on the study of the electromechanical
behavior of knotted tubes of electrical charge and magnetic flux. Surpris-
ingly, even within classical physics (more specifically, classical electro-
dynamics), there are many important unresolved questions about such
objects. Many of these questions are relevant to such diverse fields as
plasma physics, polymer physics, molecular biology, and, of course, knot
theory.
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1. Introduction: A TALE OF TWO CENTURIES BEGINS
WITH KELVIN’S KNOTTED VORTICES

We begin our tale of two centuries in the late nineteenth century, a time
when the atomic structure of matter was just beginning to unfold. Herman
von Helmholtz had just published a paper [26] on what James Clerk Maxwell
referred to as “water twists.” In this paper, Helmholtz proved the surprising
result that, within an incompressible, inviscid, constant density fluid, fluid
vortices are actually permanent and indivisible.
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Figure 1. Fluid vortices, also called “water twists.”

After reading Helmholtz’s paper, the Edinburgh University physicist! Pe-
ter Guthrie Tait gave a series of lectures on Helmholtz’s paper. To demon-
strate Helmholtz’s result in his lectures, he used an apparatus of his own
design that produced vortex rings of smoke. His presentations illustrated
quite vividly and dramatically that:

e The vortex rings behaved as independent solids.

e On collision with one another, the vortex rings rebounded as if they
were quivering elastic solids, like rings of rubber.

e The smoke rings exhibited fascinating vibration modes about their
circular form.

e On each attempt to cut the smoke rings with a knife, the smoke rings
would simply wriggle around the knife. The rings were indivisible!

It just so happened that a professional colleague of Tait’s, the physicist Sir
William Thomson (also later known as Lord Kelvin) was in the audience of
one of Tait’s lecture-demonstrations. During Tait’s presentation, Thomson
was struck by the evident permanence and indivisibility of “water twists,”
as illustrated by Tait’s smoke rings. It was at some time into this lecture
that Thomson conceived of and created his atomic vortex theory, i.e., that
atoms were nothing more than knotted and linked tubular vortices in the
then postulated all pervasive fluid called ether. Starting in 1867, Thomson
published a series of papers [56] [57] [58] that explained his theory.

In the nineteenth century, physicists were called natural philosophers.



THE MODERN LEGACIES OF THOMSON’S VORTEX THEORY 3

The atomic vortex theory appears to have been well received by the best
minds of the nineteenth century. The physicist James Clerk Maxwell was
much impressed with Thomson’s atomic theory[3] [33]. Maxwell noted that,
unlike the other atomic theories of the time, Thomson’s theory was based
on only a few assumptions. Because of its axiomatic simplicity, it was more
likely to represent the physical world than the other existing theories of the
time.

Peter Guthrie Tait became so enamored with the theory that he dedicated
many years to constructing tables of knots (i.e. ,Tait’s “periodical tables”),
thus giving birth to the field of knot theory [53].

Tait is also known to have carried on a dialog with Maxwell. In a letter
from Maxwell to Tait [33, page 106], Maxwell wrote,

GLENLAIR
DALBEATTIE,
Nov. 13, 1867.
Dear Tait

If you have any spare copies of your translation of Helmholtz
on “Water Twists” I should be obliged if you could send me
one.

I set [sic] the Helmholtz dogma to the Senate House in *66,
and got it very nearly done by some men, completely as to
the calculation, nearly as to the interpretation.

Thomson has set himself to spin the chains of destiny out of
a fluid plenum as M. Scott set an eminent person to spin ropes
from the sea sand, and I saw you had put your calculus in
it too. May you both prosper and disentangle your formulae
in proportion as you entangle your worbles. But I fear the
simplest indivisible whirl is either two embracing worbles or
a worble embracing itself.

For a simple closed worble may be easily split and the
parts separated

O
©©©

but two embracing worbles preserve each others solidarity
thus
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though each may split into many, every one of the one set
must embrace every one of the other. So does a knotted one.

S

yours truly
J. CLERK MAXWELL

Although scientific evidence has since shown conclusively that physical
atoms are by no means vortices in the sense of Thomson, Thomson’s the-
ory has fragmented and relatively recently reemerged in many much more
sophisticated forms in both classical and non classical physics.

In his 1991 Josiah Willard Gibbs Lecture, entitled “The Mysteries of
Space,” Sir Michael F. Atiyah pointed out four inherent properties of vortex
atoms that explain the longevity of vortex theory [3] [4]. These four inherent
characteristics are:

e Stability: Vortex atoms are stable, as are physical atoms.

e Variety: There is a great variety of knots, as there is a great variety
of physical atoms.

e Spectrum: Vortex atoms have energy states and vibration modes, as
do physical atoms.

e Transmutation: Knotted vortex atoms change their knot type if
their energy is increased beyond a certain threshold, as do physical
atoms change their atomic structure.

The recent resurgence of knot theory in physics can be thought of as
simply an expression of a recurring major theme in physics, namely:

Physics = Geometry

Certainly the placement problem is a central part of geometry. A sim-
plistic statement of the placement problem is given below:

The Placement Problem. When are two placements of the same space
X in a space Y equivalent?
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Figure 2. The Placement Problem

2. Part 1: KNOTTED MAGNETIC VORTICES IN THE
TWENTIETH CENTURY

Our story resumes in the twentieth century with the works of Moffatt,
Ricca, Berger, Arnold, Freedman, He, and others [38] [39] [40] [41] [42] [14]
[49] [7] [8] [1] [15] [16] [61].

3. PRELIMINARIES: MAGNETIC FIELDS IN PERFECTLY
CONDUCTING INCOMPRESSIBLE FLUIDS

Consider an incompressible constant density fluid in R® with velocity
field v(x,t). If the fluid is contained within a closed surface, assume that
the velocity field on that surface is tangent to the surface. Because of in-
compressibility, the velocity field is solenoidal, i.e.,

V-v=20
Let

x 2 X(x,t),

denote the fluid flow, where X(x,?) denotes the position at time ¢ of a
fluid particle that started at position x at time ¢ = 0. Thus, X(x,0) =
X. Because of incompressibility, g is a parameterized family of volume
preserving diffeomorphisms, i.e., g:eSDif f. Thus, if R is a region bounded
by a smooth surface S = 9R, then, as the surface ¢;S (and hence the region
g¢R) moves with the flow, the volume

[ ava

gtOR
remains constant with time. The region g:/R may of course continuously
change its shape. But its volume always remains the same.
Let B be a magnetic field? that is present in the fluid. Since B is
solenoidal, i.e., V- B = 0, there exists a vector potential A (uniquely deter-
mined up to the gradient of an arbitrary scalar function) such that

B=VxA

2With few exceptions, everything said within this paper for a magnetic field B is equally
valid for an arbitrary solenoidal vector field.
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Next, assume that the fluid is perfectly conducting. This assumption
implies that the magnetic field is frozen in the fluid, and that its behavior
is determined by the frozen field equation,

oB
E—VX<VXB)

By ‘frozen,” we mean that the magnetic lines of force move with the fluid.
Thus, if S is a surface bounded by a closed curve C = 98, then the magnetic
flux ® crossing the moving surface ¢S, i.e.,

q)(gtS)://B-da:%A~dx

gtS atS

remains constant with time.

A surface S is said to be a magnetic surface if the magnetic field B
on S is tangent to 8. Since B is frozen in the fluid, it follows that, if
S is a magnetic surface at time ¢ = 0, then the moving surface ¢;:S (i.e.,
the surface moving with the fluid) remains a magnetic surface for all time
t > 0. Moreover, if S is also a closed surface, then as the parameterized
family of magnetic surfaces ¢S dynamically changes its shape with time ¢,
incompressibility implies that the volume g:R which ¢S encloses

[ ava

gtR

remains constant. Of course, the magnetic flux leaving a closed magnetic
surface is zero.

4. KNOTTED AND LINKED TUBES OF MAGNETIC FLUX

The following definition by the author captures much of the intent and
content of the many constructions and examples found within Moffatt’s and
Berger’s papers [39] [40] [41] [42] [7].

Let T denote the standard solid torus in R? given by

( (24 ¢ccosO)cosp, (2+4ccosl)sing, ¢esinf) )

where 0 < 0, ¢ < 27 and 0 < € < 1. For relatively prime integers p and g,
let F 4 denote the foliation of T by the curves 7.9 (where 0 < e < 1 and
0 <6 < 27) given by

Yeo(s) =( (2+€cos(0 + gs))cos(ps), (24 ecos(0+ gs))sin(ps), esin(d + gs))

where 0 < s < 27.

)



THE MODERN LEGACIES OF THOMSON’S VORTEX THEORY 7

Figure 3. Construction of the foliation i g of the standard torus T.
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Figure 4. Construction of the foliation F, 4 from Fj o by Dehn Surgery.
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Definition 4.1. *A magnetic tubular link (or more bricfly, a magnetic
link) is a smooth immersion into R?® of finitely many disjoint standard solid

.n
tori U T,
i=1
" 3
L: ‘|_|1TZ' —R
=

and a smooth magnetic field B on R?® such that
(1) L is an imbedding when restricted to the interior of .QITZ'

1=
(2) The bounding surface of UL (T;), i.e., UL (IT;) is a magnetic surface
(3 (3

(3) For each component LT;, there exist relatively prime non-zero integers
p; and g; such that L maps the foliation Fp, 4 of T; onto the integral
curves of B in LT;.

Remark 4.1. In the above definition, we have allowed L, when restricted
to the boundary, to be an immersion to deal with a phenomenon that occurs
when the limit is taken under magnetic relaxation of a magnetic link.

Remark 4.2. Thus, for every fixred © and j, the linking number between
an arbitrary field line in L'T; and an arbitrary field line in LT; is the same
regardless of which integral curves are chosen from LT; and LT; respectively.
This is true even when = j.

3This definition encompasses the examples of Moffatt and Berger constructed by Dehn
surgery with a twist 2mh where h is a rational number. To deal with twists for which h is
irrational, one should also allow foliations F,, 4 where p and g are non-zero real numbers
whose ratio p/q is irrational. In this case the curves . o(s), -co<s<co, are no longer
closed. Arnold’s asymptotic linking number [1] would then be required in what is to
follow. This is considerably more complicated.
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It follows that a magnetic link ULT; remains a magnetic link under the
(2

action of the fluid flow. Le., Ug:LT; is a magnetic link for ¢ > 0.
(2

Keeping in mind that the magnetic field B is frozen in the fluid, our
next objective is to find and study those properties of magnetic links that
are invariant under the action of fluid flow. One obvious invariant is the
volume V; of each flux tube g LT;, i.e.,

Vi = Vol(LT;) = Vol(g:LT;) = // dwvol
gt LT,

which remains unchanged because of incompressibility.

Another invariant of fluid flow is defined as follows:

Definition 4.2. Let L be a magnetic link. For each solid torus T;, choose a
meridional disk D;. The magnetic flux ©; = ® (LT;) in the i-th component
1s the surface integral defined as

O, =D (LT;) :/ B-Udarea
D,

where U denotes the normal to the surface L'D; pointing in the positive
direction induced by the B-field.

It can be shown that ®; is independent of the chosen meridional disk. It
also can be shown that each ®; is a fluid flow invariant, i.e.,

O, (g LT;) = / B -Udarea

gt LD;

is independent of t.

One more fluid flow invariant that will play a central role in the energy
minimization of magnetic links is given by the following definition.

Definition 4.3. The helicity* ® of a magnetic link L is defined as:

H(L) :// A -Bdwvol

U LT;
k2

“The term helicity was first introduced in a fluid context by Moffatt in [39]. The term
helicity was previously used in particle physics for the scalar product of the momentum
and spin of a particle.

®Please note that the helicity H(L) is the same as the Chern-Simon action. For H(L)
can be expressed as

'H(L):/A/\dA:/Trace <A/\dA+§A/\A/\A)

where A now denotes the magnetic vector potential as a 1-form. For details, see [5].
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It can be shown that H(L) is gauge invariant, and hence well defined.

Theorem 4.1. [41][1] ¢ The helicity is invariant under fluid flow, i.c.,

d
@H@tL) =0

The following theorem is believed by the author to summarize the many
results found within the works of Moffatt, Ricca, and Berger relating the he-
licity of magnetic links to linking and to magnetic flux [38] [39] [40] [41] [42]
[7] [49].

Theorem 4.2. Let L be a magnetic link. Then
H(L)y= > ®SLyp +2 Y  &;0;LK;

1<i<n 1<2<j<n
where SLg, denotes the self-linking number’ of the axis curve of the
tube L'T; with respect to the framing F; induced by the integral curves of the
magnetic field B within LT;, and LK;; denotes the linking number between

any integral curve of the magnetic field B in LT; with any integral curve of
the magnetic field B in LT;.

Remark 4.3. Please note that SLy, is the same as the linking number be-
tween any two integral curves of the magnetic field B within the tube LT;.

Thus, as noted by Moffatt [38] [39] [40] [41], Berger [7], Arnold [1], Freed-
man [15] [16], and others [49], the helicity does reflect the topology and the
geometry of the magnetic lines of force within a magnetic link.

If for example L has only one component, i.e., L is a magnetic knot, then
H(L) = ®2SLs(C)

where SLy(C) is the self-linking number of the axis curve C of the knotted
tube with respect to the framing F induced by the integral curves of the
magnetic field B within the magnetic knot.® If for example the tube is
knotted in the form of a trefoil and if the magnetic lines of force appear to
be parallel to the axis curve when the trefoil is placed on a plane flat surface
as shown Fig. 5,

SArnold defines the helicity in a more abstract setting and shows that it is invariant
under the group SDif f of volume preserving diffeomorphisms.

“For a definition of self-linking number, see for example [22]

8This is the same as the linking number between any two distinct magnetic lines of
force within the magnetic tube.
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Figure 5. A magnetic trefoil with helicity H = +£3®2.

then S = £3 and
H = +352.

On the other hand, if for example the magnetic lines of force induce the
trivial framing in each component, then
H(L)=2 > ®®;LK;
1<i<j<n
Thus, if L is a magnetic two component Hopf link with no twisting of the
integral curves of the magnetic field within the components of L as shown

in Fig. 6,
Figure 6. Magnetic Hopf link with trivial framing.
then

H(L) = +20,,

because the self-linking number based on the B-field framing is zero for each
component, and the linking number between the two components is +1.

Finally, we close this section with the definition of the energy of a magnetic
link.

Definition 4.4. The (magnetic) energy £y (L) of a magnetic link L is
defined by the classical formula

1
En(L) = g///]B]Q dwvol (Gaussian  units).
JULT;
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Although the energy &, is not flow invariant, it will play a central role
when magnetic relaxation is discussed in the next section.

5. MAGNETIC RELAXATION AND MINIMUM ENERGY
MAGNETIC LINKS

We now turn to the task of studying magnetic relaxation and minimum
energy magnetic links.

Consider a magnetic link L in a perfectly conducting, incompressible, vis-
cous fluid. As a result of dissipative frictional fluid forces, the magnetic
energy Ear(gel) of g+ L will decrease with time ¢. In losing energy, the mag-
netic lines of force will contract. On the other hand, since this is a volume
preserving process, the cross sections of the flux tubes of gL will at the
same time expand. These changes occur while the flux and helicity of g:L
will remain the same.

This process can not continue indefinitely. For eventually the magnetic
flux tubes of gL must make contact with each other, as indicated in Fig. 7.

Energy
Dissipation

%

Contact !

Figure 7. Magnetic relaxation of a magnetic trefoil.

In other words, the topology of the magnetic link g:L, as expressed in knot-
ting and linking, creates a barrier to the full dissipation of the magnetic link’s
energy. Le., Ea(g:L) has a positive lower bound that results from the topol-
ogy of g:L.. Thus, the magnetic link will reach a non-trivial stable and in-
variant energy state, much as Kelvin conjectured his atomic vortices would.

Since the helicity H(g:L) is both an invariant of fluid flow and an ex-
pression of the magnetic link g:L’s topology, the following theorem is one
mathematical expression of this topological bound.

Theorem 5.1. [40]|[41] Let L be a magnetic link. Then
Em(L) = qo[H(L)]

where qg is a non-zero constant that is independent of the magnetic link.
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In [15] and [16], Freedman and He obtain more subtle and tighter topo-
logical bounds on the minimum energy of magnetic links. For example, for
a magnetic knot K they prove that

1 ®(K)3ac(K)T _ L oK )% (29(K) — 1))
mvE)T T V()
where V(K) denotes the volume of the magnetic knot K, where ®(K) de-

notes the flux in K, where ac(K) is the asymptotic crossing number, and
where g(K) is the genus of the knot K. Freedman and He conjecture that

ac(K) = ¢(K)

En(K) > (Gaussian units)

where ¢(K) is the crossing number, i.e., the minimum number of crossings
among all plane diagrams representing the knot K.

In [40] and [41], Moffatt suggests that the minimum energy spectrum of
a magnetic knot can be used to construct new knot invariants.

Figure 8. Two different reprsentatives of the trefoil knot type that could
possibly magnetically relax to different minimal energy positions. Example
taken from [40].

6. Part 2: KNOTTED ELECTROSTATIC VORTICES IN THE
TWENTIETH CENTURY

A seemingly independent part of our tale of two centuries also resumes in
the twentieth century with the works of Freedman, He, Birman, Lomonaco, Kus-

ner, and others [18] [20] [9] [35] [12] [50] [51] [32] [45].

7. PRELIMINARIES: KNOTTED LOOPS AND TUBES
OF ELECTRICAL CHARGE AND THE HONEY JAR
PROBLEM

Consider a knotted loop a of string or wire that is perfectly flexible but
non-extensible, hence of fixed length. Assume that a carries a fixed elec-
trical charge ). And let a be placed in a non-conducting, non-dielectric
viscous fluid which we shall call “honey.”



THE MODERN LEGACIES OF THOMSON’S VORTEX THEORY 13

The Honey Jar Problem (HJP)Q: Find the minimal energy position or
positions eventually assumed by the knotted loop a as a result of the repulsive
Coulomb forces in combination with the dissipative frictional fluid forces.

Tense

WWeak
“WWimpy " Add Rigid

THONG!

Figure 9. A possible example of an inextensible, flexible knot assuming a
minimal energy position when a fixed charge @ is added.

There are actually at least two honey jar problems, i.e.,

e The conducting honey jar problem where the charges are allowed
to move freely on «, i.e., a is assumed to be a perfect conductor. In
this case, we refer to o as a wire.

e The non-conducting honey jar problem where the charges on «
are immobile, i.e., a is assumed to be a perfect non-conductor. In this
case, we refer to o as a string,.

(e

Figure 10. A possible example of a minimal energy electrostatic link.

@3 R

Figure 11. A possible example of a minimal energy electrostatic knot.
Example taken from [18].

9The phrase ‘honey jar’ is taken from [20].
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In [9] [35], Birman and Lomonaco discussed many of the aspects and
difficulties that arise in this problem. In [9], it is pointed out that the loop
a can be viewed in at least three ways, thus giving rise to three different
honey jar problems for each of the above two cases, namely,

(1) The HIP for curves where the loop « is a knotted simple closed space
curve in R? carrying a charge given by a linear charge density function
A,

(2) The HJP for hollow tubes where the loop « is a knotted hollow
tube (of constant cross-sectional radius €) in R?® carrying a surface
charge given by a surface charge density function o,

(3) The HIP for solid tubes where the loop « is a knotted solid tube
(of constant cross-sectional radius ¢) in R? carrying a charge given by
a volume charge density function p.

In each of these cases the ultimate goal is to understand physical behavior.
Success to this end can best be measured in terms of the following yardstick.

The Asymptotic Behavior Objective (ABO) Yardstick. The objec-
tive is to understand minimum energy asymptotic behavior, i.e., the mini-
mum enerqy behavior of a physical knotted charged string or wire as its cross
section approaches zero.

8. THE HONEY JAR PROBLEM FOR CURVES: MINIMUM
ENERGY KNOTTED SPACE CURVES OF ELECTRICAL
CHARGE

One of the major stumbling blocks encountered in the HJP for curves is a
theorem in potential theory [29] that states that the potential energy of an
electrically charged space curve is necessarily infinite. The potential energy
of a simple closed curve x(s) parameterized by arclength s and having a
charge density function A(s) is given by the classical formula

£ 17{7{ A($)A(s')dsds
2 [x(s) —x(s')|
which as stated is divergent. As Jackson points out in [27], the above integral
diverges because of “self-energy” contributions of the electric field.
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/>

>x(s) >x(s=")

Figure 12. Two position vectors z(s) and z(s') pointing to two distinct
points on a trefoil.

This singular behavior (pun intended) calls for great ingenuity for those in
pursuit of the minimum energy positions of such curves! A number of renor-
malization techniques have been employed to navigate around this difficulty.

Fukuhara [21], for example, uses the discrete version of the above integral

1 .
2 Z &AiSAjS

1<i<j<n |x: — x|
which is obviously finite. This approach yields physically meaningful results
for a discrete set of charges. But are these results meaningful in the limit?
Le., in terms of the ABO yardstick, are these results physically meaningful
as each A;s is approaches zero?

Birman and Lomonaco in [9] and Lomonaco in [35] renormalize by replac-
ing the Coulomb potential of classical electrodynamics % with =L, so that

r+te?
the energy & becomes

e 1 A($)A(s')dsds
c 2 7{7{ |x(s) —x(s')| + ¢
It is hoped, but not proven, that a result gained with this definition of energy
will give meaningful results about asymptotic behavior, i.e., as ¢ tends to
ZETOo.

With this renormalization scheme for the conducting HJP for curves, it

can be shown [9] [35] that a minimal e-energy knot with x(s) C2 and A(s)
O satisfies the following minimum energy equations

d?x
Vel — —AEc
He = b,

where the constant v, is the tension in the curve, where the constant p. is
the constant potential of the conducting curve, where E, = E.[x] is the -
electric field functional, and where ®, = ®.[x] is the e-potential functional.
It is not clear that the solutions x, to the above e-equation approach a limit
as € tends to zero. And even if they do, is such a limit physically meaningful?

Although both v, and p, tend to infinity as € tends to zero, the quantity

1
Ve + §/~Le/\e
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can be shown to approach a limit. Thus, the limit of the following linear
combination of the above c-equations

1 . 1 .
<Ue + §/~Le/\e> X =—-AKE:+ 5/\6(1)63(

exists.
In terms of the ABO yardstick, are the solutions of the limiting equation
physically meaningful?

Freedman, He, and Wang in[18] [20] assume a constant charge density A
of 1, and use a renormalization procedure similar to, but not the same as,
one used by O’Hara [45] [46] [47] [48]. Their renormalized energy in [18] [20]

for the % potential of classical electrodynamics is:

i~ § (e~ owmom) [ || ar

where D(x(t),x(¢')) denotes the distance between the points x(¢) and x(t')
on the curve x(¢). It is proven that the minimizer of & over the class I" of
all rectifiable, simple closed curves of length 1 is a planar, convex, simple,
closed curve.l® It is also conjectured that any minimizer of I' is a round
circle of circumference 1.

But are the solutions physically meaningful? Does this approach measure
up to the ABO yardstick?

dtdt’

In closing this section, it should be noted that there is no infinite energy
barrier between knot types for the classical %—potential energy. lLe., the
renormalized %—potential energy does not blow up as the loop a acquires
double points. This is expressed concisely in the equations

<) 40X
() -4(X)

The finiteness of this classical energy barrier fits neatly within Thomson’s
atomic vortex philosophy. In the last part of the first section of this paper,
this is expressed in Atiyah’s fourth listed reason for the longevity of Thom-
son’s theory, namely, the transmutation characteristic. On the other hand,
it does raise a fundamental question that has yet to be resolved. Are there
any non-trivial minimal energy knots for the renormalized classical energy?
Or in terms of the ABO yardstick, as the cross-section tends to zero, will
every charged string or wire try to cross through itself as it seeks a minimal

< 00

< 00

10This does not imply that the minimizer of a representive of any specific knot type is
always a planar, convex, simple, closed curve. Please refer to Figures 10 and 11 and to
the discussion in the following last three paragraghs of this section.
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energy position? Or will it in some cases seek a non-trivial minimal energy
position? Figures 10 and 11 indicate possible examples of non-trivial min-
imal energy knots. Needless to say, it is important to know the answer to
this question.

9. A DIGRESSION OUTSIDE THE REALM OF PHYSICS:
MOBIUS “ENERGY’” AND OTHER FUNCTIONALS OF
KNOTS

We now consider “energies” for knots and links that are based on non-
physical potentials.'’ As a result, the ABO yardstick which is the original
motivation for the original Honey Jar Problem (HJP) is completely aban-
doned. (Strictly speaking, this topic does not belong to the purview of this
paper because the focus of this manuscript is classical electrodynamics, or
at the very least, classical physics.)

The main motivation behind this shift to non-physical “energies” appears
to stem mainly from the existence of a finite classical-energy barrier between
knot types, as mentioned at the end of the last section. For the purpose
of creating an infinite “energy” barrier between knot types, various non-
physical “energy” functionals have been devised. For example, an “energy”
based on a non-physical Tld—potential for d > 2 provides an infinite “energy”
barrier between knot types.

Once a non-physical “energy” is chosen, the research objective shifts away
from the Honey Jar Problem and from the ABO yardstick objective to the
problem of finding the “best” shape, i.e., a shape of minimal “energy”, for
knots and links. More specifically, the new research objective is to find flows
on isotopy classes of knots and links that terminate at a “best” shape for
each given knot or link type, and then to use this “best” shape to develop
new knot invariants.

One of the most prominent of these “energies” is the “energy” functional
based on the non-physical -5-potential [21] [45] [46] [47] [48] [32] [43] [12] [18]
[20] [34] [13] [50] [51]. Freedman and He’s version of this functional, which
they call M6bius energy”, [18] [20] is defined as

o= § (rx<t> 7 560, x<t/>>2> alea

where D (x(t),x(t')) denotes the distance between the points x(¢) and x(#')
on the curve x(¢). This functional is independent of the length of the curve

x(1).

dtdt’

Hgtrictly speaking, these “energies” should be more correctly named knot functionals.
But we bow begrudgingly to the overwhelming misleading misuse of this term in the
mathematical literature.
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In [18], Freedman and He prove the surprising result that, £2[x] is invari-
ant under the action of the group M (R3Uoco) of Mobius transformations. 12
More precisely, they prove that for every T in G'M (R U 00)

Elx]  if T takes no point x to 0o

ElTx] =
{ Eylx] —4 if T takes some point x to 0o

They also show that the topological crossing number ¢([x]) is bounded by
the Mobius “energy,” i.e.,

2re([x]) + 4 < &[X]

It immediately follows that the number of distinct knot types with repre-
sentatives below any given Mobius “energy” threshold is bounded. They
also prove that a minimal Mobius “energy” representative exists for every
irreducible knot type. Moreover, they show that every locally extremal loop
for the functional & is CLL,

In [32], Kim and Kusner construct the first explicit example of non-
trivially knotted curves which are critical for &s.

10. THE HONEY JAR PROBLEMS FOR HOLLOW AND SOLID
TUBES: MINIMUM ENERGY KNOTTED TUBES OF
ELECTRICAL CHARGE

One of the chief difficulties with the HJP for curves is that infinitely thin
charged strings and wires simply do not exist.

The HJP problems for hollow and solid tubes are more in keeping with the
Kelvin approach. But most importantly, the classical electrostatic energy of
charged hollow and solid knotted and linked tubes is a well defined, finite
physical quantity [29]. No renormalization is needed.

The classical electrostatic energy of charged hollow tubular links is given

by
1 oo’
gsw*face = 5 // // —’y — y/’ dada’

QLaTi QLaTi
k2 k2

where o, and ¢’ denote respectively the surface charge densities at points
P and P’ on the surface, and where P and P’ are given respectively by the
position vectors y and y’. The energy g4 for a solid tube is defined in
like manner.

In [35], Lomonaco studies both the conductor and non-conductor HJP for
hollow and solid tubes. For the conductor HJP for hollow tubes, he proves
that a minimal energy electrically charged hollow tubular link of constant

2For a definition of GM (R® U 00) see [6].
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circular cross section of radius ¢ must satisfy the following minimum en-
ergy equations

(Ue + Me%) 327; = - ‘?g o E.wdbd

e = P

where x(s) is the center axis curve of the tube parameterized by arclength
s, where the constant v, is the tension in the center curve x, where the
constant i is the electrical potential of the conducting surface, where o,
is the surface charge density, where E.[x] is the electric field functional on
the surface, where ®.[x] is the electrical potential functional on the surface,
and where wdfds is the surface area 2-form.

In [35], results are also obtained for the non-conducting HIJP for hollow
tubes. Moreover, in [35], results for conducting and non-conducting HJP for
solid tubes are given.

These approaches are more likely to measure up to the ABO yardstick.
But do they?

11. Conclusion: CONCLUSIONS FOR THIS CENTURY AND
OPEN QUESTIONS FOR THE NEXT MILLENNIUM

In our tale of two centuries, we have traced the impact of Sir William
Thomson’s (Lord Kelvin’s) work on his atomic vortex theory in the nine-
teenth century to current research in the twentieth century on magnetic and
electrostatic knots and links. Clearly, there are many open questions to be
answered, especially in regard to dynamic behavior of knotted loops of elec-
trical charge and current, that most certainly will keep researchers occupied
much into the next millennium.
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