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Message from the P3DM’08 Workshop Chairs 

 
 
 
 
 

Governmental and commercial organizations today capture large amounts of data on individual 
behavior and increasingly apply data mining to it. This has raised serious concerns for 
individuals’ civil liberties as well as their economic well being. In 2003, concerns over the U.S. 
Total Information Awareness (also known as Terrorism Information Awareness) project led to 
the introduction of a bill in the U.S. Senate that would have banned any data mining programs in 
the U.S. Department of Defense. Debates over the need for privacy protection vs. service to 
national security and business interests were held in newspapers, magazines, research articles, 
television talk shows and elsewhere. Currently, both the public and businesses seem to hold 
polarized opinions: There are those who think an organization can analyze information it has 
gathered for any purpose it desires and those who think that every type of data mining should be 
forbidden. Both positions do little merit to the issue because the former promotes public fear 
(notably, Sun's Scott McNealy '99 remark “You have no privacy, get over it!”) and the latter 
overly restrictive legislation. 
 
The truth of the matter is not that technology has progressed to the point where privacy is not 
feasible, but rather the opposite: privacy preservation technology has got to advance to the point 
where privacy would no longer rely on accidental lack of information but rather on intentional 
and engineered inability to know. This belief is at the heart of privacy-preserving data mining 
(PPDM). Pioneered by Agrawal & Srikant and Lindell & Pinkas' work from 2000, there has 
been an explosive number of publications in this area. Many privacy-preserving data mining 
techniques have been proposed, questioned, and improved. However, compared with the active 
and fruitful research in academia, applications of privacy-preserving data mining for real-life 
problems are quite rare. Without practice, it is feared that research in privacy-preserving data 
mining will stagnate. Furthermore, lack of practice may hint to serious problems with the 
underlying concepts of privacy-preserving data mining. Identifying and rectifying these problems 
must be a top priority for advancing the field. 

Following on these understandings, we set out to arrange a workshop on the practical aspects of 
privacy-preserving data mining. We were encouraged by the enthusiastic response of our PC 
members, to whom we would like to convey our immense gratitude. The workshop draws eight 
submissions, of which five were selected for presentation. As you will find in this collection, they 
range from real PPDM applications to efficiency improvements to known algorithms. 
Additionally, we pride ourselves in the participation of Harriet P. Pearson, who is the Chief 
Privacy Officer of IBM. In our perception, CPOs of large businesses such as IBM are likely to be 
important stake holders in any application of PPDM, and their view should be highly relevant for 
our community. 

 
 
 
 

  
 

Kun Liu Ran Wolff  
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Privacy & Data Protection: Policy and Business Trends 

 
Harriet P. Pearson 

VP Regulatory Policy & Chief Privacy Officer, IBM Corporation 
 
 
 
Business, individuals and the public sector continue to take advantage of the rapid development 
and adoption of Web-based and other technologies. With innovation in business models and 
processes, as well as changing individual behaviors in venues such as online social networking, 
comes the need to address privacy and data protection. This phenomenon occurs every time 
society has embraced significant new technologies -- whether it be the printing press, telephone 
or home video rentals.  But faster introduction and uptake of technologies in our time results in a 
larger number of issues and challenges to sort out.  This talk will outline the major privacy and 
data protection trends and their likely effect on the development of public policies, industry 
practices and technology design.  
 
 



Towards Application-Oriented Data Anonymization∗†

Li Xiong‡ Kumudhavalli Rangachari§

Abstract

Data anonymization is of increasing importance for allow-

ing sharing of individual data for a variety of data anal-

ysis and mining applications. Most of existing work on

data anonymization optimizes the anonymization in terms

of data utility typically through one-size-fits-all measures

such as data discernibility. Our primary viewpoint in this

paper is that each target application may have a unique

need of the data and the best way of measuring data util-

ity is based on the analysis task for which the anonymized

data will ultimately be used. We take a top-down analy-

sis of typical application scenarios and derive application-

oriented anonymization criteria. We propose a prioritized

anonymization scheme where we prioritize the attributes for

anonymization based on how important and critical they are

to the application needs. Finally, we present preliminary re-

sults that show the benefits of our approach.

1 Introduction

Data privacy and identity protection is a very important
issue in this day and age when huge databases contain-
ing a population’s information need to be stored and
distributed for research or other purposes. For exam-
ple, the National Cancer Institute initiated the Shared
Pathology Informatics Network (SPIN)1 for researchers
throughout the country to share pathology-based data
sets annotated with clinical information to discover and
validate new diagnostic tests and therapies, and ulti-
mately to improve patient care. However, individually
identifiable health information is protected under the
Health Insurance Portability and Accountability Act
(HIPAA)2. The data have to be sufficiently anonymized

∗P3DM’08, April 26, 2008, Atlanta, Georgia, USA.
†This research is partially supported by an Emory URC grant.
‡Dept. of Math & Computer Science, Emory University
§Dept. of Math & Computer Science, Emory University
1Shared Pathology Informatics Network.

http://www.cancerdiagnosis.nci.nih.gov/spin/
2Health Insurance Portability and Accountability Act

(HIPAA). http://www.hhs.gov/ocr/hipaa/. State law or insti-
tutional policy may differ from the HIPAA standard and should
be considered as well.

before being shared over the network.

These scenarios can be generalized into the problem of
privacy preserving data publishing where a data cus-
todian needs to distribute an anonymized view of the
data that does not contain individually identifiable in-
formation to data recipient(s) for various data analy-
sis and mining tasks. Privacy preserving data publish-
ing has been extensively studied in recent years and a
few principles have been proposed that serve as criteria
for judging whether a published dataset provides suffi-
cient privacy protection [40, 34, 43, 3, 32, 53, 35, 37].
Notably, the earliest principle, k-anonymity [40], re-
quires a set of k records (entities) to be indistin-
guishable from each other based on a quasi-identifier
set, and its extension, l-diversity [34], requires every
group to contain at least l well-represented sensitive
values. A large body of work contributes to transform-
ing a dataset to meet a privacy principle (dominantly
k-anonymity) using techniques such as generalization,
suppression (removal), permutation and swapping of
certain data values while minimizing certain cost met-
rics [20, 50, 36, 9, 2, 17, 10, 59, 29, 30, 31, 49, 27, 51, 58].

Most of these methods aim to optimize the data util-
ity measured through a one-size-fitsall cost metric such
as general discernibilty or information loss. Few works
have considered targeted applications like classification
and regression [21, 50, 17, 31] but do not model other
kinds of applications nor provide a systematic or adap-
tive approach for handling various needs.

Contributions. Our primary viewpoint in this paper
is that each target application may have a unique need
of the data and the best way of measuring data utility
is based on the analysis task for which the anonymized
data will ultimately be used. We aim to adapt existing
methods by incorporating the application needs into the
anonymization process, thereby increasing its utility to
the target applications.

The paper makes a number of contributions. First,
we take a top-down analysis of potential application
scenarios and devise models and schemes to represent
application requirements in terms of relative attribute
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importance that can be specified by users or learned
from targeted analysis and mining tasks. Second, we
propose a prioritized anonymization scheme where we
prioritize the attributes for anonymization based on
how important and critical they are to the application
needs. We devise a prioritized cost metric that allows
users to assign different weights to different attributes
and adapt existing generalization-based anonymization
methods in order to produce an optimized view for
the user applications. Finally, we present preliminary
results that show the benefits of our approach.

2 Related Work

Our research is inspired and informed by a number of
related areas. We discuss them briefly below.

Privacy Preserving Access Control and Statisti-

cal Databases. Previous work on multilevel secure re-
lational databases [22] provides many valuable insights
for designing a fine-grained secure data model. Hippo-
cratic databases [7, 28, 5] incorporate privacy protection
within relational database systems. Byun et al. pre-
sented a comprehensive approach for privacy preserv-
ing access control based on the notion of purpose [14].
While these mechanisms enable multilevel access of sen-
sitive information through access control at a granular-
ity level up to a single attribute value for a single tuple,
micro-views of the data are desired where even a single
value of a tuple attribute may have different views [13].

Research in statistical databases has focused on en-
abling queries on aggregate information (e.g. sum,
count) from a database without revealing individual
records [1]. The approaches can be broadly classified
into data perturbation, and query restriction. Data per-
turbation involves either altering the input databases,
or altering query results returned. Query restriction in-
cludes schemes that check for possible privacy breaches
by keeping audit trails and controlling overlap of succes-
sive aggregate queries. The techniques developed have
focused only on aggregate queries and relational data
types.

Privacy Preserving Data Mining. One data shar-
ing model is the mining-as-a-service model, in which
individual data owners submit the data to a data col-
lector for mining or a data custodian outsources mining
to an untrusted service provider. The main approach
is random perturbation that transforms data by adding
random noise in a principled way [8, 48]. The main
notion of privacy studied in this context is data un-

certainty as versus individual identifiability. There are
studies focusing on specific mining tasks such as deci-
sion tree [8, 12], association rule mining [39, 15, 16], and
on disclosure analysis [26, 19, 42, 12]. A main advantage
of data anonymization as opposed to data perturbation
is that the released data remain ”truthful”, though at a
coarse level of granularity. This allows various analysis
to be carried out using the data, including selection.

Another related area is distributed privacy preserving
data sharing and mining that deals with data sharing
for specific tasks across multiple data sources in a dis-
tributed manner [33, 44, 23, 25, 46, 56, 45, 4, 6, 47,
24, 54, 11, 55]. The main goal is to ensure data is
not disclosed among participating parties. Common ap-
proaches include data approach that involves data per-
turbation and protocol approach that applies random-
response techniques.

Data Anonymization The work in this paper has
its closest roots in data anonymization that provides
a micro-view of the data while preserving privacy of in-
dividuals. The work in this area can be classified into
a number of categories. The first one aims at devis-
ing generalization principles in that a generalized table
is considered privacy preserving if it satisfies a gener-

alization principle [40, 34, 43, 3, 32, 53, 35, 37]. Re-
cent work[52] also considered personalized anonymity

to guarantee minimum generalization for every individ-
ual in the dataset. Another large body of work con-
tributes to the algorithms for transforming a dataset
to one that meets a generalization principle and min-
imizes certain quality metrics. Several hardness re-
sults [36, 2] show that computing the optimal gener-
alized table is NP-hard and the result suffers severe in-
formation loss when the number of quasi-identifier at-
tributes are high. Optimal solutions [9, 29] enumerate
all possible generalized relations with certain constraints
using heuristics to prune the search space. Greedy so-
lutions [20, 50, 17, 10, 59, 30, 31, 49] are proposed to
obtain a suboptimal solution much faster. A few works
are suggesting new approaches in addition to general-
ization, such as releasing marginals [27], anatomy tech-
nique [51], and permutation technique [58], to improve
the utility of the published dataset. Another thread of
research is focused on disclosure analysis [35]. A few
works considered targeted classification and regression
applications [20, 50, 17, 31].

Our work builds on top of the existing generaliza-
tion principles and anonymization techniques and aims
to adapt existing solutions for application-oriented
anonymization that provides an optimal view for tar-
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geted applications.

3 Privacy Model

Among the many identifiability based privacy princi-
ples, k-anonymity [41] and its extension l-diversity [34]
are the two most widely accepted and serve as the basis
for many others, and hence, will be used in our dis-
cussions and illustrations. Our work is orthogonal to
these privacy principles. Below we introduce some ter-
minologies and illustrate the basic ideas behind these
principles.

In defining anonymization, attributes of a given re-
lational table T , are characterized into three types.
Unique identifiers are attributes that identify individ-
uals. Known identifiers are typically removed entirely
from released micro-data. Quasi-identifier set is a
minimal set of attributes (X1, ..., Xd) that can be
joined with external information to re-identify individ-
ual records. We assume that a quasi-identifier is recog-
nized based on domain knowledge. Sensitive attributes

are those attributes that an adversary should not be per-
mitted to uniquely associate their values with a unique
identifier.

Table 1: Illustration of Anonymization: Original Data
and Anonymized Data

Name Age Gender Zipcode Diagnosis

Henry 25 Male 53710 Influenza
Irene 28 Female 53712 Lymphoma
Dan 28 Male 53711 Bronchitis
Erica 26 Female 53712 Influenza

Original Data

Name Age Gender Zipcode Disease

∗ [25 − 28] Male [53710-53711] Influenza
∗ [25 − 28] Female 53712 Lymphoma
∗ [25 − 28] Male [53710-53711] Bronchitis
∗ [25 − 28] Female 53712 Influenza

Anonymized Data

Table 1 illustrates an original relational table of personal
information. Among the attributes, Name is considered
as an identifier, (Age, Gender, Zipcode) is considered as
a quasi-identifer set, and Diagnosis is considered as a
sensitive attribute. The k-anonymity model provides an
intuitive requirement for privacy in stipulating that no
individual record should be uniquely identifiable from a
group of k with respect to the quasi-identifier set. The
set of all tuples in T containing identical values for the
quasi-identifier set X1, ..., Xd is referred to as an Equiv-

alence Class. T is k-anonymous with respect to X1, ...,
Xd if every tuple is in an equivalence class of size at
least k. A k-anonymization of T is a transformation
or generalization of the data T such that the transfor-
mation is k-anonymous. The l-diversity model provides
a natural extension to incorporate a nominal sensitive
attribute S. It requires that each equivalence class also
contains at least l well-represented distinct values for
S. Typical techniques to transform a dataset to sat-
isfy k-anonymity include data generalization, data sup-
pression, and data swapping. Table 1 also illustrates
one possible anonymization with respect to a quasi-
identifier set (Age, Gender, Zipcode) using data gener-
alization that satisfies 2-anonymity and 2-diversity.

4 Application-Oriented Anonymization

Our key hypothesis is that by considering important ap-
plication requirements, the data anonymization process
will achieve a better tradeoff between general data util-
ity and application-specific data utility. We first take a
top-down analysis of typical application scenarios and
analyze what requirements and implications they pose
to the anonymization process. We then present our pri-
oritized optimization metric and anonymization tech-
niques that aim to prioritize the anonymization for in-
dividual attributes based on how important they are to
target applications.

4.1 Anonymization Goals There are different
types of target applications for sharing anonymized
data including: 1) query applications supporting ad-hoc
queries, 2) applications with a specific mining task such
as classification or clustering, and 3) exploratory appli-
cations without a specific mining task. We consider two
typical scenarios of these applications on anonymized
medical data and analyze their implications on the
anonymization algorithms.

Scenario 1. Disease-specific public health study. In
this study, researchers select a subpopulation of certain
health condition (e.g. Diagnosis = ”Lymphoma”), and
study their geographic and demographic distribution,
reaction to certain treatment, or survival rate. An
example is to identify geographical patterns for the
health condition that may be associated with features
of the geographic environment.

Scenario 2. Demographic / population study. In
this study, researchers may want to study a certain
demographic subpopulation (e.g. Gender = Male and
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Age > 50), and perform exploratory analysis or learn
classification models based on demographic information
and clinical symptoms to predict diagnosis.

The data analysis for the mentioned applications is typ-
ically conducted in two steps: 1) subpopulation identifi-
cation through a selection predicate, and 2) analysis on
the identified subpopulation including mining tasks such
as clustering or classification of the population with re-
spect to certain class labels. Given such a two-step pro-
cess, we identify two requirements for optimizing the
anonymization for applications: 1) maximize precision
and recall of subpopulation identification, and 2) max-
imize quality of the analysis.

We first categorize the attributes with respect to the
applications on the anonymized data and then explain
how the application requirement and optimization goal
transform to concrete criteria for application-oriented
anonymization. Given an anonymized relational table,
each attribute can be characterized by one of the
following types with respect to the target applications.

• Selection attributes are those attributes used to
identify a subpopulation (e.g. Diagnosis in Sce-
nario 1 and Gender and Age in Scenario 2).

• Feature attributes are those attributes used to
perform analysis such as classifying or clustering
data (e.g. Zipcode in Scenario 1 for geographic
location based analysis).

• Target attributes are the class label or attributes
for which the classification or prediction are trying
to predict (e.g. Diagnosis in Scenario 2). Tar-
get attributes are not applicable for unsupervised
learning tasks such as clustering.

Given the above categorization and the goals in opti-
mizing anonymization for target applications, we derive
a set of generalization criteria for the different types of
attributes in our anonymization model.

• Discernibility of selection attributes or predicates.
If a selection attribute is part of the quasi-identifier
set and is subject to generalization, it may result
in an imprecise query selection. For example, if
the Age attribute is generalized into ranges of
[0 − 40] and [40 above], the selection predicate
Age > 50 in Scenario 2 will result in an imprecise
subpopulation. In order to maximize the precision
of the population identification, the generalization

of the selection attributes should be minimized or
adapted to the selection predicates so that the
discernibility of selection attributes or predicates
are maximized.

• Discernibility of feature attributes. For most mining
tasks, the anonymized dataset needs to maintain
as much information about feature attributes as
possible, in order to derive accurate classification
models or achieve high quality clustering. As a
result, the discernibility of feature attributes needs
to be maximized in order to increase data utility.

• Homogeneity of target attributes. For classifica-
tion tasks, an additional criterion is to produce
homogeneous partitions or equivalence classes of
class labels. The few works specializing on op-
timizing anonymization for classification applica-
tions [21, 50, 17, 31] are mainly focused on this
objective. However, it is important to note that
if the class label is a sensitive attribute, this crite-
rion is conflicting with the goal of l-diversity and
other principles that attempts to achieve a guaran-
teed level of diversity in sensitive attributes and the
question certainly warrants further investigation to
achieve best tradeoff.

4.2 Attribute Priorities Based on the above dis-
cussion and considering the variety of applications, the
first idea we explored is to represent the application
requirements using a list of attribute and weight pairs
where each attribute is associated with a priority weight
based on how important it is to the target applications.
We envision that these priority weights can be either
explicitly specified by users or implicitly learned by the
system based on a set of sample queries and analysis.
If the target applications can be fully specified by the
users with feature attributes, target attributes, or se-
lection attributes, they can be assigned a higher weight
than other attributes in the quasi-identifer set. For in-
stance, in Scenario 1, the attribute-weight list can be
represented as (Age, 0), (Gender, 0), (Zipcode, 1) where
Zipcode is the feature attribute for the location-based
study.

Alternatively, the attribute priorities can be learned im-
plicitly from sample queries and analysis. For exam-
ple, statistics can be collected from query loads on at-
tribute frequencies for projection and selection. In many
cases, the attributes in the SELECT clause (projection)
correspond to feature attributes while attributes in the
WHERE clause (selection) correspond to the selection
attributes. The more frequently an attribute is queried,
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the more important it is to the application, and the
less it should be generalized. Attributes can be then
ordered by their frequencies where the weight is a nor-
malized frequency. Another interesting idea is to use a
min-term predicate set derived from query load and use
that in the anonymization process similar to the data
fragmentation techniques in distributed databases. This
is on our future research agenda.

4.3 Anonymization Metric Before we can devise
algorithms to optimize the solution for the application,
we first need to define the optimization objective or the
cost function. When the query and analysis seman-
tics are known, a suitable metric for the subpopulation
identification process is the Precision of the relevant
subpopulation similar to the precision of relevant docu-
ments in Information Retrieval. Note that a generalized
dataset will often produce a larger result set than the
original table does with respect to a set of predicates
consisting of quasi-identifiers. This is similar to the im-
precision metric defined in [31]. For analysis tasks, ap-
propriate metrics for specific analysis tasks should be
used as the ultimate optimization goal. This includes
accuracy for classification applications and intra-cluster
similarity and inter-cluster dissimilarity for clustering
applications. The majority metric [25] is a class-aware
metric introduced to optimize a dataset for classification
applications.

When the query and analysis semantics are not speci-
fied, we need a general metric that measures the data
utility. Intuitively, the anonymization process should
generalize the original data as little as is necessary to
satisfy the given privacy principle. There are mainly
three cost metrics that have been used in the litera-
ture [38], namely, general loss metric, majority metric,
and discernibility metric. Among the three, the dis-

cernibility metric, denoted by CDM , is most commonly
used and is defined based on the size of equivalence
classes E:

(4.1) CDM =
∑

m

|Em|2

To facilitate the application-oriented anonymization,
we devise a prioritized cost metric that allows users
to incorporate attribute priorities in order to achieve
more granularity for more important attributes. Given
a quasi-identifier Xi, let |Em

Xi
| denote the size of the

mth equivalent class with respect to Xi, let weighti

denote attribute priority associated with attribute Xi,
the metric is defined as follows:

(4.2) CWDM =
∑

i

weighti ∗
∑

m

|Em
Xi

|2

Consider our example Scenario 1, if given an
anonymized dataset such as in Table 1, the discerni-
bility of equivalent classes along attribute Zipcode will
be penalized more than the other two attributes because
of the importance of geographic location. This metric
corresponds well with our weighted attributed list repre-
sentation of the application requirements. It provides a
general judgement of the anonymization for exploratory
analysis when there is some knowledge about attribute
importance in applications but not sufficient knowledge
about specific subpopulation or applications.

4.4 Anonymization A large number of algorithms
have been developed for privacy preserving data
anonymization. They can be roughly classified into
top-down and bottom-up approaches and single dimen-
sional and multidimensional approaches. Most of the
techniques take a greedy approach and rely on cer-
tain heuristics at each step or iteration for selecting an
attribute for partitioning (top-down) or generalization
(bottom-up). In this study, we adapt the greedy top-
down Mondrian multidimensional approach [30] and in-
vestigate heuristics for adapting it based on our prior-
itized optimization metric. It is on our future research
agenda to explore various anonymization approaches
and investigate systematic ways for adapting them to-
wards application-oriented anonymization.

The Mondrian algorithm (based on k-anonymity prin-
ciple) uses greedy recursive partitioning of the (multi-
dimensional) quasi-identifer domain space. In order to
obtain approximately uniform partition occupancy, it
recursively chooses the split attribute with the largest
normalized range of values, referred to as spread, and
(for continuous or ordinal attributes) partitions the data
around the median value of the split attribute. This
process is repeated until no allowable split remains,
meaning that a particular region cannot be further di-
vided without violating the anonymity constraint, or
constraints imposed by value generalization hierarchies.

The key of the algorithm is to select the best attribute
for splitting (partitioning) during each iteration. In
addition to using the spread (range) of the values of
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each attribute i, denoted as spreadi, in the original
algorithm, our approach explores additional metrics.

Attribute priority. Since our main generalization cri-
teria is to maximize the discernibility of important
attributes including selection attributes, feature at-
tributes and class attributes for target applications, we
use the attribute priority weight for attribute i, de-
noted by weighti, as an important selection criteria.
Attributes with a larger weight will be selected for par-
titioning so that important attributes will have a more
precise view in the anonymized data.

Information gain. When target applications are well
specified a priori, another important generalization cri-
terion for classification applications is to maximize the
homogeneity of class attributes within each equivalence
class. This is reminiscent of decision tree construction
where each path of the decision tree leads to a homoge-
neous group of class labels [18]. Similarly, information
gain can be used as a scoring metric for selecting the
best attribute for partitioning in order to produce equiv-
alence classes of homogeneous class labels. The informa-
tion gain for a given attribute i, denoted by infogaini,
is computed as the weighted entropy of the resultant
partitions based on the split of attribute i:

(4.3) infogaini =
∑

P ′

(
|P ′|

|P |

∑

c∈Dc

−p(c|P ′)logp(c|P ′))

where P denotes the current partition, P ′ denotes the
set of resultant partitions of the iteration, p(c|P ′) is the
fraction of tuples in P ′ with class label c, and Dc is the
domain of the class variable c.

The attribute selection criteria for each iteration selects
the best attribute based on an overall scoring metric
determined by an aggregation of the above metrics. In
this study, we use a linear combination of the individual
metrics, denoted by Oi for attribute i:

(4.4) Oi =
∑

j

(wj ∗ metricj
i )/

∑

j

wj

where metricj
i ∈ {spreadi, infogaini, weighti}, and wj

is the weight of the individual metric j (wj >= 0).

5 Experiments

We performed a set of preliminary experiments evaluat-
ing our approach. The main questions we would like to
answer are: 1) does the prioritized anonymization met-
ric (weighted discernibility metric) correlate with good
data utility from applications point of view? 2) does the
prioritized anonymization scheme provide better data
utility than general approaches?

We implemented a prioritized anonymization algorithm
based on the Mondrian algorithm [30]. It uses a com-
bined heuristic of the spread and attribute priorities
(without information gain) and aims to minimize the
prioritized cost metric (instead of the general discerni-
bility metric). We conducted two sets of experiments for
exploratory and classification applications respectively.

5.1 Exploratory Applications For exploratory ap-
plications, we used the Adults dataset from UC Irvine
Machine Learning Repository configured as in [30]. We
considered a simple application scenario that requires
precise information on a single demographic attribute
(Age and Sex respectively) and hence it is assigned with
a higher weight than other attributes in the experiment.
The dataset were anonymized using the Mondrian and
prioritized approach respectively and we compare the
weighted discernibility as well as general discernibility
of the two anonymized datasets.
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Figure 1: Adult Dataset (Sex-Prioritized)
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Figure 2: Adult Dataset (Age-Prioritized)

Figure 1 and 2 compare the prioritized approach and
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(c) Classification Accuracy

Figure 3: Japanese Credit Screening Dataset - Classification
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(c) Prediction Accuracy

Figure 4: Japanese Credit Screening Dataset - Prediction (A3)

the Mondrian approach in terms of general discernibil-
ity and weighted discernibility with respect to differ-
ent value of k for Sex-prioritized and Age-prioritized
anonymization respectively. We observe that even
though the prioritized approach has a comparable gen-
eral discernibility with the Mondrian, it achieves a much
improved weighted discernibility in both cases, which is
directly correlated with the user-desired data utility (i.e.
having a more fine-grained view for Age attribute or Sex
attribute for exploratory query or mining purposes).

5.2 Classification Applications For classification
applications, we used the Japanese Credit Screening
dataset, also from the UCI Machine Learning Repos-
itory. The dataset consists of 653 instances, 15 at-
tributes and a 2-valued class attribute (A16) that cor-
responds to a positive/negative (+/-) credit. The miss-
ing valued instances were removed and the experiments
were carried out considering only the continuous at-
tributes (A2, A3, A8, A11, A14 and A15). The dataset
was anonymized using the prioritized approach and the
Mondrian approach and the resultant anonymized data
as well as the original data were used for classification
and prediction. The Weka implementation of the sim-
ple Naive-Bayes classifier was used for the classification,
with 10 fold cross-validation for classification accuracy
determination.

For classification, the class attribute was recoded as
1.0/0.0. Different feature attributes were selected and

given varying weights (both arbitrary or assuming user
knowledge) to examine their effect on classification
accuracy. For prediction, attributes other than the
class attribute were recoded into ranges using equi-
width3 approach. A target attribute is selected as the
prediction attribute and the rest of the attributes are
anonymized and used to predict the target attribute.

We assume the users have some domain knowledge of
which attributes will be used as feature attributes for
their classification and we then assigned higher priority
weights for these attributes. In addition, we also
experimented with a set of single-attribute classification
by selecting one feature attribute each time and assigned
weights for the attributes based on their classification
accuracy. The results are similar and we report the first
set of results below.

Figure 3(a) and 3(b) compare the prioritized and
Mondrian approach in terms of general discernibility
and weighted discernibility of the anonymized dataset
respectively. Figure 3(c) compares the anonymized
datasets as well as the original dataset in terms of accu-
racy for the class attribute. Similarly, Figure 4 presents
the results for prediction of attribute A3. We observe
that the prioritized approach performs better than the
Mondrian for both classification and prediction in terms
of accuracy and achieves a comparable accuracy as the
original dataset. In addition, a comparison of the dis-

3Equal spread ranges for the recoded attributes.
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cernibility metrics and the classification accuracy shows
that the weighted discernibility metric corresponds well
to the application-oriented data utility, i.e. the classifi-
cation accuracy.

6 Conclusion and Discussions

We presented an application-oriented approach for data
anonymization that takes into account the relative at-
tribute importance for target applications. We derived
a set of generalization criteria for application-oriented
data anonymization and presented a prioritized gen-
eralization approach that aims to minimize the prior-
itized cost metric. Our initial results show that the
prioritized anonymization metric correlates well with
application-oriented data utility and the prioritized ap-
proach achieves better data utility than general ap-
proaches from application point of view.

There are a few items on our research agenda. First, the
presented anonymization technique uses a special gener-
alization algorithm and a simple weighted heuristic. We
will study different heuristics and generalize the result
to more advanced privacy principles and anonymization
approaches. Second, while it is not always possible for
users to specify the attribute priorities before hand, we
will study how to automatically learn attribute priori-
ties from sample queries and mining tasks and further
devise models and presentations that allow application
requirements to be incorporated. In addition, a more
in-depth and longer-term issue that we will investigate
is the notion of priorities, in particular, the interaction
between what data owners perceive and what the data
users (applications) perceive. Finally, it is important to
note that there are inference implications of releasing
multiple anonymized views where multiple data users
may collude and combine their views to breach data pri-
vacy. While there is work beginning investigating the
inference problem [57], the direction certainly warrants
further research.
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Efficient Algorithms for Masking and Finding Quasi-Identifiers ∗

Rajeev Motwani† Ying Xu ‡

Abstract

A quasi-identifier refers to a subset of attributes that
can uniquely identify most tuples in a table. Incautious
publication of quasi-identifiers will lead to privacy leakage.
In this paper we consider the problems of finding and
masking quasi-identifiers. Both problems are provably hard
with severe time and space requirements. We focus on
designing efficient approximation algorithms for large data
sets.

We first propose two natural measures for quantifying
quasi-identifiers: distinct ratio and separation ratio. We
develop efficient algorithms that find small quasi-identifiers
with provable size and separation/distinct ratio guarantees,
with space and time requirements sublinear in the number
of tuples. We also propose efficient algorithms for masking
quasi-identifiers, where we use a random sampling tech-
nique to greatly reduce the space and time requirements,
without much sacrifice in the quality of the results. Our al-
gorithms for masking and finding quasi-identifiers naturally
apply to stream databases. Extensive experimental results
on real world data sets confirm efficiency and accuracy of
our algorithms.

1 Introduction
A quasi-identifier (also called a semi-key) is a subset

of attributes which uniquely identifies most entities in the
real world or tuples in a table. A well-known example is
that the combination of gender, date of birth, and zipcode
can uniquely determine about87% of the population in
United States. Quasi-identifiers play an important role in
many aspects of data management, including privacy, data
cleaning, and query optimization.

As pointed out in the seminal paper of Sweeney [25],
publishing data with quasi-identifiers leaves open attacks
that combine the data with other publicly available in-
formation to identify represented individuals. To avoid

∗P3DM’08, April 26, 2008, Atlanta, Georgia, USA.
†Stanford University. rajeev@cs.stanford.edu. Supported in part by

NSF Grant ITR-0331640, and a grant from Media-X.
‡Stanford University. xuying@cs.stanford.edu. Supported in part by

Stanford Graduate Fellowship and NSF Grant ITR-0331640.

such linking attacks via quasi-identifiers, the concept of k-
anonymity was proposed [25, 24] and many algorithms for
k-anonymity have been developed [23, 2, 4]. In this paper
we consider the problem of masking quasi-identifiers: we
want to publish a subset of attributes (we either publish the
exact value of every tuple on an attribute, or not publish
the attribute at all), so that no quasi-identifier is revealed
in the published data. This can be viewed as a variant of
k-anonymity where the suppression is only allowed at the
attribute level. While this approach is admittedly too restric-
tive in some applications, there are two reasons we consider
it. First, the traditional tuple-level suppression may distort
the distribution of the original data and the association be-
tween attributes, so sometimes it might be desirable to pub-
lish fewer attributes with complete and accurate informa-
tion. Second, as noted in [15], the traditional k-anonymity
algorithms are expensive and do not scale well to large data
sets; by restricting the suppression to a coarser level we are
able to design more efficient algorithms.

We also consider the problem of finding small keys
and quasi-identifiers, which can be used by adversaries to
perform linking attacks. When a table which is not properly
anonymized is published, an adversary would be interested
in finding keys or quasi-identifiers in the table so that once
he collects other persons’ information on those attributes,
he will be able to link the records to real world entities.
Collecting information on each attribute incurs certain cost
to the adversary (for example, he needs to look up yellow
pages to collect the area code of phone numbers, to get
party affiliation information from the voter list, etc), so the
adversary wishes to find a subset of attributes with a small
size or weight that is a key or almost a key to minimize the
attack cost.

Finding quasi-identifiers also has other important appli-
cations besides privacy. One application is data cleaning.
Integration of heterogeneous databases sometimes causes
the same real-world entity to be represented by multiple
records in the integrated database due to spelling mistakes,
inconsistent conventions, etc. A critical task in data clean-
ing is to identify and remove such fuzzy duplicates [3, 6].
We can estimate the ratio of fuzzy duplicates, for example
by checking some samples manually or plotting the distri-
bution of pairwise similarity; now if we can find a quasi-
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identifier whose “quasiness” is similar to the fuzzy dupli-
cate ratio, then those tuples which collide on the quasi-
identifier are likely to be fuzzy duplicates. Finally, quasi-
identifiers are a special case of approximate functional de-
pendency [13, 22], and their automatic discovery is valuable
to query optimization and indexing [9].

In this paper, we study the problems of finding and
masking quasi-identifiers in given tables. Both problems are
provably hard with severe time and space requirements, so
we focus on designing efficient approximation algorithms
for large data sets. First we define measures for quantifying
the “quasiness” of quasi-identifiers. We propose two natural
measures – separation ratio and distinct ratio.

Then we consider the problem of finding the minimum
key. The problem is NP-hard and the best-known approxi-
mation algorithm is a greedy algorithm with approximation
ratio O(ln n) (n is the number of tuples); however, even
this greedy algorithm requires multiple scans of the table,
which are expensive for large databases that cannot reside
in main memory and prohibitive for stream databases. To
enable more efficient algorithms, we sacrifice accuracy by
allowing approximate answers (quasi-identifiers). We de-
velop efficient algorithms that find small quasi-identifiers
with provable size and separation/distinct ratio guarantees,
with both space and time complexities sublinear in the num-
ber of input tuples.

Finally we present efficient algorithms for masking
quasi-identifiers. We use a random sampling technique to
greatly reduce the space and time requirements, without
sacrificing much in the quality of the results.

Our algorithms for masking and finding minimum quasi-
identifiers naturally apply to stream databases: we only
require one pass over the table to get a random sample of the
tuples and the space complexity is sublinear in the number
of input tuples (at the cost of only providing approximate
solutions).

1.1 Definitions and Overview of Results

A key is a subset of attributes that uniquely identifies
each tuple in a table. Aquasi-identifier is a subset of
attributes that can distinguish almost all tuples. We propose
two natural measures for quantifying a quasi-identifier.
Since keys are a special case of functional dependencies,
our measures for quasi-identifiers also conform with the
measures of approximate functional dependencies proposed
in earlier work [13, 22, 11, 8].

(1) An α-distinct quasi-identifieris a subset of at-
tributes which becomes a key in the table remain-
ing after the removal of at most a1 − α fraction
of tuples in the original table.

(2) We say that a subset of attributesseparatesa
pair of tuplesx andy if x andy have different
values on at least one attribute in the subset.

An α-separation quasi-identifieris a subset of
attributes which separates at least anα fraction
of all possible tuple pairs.

age sex state
1 20 Female CA
2 30 Female CA
3 40 Female TX
4 20 Male NY
5 40 Male CA

Table 1. An example table. The first column labels
the tuples for future references and is not part of the
table.

We illustrate the notions with an example (Table 1). The
example table has3 attributes. The attributeage is a 0.6-
distinct quasi-identifier because it has3 distinct values in
a total of 5 tuples; it is a0.8-separation quasi-identifier
because8 out of 10 tuple pairs can be separated byage.
{sex, state} is 0.8-distinct and0.9-separation.

The separation ratio of a quasi-identifier is always larger
than its distinct ratio, but there is no one-to-one mapping.
Let us consider a0.5-distinct quasi-identifier in a table of
100 tuples. One possible scenario is that projected on the
quasi-identifier there are50 distinct values and each value
corresponds to2 tuples, so its separation ratio is1− 50

(100
2 ) ≈

0.99; another possible scenario is that for49 of the 50
distinct values there is only one tuple for each value, and all
the other51 tuples have the same value, and then this quasi-
identifier is 0.75-separation. Indeed, anα-distinct quasi-
identifier can be anα′-separation quasi-identifier whereα′

can be as small as2α− α2, or as large as1− 2(1−α)
n . Both

distinct ratio and separation ratio are very natural measures
for quasi-identifiers and have different applications as noted
in the literature on approximate functional dependency. In
this paper we study quasi-identifiers using both measures.

Given a table withn tuples andm attributes, we consider
the following problems. Thesizeof a key (quasi-identifier)
refers to the number of attributes in the key.

Minimum Key Problem:find a key of the mini-
mum size. This problem is provably hard so we
also consider its relaxed version:

(ε, δ)-Separation or -Distinct Minimum Key Prob-
lem: look for a quasi-identifier with a small size
such that, with probability at least1− δ, the out-
put quasi-identifier has separation or distinct ratio
at least1− ε.

β-Separation or -Distinct Quasi-identifier Mask-
ing Problem: delete a minimum number of at-
tributes such that there is no quasi-identifier with
separation or distinct ratio greater thanβ in the
remaining attributes.
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In the example of Table 1,{age, state} is a minimum
key, with size2; the optimal solution to0.8-distinct quasi-
identifier masking problem is{sex, state}; the optimal
solution to0.8-separation quasi-identifier masking problem
is {age}, {sex} or {state}, all of size1.

The result data after quasi-identifier masking can be
viewed as an approximation to k-anonymity. For example,
after0.2-distinct quasi-identifier masking, the result data is
approximately5-anonymous, in the sense that on average
each tuple is indistinguishable from another 4 tuples. It does
not provide perfect privacy as there may still exist some tu-
ple with a unique value, nevertheless it provides anonymity
for the majority of the tuples. The k-anonymity problem
is NP-hard [17, 2]; further, Lodha and Thomas [15] note
that there is no efficient approximation algorithm known
that scale well for large data sets, and they also aim at pre-
serving privacy for majority. We hope to provide scalable
anonymizing algorithm by relaxing the privacy constraints.
Finally we would like to maximize the utility of published
data, and we measure utility in terms of the number of at-
tributes published (our solution can be generalized to the
case where attributes have different weights and utility is
the weighted sum of published attributes).

We summarize below the contributions of this paper.

1. We propose greedy algorithms for the (ε, δ)-separation
and distinct minimum key problems, which find small
quasi-identifiers with provable size and separation
(distinct) ratio guarantees, with space and time require-
ments sublinear inn. In particular, the space complex-
ity is O(m2) for the (ε, δ)-separation minimum key
problem, andO(m

√
mn) for (ε, δ)-distinct. The al-

gorithms are particularly useful whenn À m, which
is typical of database applications where a large table
may consist of millions of tuples, but only a relatively
small number of attributes. We also extend the algo-
rithms to find the approximate minimumβ-separation
quasi-identifiers. (Section 2)

2. We present greedy algorithms forβ-separation and
β-distinct quasi-identifier masking. The algorithms
are slow on large data sets, and we use a random
sampling technique to greatly reduce the space and
time requirements, without much sacrifice in the utility
of the published data. (Section 3)

3. We have implemented all the above algorithms and
conducted extensive experiments using real data sets.
The experimental results confirm the efficiency and
accuracy of our algorithms. (Section 4)

2 Finding Minimum Keys
In this section we consider the Minimum Key prob-

lem. First we show the problem is NP-hard (Section 2.1)
and the best approximation algorithm is a greedy algo-
rithm which givesO(lnn)-approximate solution (Section

2.2). The greedy algorithm requires multiple scans of the
table, which is expensive for large tables and inhibitive for
stream databases. To enable more efficient algorithms, we
relax the problem by allowing approximate answers, i.e. the
(ε, δ)-Separation (Distinct) Minimum Key problem. We de-
velop random sampling based algorithms with approxima-
tion guarantees and sublinear space (Section 2.3, 2.4).

2.1 Hardness Result

The Minimum Key problem is NP-Hard, which follows
easily from the NP-hardness of theMinimum Test Collec-
tion problem.

Minimum Test Collection:Given a setS of ele-
ments and a collectionC of subsets ofS, a test
collection is a subcollection ofC such that for
each pair of distinct elements there is some set
that contains exactly one of the two elements. The
Minimum Test Collection problem is to find a test
collection with the smallest cardinality.

Minimum Test Collection is equivalent to a special case
of the Minimum Key problem where each attribute is
boolean: letS be the set of tuples andC be all the attributes;
each subset inC corresponds to an attribute and contains all
the tuples whose values aretrue in this attribute, then a test
collection is equivalent to a key in the table. Minimum Test
Collection is known to be NP-hard [7], therefore the Mini-
mum Key problem is also NP-hard.

2.2 A Greedy Approximation Algorithm

The best known approximation algorithm for Minimum
Test Collection is a greedy algorithm with approximation
ratio 1 + 2 ln |S| [18], i.e. it finds a test collection with
size at most1 + 2 ln |S| times the smallest test collection
size. The algorithm can be extended to the more general
Minimum Key problem, where each attribute can be from
an arbitrary domain, not just boolean.

Before presenting the algorithm, let us consider a naive
greedy algorithm: compute the separation (or distinct) ratio
of each attribute in advance; each time pick the attribute
with the highest separation ratio in the remaining attributes,
until we get a key. The algorithm is fast and easy to
implement, but unfortunately it does not perform well when
the attributes are correlated. For example if there are
many attributes pairwise highly correlated and each has a
high separation ratio, then the optimal solution probably
includes only one of these attributes while the above greedy
algorithm is likely to pick all of them. The approximation
ratio of this algorithm can be arbitrarily bad.

A fix to the naive algorithm is to pick each time the
attribute which separates the largest number of tuple pairs
not yet separated. To prove the approximation ratio of
the algorithm, we reduce Minimum Key to the Minimum
Set Cover problem. The reduction plays an important role
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in designing algorithms for finding and masking quasi-
identifiers in later sections.

Minimum Set Cover:Given a finite setS (called
the ground set) and a collectionC of subsets of
S, a set coverI is a subcollection ofC such that
every element inS belongs to at least one member
of I. Minimum Set Coverproblem asks for a set
cover with the smallest size.

Given an instance of Minimum Key withn tuples andm
attributes, we reduce it to a set cover instance as follows:
the ground setS consists of all distinct unordered pairs of
tuples (|S| = (

n
2

)
); each attributec in the table is mapped to

a subset containing all pairs of tuples separated by attribute
c. Now a collection of subsets coversS if and only if the
corresponding attributes can separate all pairs of tuples, i.e.,
those attributes form a key, therefore there is a one-to-one
map between minimum set covers and minimum keys.

Consider the example of Table 1. The ground set
of the corresponding set cover instance contains10 el-
ements where each element is a pair of tuples. The
column age is mapped to a subsetcage with 8 pairs:
{(1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5)}; the
columnsexis mapped to a subsetcsex with 6 pairs, andstate
7 pairs. The attribute set{age, sex} is a key; correspond-
ingly the collection{cage, csex} is a set cover.

The Greedy Set Cover Algorithmstarts with an empty
collection (of subsets) and adds subsets one by one until ev-
ery element inS has been covered; each time it chooses the
subset covering the largest number of uncovered elements.
It is well known that this greedy algorithm is a1 + ln |S|
approximation algorithm for Minimum Set Cover.

LEMMA 2.1. [12] The Greedy Set Cover Algorithm out-
puts a set cover of size at most1+ln |S| times the minimum
set cover size.

TheGreedy Minimum Key Algorithmmimics the greedy
set cover algorithm: start with an empty set of attributes and
add attributes one by one until all tuple pairs are separated;
each time chooses an attribute separating the largest number
of tuple pairs not yet separated. The running time of the
algorithm isO(m3n). It is easy to infer the approximation
ratio of this algorithm from Lemma 2.1:

THEOREM 2.1. Greedy Minimum Key Algorithm outputs a
key of size at most1 + 2 ln n times the minimum key size.

The greedy algorithms are optimal because neither prob-
lem is approximable withinc ln |S| for somec > 0 [10].
Note that this is the worst case bound and in practice the
algorithms usually find much smaller set covers or keys.

2.3 (ε, δ)-Separation Minimum Key

The greedy algorithm in the last section is optimal in
terms of approximation ratio, however, it requires multiple
scans (O(m2) scans indeed) of the table, which is expensive

for large data sets. In this and next section, we relax the
minimum key problem by allowing quasi-identifiers and
design efficient algorithms with approximate guarantees.

We use the standard (ε, δ) formulation: with probability
at least1 − δ, we allow an “error” of at mostε, i.e. we
output a quasi-identifier with separation (distinct) ratio at
least 1 − ε. The (ε, δ) Minimum Set Cover Problem is
defined similarly and requires the output set cover covering
at least a1− ε fraction of all elements.

Our algorithms are based on random sampling. We first
randomly samplek elements (tuples), and reduce the input
set cover (key) instance to a smaller set cover (key) instance
containing only the sampled elements (tuples). We then
solve the exact minimum set cover (key) problem in the
smaller instance (which is again a hard problem but has
much smaller size, so we can afford to apply the greedy
algorithms in Section 2.2), and output the solution as an
approximate solution to the original problem. The number
of samplesk is carefully chosen so that the error probability
is bounded. We present in detail the algorithm for (ε, δ)-set
cover in Section 2.3.1; the (ε, δ)-Separation Minimum Key
problem can be solved by reducing to (ε, δ) Minimum Set
Cover (Section 2.3); we discuss (ε, δ)-Distinct Minimum
Key in Section 2.4.

2.3.1 (ε, δ) Minimum Set Cover The key observation
underlying our algorithm is that to check whether a given
collection of subsets is a set cover, we only need to check
some randomly sampled elements if we allow approximate
solutions. If the collection only covers part ofS, then it
will fail the check after enough random samples. The idea
is formalized as the following lemma.

LEMMA 2.2. s1, s2, . . . , sk are k elements independently
randomly chosen fromS. If a subsetS′ satisfies|S′| <
α|S|, thenPr[si ∈ S′,∀i] < αk.

The proof is straightforward. The probability that a ran-
dom element ofS belongs toS′ is |S′|/|S| < α, therefore
the probability of allk random elements belonging toS′ is
at mostαk.

Now we combine the idea of random sample checking
with the greedy algorithm for the exact set cover. Our
Greedy Approximate Set Cover algorithmis as follows:

1. Choosek elements uniformly at random fromS (k is
defined later);

2. Reduce the problem to a smaller set cover instance: the
ground setS̃ consists of thek chosen elements; each
subset in the original problem maps to a subset which
is the intersection of̃S and the original subset;

3. Apply Greedy Set Cover Algorithm to find an exact set
cover forS̃, and output the solution as an approximate
set cover toS.
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Let n be the size of the ground setS, and m be the
number of subsets. We say a collection of subsets is anα-
set coverif it covers at least anα fraction of the elements.

THEOREM 2.2. With probability1−δ, the above algorithm
with k = log 1

1−ε

2m

δ outputs a (1 − ε)-set cover whose

cardinality is at most(1 + ln log 1
1−ε

2m

δ )|I∗|, whereI∗ is
the optimal exact set cover.

Proof. Denote byS̃ the ground set of the reduced instance
(|S̃| = k); by Ĩ∗ the minimum set cover of̃S . The greedy
algorithm outputs a subcollection of subsets covering all
k elements ofS̃, denoted byĨ. By Lemma 2.1,|Ĩ| ≤
(1 + ln |S̃|)|Ĩ∗|. Note thatI∗, the minimum set cover
of the original setS, corresponds to a set cover ofS̃, so
|Ĩ∗| ≤ |I∗|, and hence|Ĩ| ≤ (1 + ln k)|I∗|.

We map Ĩ back to a subcollectionI of the original
problem. We have
|I| = |Ĩ| ≤ (1 + ln k)|I∗| = (1 + ln log 1

1−ε

2m

δ )|I∗|.
Now bound the probability thatI is not a1− ε-set cover.

By Lemma 2.2, the probability that a subcollection covering
less than a1− ε fraction ofS covers allk chosen elements
of S̃ is at most

(1− ε)k = (1− ε)
log 1

1−ε

2m

δ = (1− ε)log1−ε
δ

2m =
δ

2m
.

There are2m possible subcollections; by union bound,
the overall error probability, i.e. the probability that any
subcollection is not a (1−ε)-cover ofS but is an exact cover
of S̃, is at mostδ. Hence, with probability at least1 − δ, I
is a (1− ε)-set cover forS.

If we takeε andδ as constants, the approximation ratio is
essentiallyln m+O(1), which is smaller than1+ln n when
n À m. The space requirement of the above algorithm is
mk = O(m2) and running time isO(m4).

2.3.2 (ε, δ)-Separation Minimum Key The reduction
from Minimum Key to Minimum Set Cover preserves the
separation ratio: anα-separation quasi-identifier separates
at least anα fraction of all pairs of tuples, so its corre-
sponding subcollection is anα-set cover; and vice versa.
Therefore, we can reduce the (ε, δ)-Separation Minimum
Key problem to the (ε, δ)-Set Cover problem where|S| =
O(n2). The complete algorithm is as follows.

1. Randomly choosek = log 1
1−ε

2m

δ pairs of tuples;

2. Reduce the problem to a set cover instance where
the ground set̃S is the set of thosek pairs and each
attribute maps to a subset of thek pairs separated by
this attribute;

3. Apply Greedy Set Cover Algorithm to find an exact set
cover forS̃, and output the corresponding attributes as
a quasi-identifier to the original table.

THEOREM 2.3. With probability1−δ, the above algorithm
outputs a (1−ε)-separation quasi-identifier whose size is at
most(1 + ln log 1

1−ε

2m

δ )|I∗|, whereI∗ is the smallest key.

The proof directly follows Theorem 2.2. The approxima-
tion ratio is essentiallyln m+O(1). The space requirement
of the above algorithm ismk = O(m2), which significantly
improves upon the input sizemn.

2.4 (ε, δ)-Distinct Minimum Key

Unfortunately, the reduction to set cover does not neces-
sarily map anα-distinct quasi-identifier to anα-set cover.
As pointed out in Section 1.1, anα-distinct quasi-identifier
corresponds to anα′-separation quasi-identifier, and thus
reduces to anα′-set cover, whereα′ can be as small as
2α−α2, or as large as1− 2(1−α)

n . Therefore reducing this
problem directly to set cover gives too loose bound, and a
new algorithm is desired.

Our algorithm for finding distinct quasi-identifiers is
again based on random sampling. We reduce the input
(ε, δ)-Distinct Minimum Key instance to a smaller (exact)
Minimum Key instance by randomly choosingk tuples and
keeping allm attributes. The following lemma bounds the
probability that a subset of attributes is an (exact) key in
the sample table, but not anα-distinct quasi-identifier in the
original table.

LEMMA 2.3. Randomly choosek tuples from input tableT
to form tableT1. Letp be the probability that an (exact) key
of T1 is not anα-distinct quasi-identifier inT . Then

p < e−
( 1

α
−1)k(k−1)

2n

Proof: Suppose we haven balls distributed ind = αn dis-
tinct bins. Randomly choosek balls without replacement,
and the probability that thek balls are all from different bins
is exactlyp. Letx1, x2, . . . , xd be the number of balls in the
d bins (

∑d
i=1 xi = n, xi > 0), then

p =

∑
all{i1,i2,...,ik} xi1xi2 . . . xik(

n
k

) .

p is maximized when allxis are equal, i.e. each bin has
1
α balls. Next we computep for this case. The first ball
can be from any bin; to choose the second ball, we have
n−1 choices, but it cannot be from the same bin as the first
one, so1

α − 1 of then − 1 choices are infeasible; similar
arguments hold for the remaining balls. Summing up, the
probability that allk balls are from distinct bins is

p = 1(1−
1
α
− 1

n− 1
)(1− 2( 1

α
− 1)

n− 2
) . . . (1− (k − 1)( 1

α
− 1)

n− (k − 1)
)

≤ e
−(

1
α
−1

n−1 +
2( 1

α
−1)

n−2 +
(k−1)( 1

α
−1)

n−(k−1) )

< e−
( 1

α
−1)k(k−1)

2n �
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The Greedy (ε, δ)-Distinct Minimum Key Algorithm is
as follows:

1. Randomly choosek =
√

2(1−ε)
ε n ln 2m

δ tuples and
keep all attributes to form tableT1;

2. Apply Greedy Minimum Key Algorithm to find an
exact key inT1, and output it as a quasi-identifier to
the original table.

THEOREM 2.4. With probability1−δ, the above algorithm
outputs a (1 − ε)-distinct quasi-identifier whose size is at
most(1 + 2 ln k)|I∗|, whereI∗ is the smallest exact key.

The proof is similar to Theorem 2.2, substituting Lemma
2.2 with Lemma 2.3. k is chosen such thatp ≤ δ

2m to
guarantee that the overall error probability is less thanδ.
The approximation ratio is essentiallyln m + ln n + O(1),
which improves the1 + 2 lnn result for the exact key. The
space requirement ismk = O(m

√
mn), sublinear in the

number of tuples of the original table.

2.5 Minimum β-Separation Quasi-identifier

In previous sections, our goal is to find a small quasi-
identifier that is almost a key. Note thatε indicates
our “error tolerance”, not our goal. For (ε, δ)-Separation
Minimum Key problem, our algorithm is likely to out-
put quasi-identifiers whose separation ratios are far greater
than 1 − ε. For example, suppose the minimum key of
a given table consists of 100 attributes, while the mini-
mum0.9-separation quasi-identifier has 10 attributes, then
our (0.1, 0.01)-separation algorithm may output a quasi-
identifier that has say 98 attributes and is0.999-separation.
However, sometimes we may be interested in finding0.9-
separation quasi-identifiers which have much smaller sizes.
For this purpose we consider theMinimum β-Separation
Quasi-identifier Problem: find a quasi-identifier with the
minimum size and separation ratio at leastβ.

The Minimumβ-Separation Quasi-identifier Problem is
at least as hard as Minimum Key since the latter is a special
case whereβ = 1. So again we consider the approximate
version by relaxing the separation ratio: we require the
algorithm to output a quasi-identifier with separation ratio
at least(1− ε)β with probability at least1− δ.

We present the algorithm for approximateβ-set cover;
theβ-separation quasi-identifier problem can be reduced to
β-set cover as before.

The Greedy Minimumβ-Set Cover algorithmworks as
follows: first randomly samplek = 16

βε2 ln 2m

δ elements
from the ground setS, and construct a smaller set cover
instance defined on thek chosen elements; run the greedy
algorithm on the smaller set cover instance until get a sub-
collection covering at least(2−ε)βk/2 elements (start with
an empty subcollection; each time add to the subcollection a
subset covering the largest number of uncovered elements).

THEOREM 2.5. The Greedy Minimumβ-Set Cover algo-
rithm runs in spacemk = O(m2), and with probability at
least1 − δ, outputs a(1 − ε)β-set cover with size at most
(1 + ln (2−ε)βk

2 )|I∗|, whereI∗ is the minimumβ-set cover
of S.

The proof can be found in our technical report. This
algorithm also applies to the minimum exact set cover
problem (the special case whereβ = 1), but the bound
is worse than Theorem 2.2; see our technical report for
detailed comparison.

The minimumβ-separation quasi-identifier problem can
be solved by reducing toβ-set cover problem and applying
the above greedy algorithm. Unfortunately, we cannot
provide similar algorithms forβ-distinct quasi-identifiers;
the main difficulty is that it is hard to give a tight bound
to the distinct ratio of the original table by only looking at
a small sample of tuples. The negative results on distinct
ratio estimation can be found in [5].

3 Masking Quasi-Identifiers
In this section we consider the quasi-identifier masking

problem: when we release a table, we want to publish a
subset of the attributes subject to the privacy constraint that
noβ-separation (orβ-distinct) quasi-identifier is published;
on the other hand we want to maximize the utility, which
is measured by the number of published attributes. For
each problem, we first present a greedy algorithm which
generates good results but runs slow for large tables, and
then show how to accelerate the algorithms using random
sampling. (The algorithms can be easily extended to the
case where the attributes have weights and the utility is the
sum of attribute weights.)

3.1 Masking β-Separation Quasi-identifiers

As in Section 2.2, we can reduce the problem to a set
cover type problem: let the ground setS be the set of
all pairs of tuples, and let each attribute correspond to
a subset of tuple pairs separated by this attribute, then
the problem of Maskingβ-Separation Quasi-identifier is
equivalent to finding a maximum number of subsets such
that at most aβ fraction of elements inS is covered by
the selected subsets. We refer to this problem asMaximum
Non-Set Cover problem. Unfortunately, the Maximum Non-
Set Cover problem is NP-hard by a reduction from the
Dense Subgraph problem. (See our technical report for the
hardness proof.)

We propose a greedy heuristic for maskingβ-separation
quasi-identifiers: start with an empty set of attributes, and
add attributes to the set one by one as long as the separation
ratio is belowβ; each time pick the attribute separating the
least number of tuple pairs not yet separated.

The algorithm produces a subset of attributes satisfying
the privacy constraint and with good utility in practice,
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however it suffers from the same efficiency issue as the
greedy algorithm in Section 2.2: it requiresO(m2) scans
of the table and is thus slow for large data sets. We again
use random sampling technique to accelerate the algorithm:
the following lemma gives a necessary condition for aβ-
separation quasi-identifier in the sample table (with high
probability), so only looking at the sample table and pruning
all attribute sets satisfying the necessary condition will
guarantee the privacy constraint. The proof of the lemma
is omit for lack of space.

LEMMA 3.1. Randomly samplek pairs of tuples, then aβ-
separation quasi-identifier separates at leastαβ of the k
pairs, with probability at least1− e−(1−α)2βk/2.

The Greedy Approximateβ-Separation Masking Algo-
rithm is as follows:

1. Randomly choosek pairs of tuples;

2. Let β′ = (1 −
√

2 ln(2m/δ)
βk )β. Run the following

greedy algorithm on the selected pairs: start with an
empty setC of attributes, and add attributes to the set
C one by one as long as the number of separated pairs
is belowβ′k; each time pick the attribute separating
the least number of tuple pairs not yet separated;

3. Publish the set of attributesC.

By the nature of the algorithm the published attributes
C do not contain quasi-identifiers with separation greater
thanβ′ in the sample pairs; by Lemma 3.1, this ensures that
with probability at least1 − 2me−(1−β′/β)2βk/2 = 1 − δ,
C do not contain anyβ-separation quasi-identifier in the
original table. Therefore the attributes published by the
above algorithm satisfies the privacy constraint.

THEOREM 3.1. With probability at least1 − δ, the above
algorithm outputs an attribute set with separation ratio at
mostβ.

We may over-prune because the condition in Lemma 3.1
is not a sufficient condition, which means we may lose some
utility. The parameterk in the algorithm offers a tradeoff
between the time/space complexity and the utility. Obvi-
ously both the running time and the space increase linearly
with k; on the other hand, the utility (the number of pub-
lished attributes) also increases withk because the pruning
condition becomes tighter ask increases. Our experiment
results show that the algorithm is able to dramatically re-
duce the running time and space complexity, without much
sacrifice in the utility (see Section 4).

3.2 Masking β-Distinct Quasi-identifiers

For maskingβ-distinct quasi-identifiers, we can use
a similar greedy heuristic: start with an empty set of
attributes, and each time pick the attribute adding the least

number of distinct values, as long as the distinct ratio is
belowβ. And similarly we can use a sample table to trade
off utility for efficiency.

1. Randomly choosek tuples and keep all the columns to
form a sample tableT1;

2. Let β′ = (1 −
√

2 ln(2m/δ)
βk )β. Run the following

greedy algorithm onT1: start with an empty setC of
attributes, and add attributes to the setC one by one
as long as the distinct ratio is belowβ′; each time pick
the attribute adding the least number of distinct values;

3. Publish the set of attributesC.

Lemma 3.2 and Theorem 3.2 state the privacy guarantee
of the above algorithm.

LEMMA 3.2. Randomly samplek tuples from the input
table T into a small tableT1 (k ¿ n, wheren is the
number of tuples inT ). A β-distinct quasi-identifier ofT
is an αβ-distinct quasi-identifier ofT1 with probability at
least1− e−(1−α)2βk/2.

Proof. By the definition ofβ-distinct quasi-identifier, the
tuples has at leastβn distinct values projected on the quasi-
identifier. Take (any) one tuple from each distinct value,
and call those representing tuples “good tuples”. There are
at leastβn good tuples inT .

Let k1 be the number of distinct values inT1 projected
on the quasi-identifier, andk′ be the number of good tuples
in T1. We havek1 ≥ k′ because all good tuples are distinct.
(The probability that any good tuple is chosen more than
once is negligible whenk ¿ n.) Next we bound the
probability Pr[k′ ≤ αβk]. Since each random tuple has
a probability at leastβ of being good, and each sample are
chosen independently, we can use Chernoff bound (see [19]
Ch. 4) and get

Pr[k′ ≤ αβk] ≤ e−(1−α)2βk/2

Sincek1 ≥ k′, we have

Pr[k1 ≤ αβk] ≤ Pr[k′ ≤ αβk] ≤ e−(1−α)2βk/2

Hence with probability at least1−e−(1−α)2βk/2, the quasi-
identifier has distinct ratio at leastαβ in T1.

THEOREM 3.2. With probability at least1−δ, the attribute
set published by the algorithm has distinct ratio at mostβ.

4 Experiments
We have implemented all algorithms for finding and

masking quasi-identifiers, and conducted extensive exper-
iments using real data sets. All experiments were run on a
2.4GHz Pentium PC with1GB memory.
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(a) Masking0.5-distinct quasi-identifiers
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(b) Masking0.8-separation quasi-identifiers

Figure 1. Performance of masking quasi-identifier
algorithms with different sample sizes on table
california. Figures (a) and (b) show how the running
time (the left y axis) and the utility (the righty
axis) change with the sample size (the parameterk)
in Greedy Approximate algorithms for masking0.5-
distinct and0.8-separation quasi-identifiers.

4.1 Data Sets

One source of data sets is the census microdata “Public-
Use Microdata Samples (PUMS)” [1], provided by US
Census Bureau. We gather the 5 percent samples of Census
2000 data from all states and put into a table “census”.
To study the performance of our algorithms on tables with
different sizes, we also extract 1 percent samples of state-
level data and select4 states with different population sizes
– Idaho, Washington, Texas and California. We extract41
attributes including age, sex, race, education level, salary
etc. We only use adult records (age≥ 20) because many
children are indistinguishable even with all41 attributes.
The tablecensushas 10 million distinct adults, and the
sizes ofIdaho, Washington, TexasandCalifornia are 8867,
41784, 141130 and 233687 respectively.

We also use two data setsadult andcovtypeprovided by
UCI Machine Learning Repository [21]. Thecovtypetable

has581012 rows and54 attributes. We use 14 attributes
of adult including age, education level, marital status; the
number of records inadult is around30000.

4.2 Masking Quasi-identifiers

The greedy approximate algorithms for masking quasi-
identifiers are randomized algorithms that guarantee to sat-
isfy the privacy constraints with probability1 − δ. We set
δ = 0.01, and the privacy constraint are satisfied in all ex-
periments, which confirms the accuracy of our algorithms.

Figure 1 shows the tradeoff between the running time
and the utility (the number of attributes published), using
the california data set. Both the running time and the
utility decrease as the sample sizek decreases; however,
the running time decreases linearly withk while the utility
degrades very slowly. For example, running the greedy
algorithm for masking0.5-distinct quasi-identifiers on the
entire table (without random sampling) takes 80 minutes
and publishes 34 attributes (the rightmost point in Figure a);
using a sample of30000 tuples the greedy algorithm takes
only 10 minutes and outputs 32 attributes. Figure b shows
the impact ofk on the masking separation quasi-identifier
algorithm. To run the greedy algorithm for masking0.8-
separation quasi-identifier on the entire table takes 728
seconds (not shown in the figure); using a sample of50000
pairs offers the same utility and only takes 30 seconds.
The results show that our random sampling technique can
greatly improve time and space complexity (space is also
linear ink), with only minor sacrifice on the utility.

Data Sets
Greedy Greedy Approximate

time utility time utility
adult 36s 12 - -
covtype - - 2000s 46
idaho 172s 33 - -
wa 880s 34 620s 33
texas 3017s 35 630s 33
ca 4628s 34 606s 32
census - - 755s 30

Table 2. Algorithms for masking 0.5-distinct
quasi-identifiers. The column “Greedy” represents
the greedy algorithm on the entire table; the column
“Greedy Approximate” represents running greedy al-
gorithm on a random sample of30000 tuples. We
compare the running time and the utility (the num-
ber of published attributes) of the two algorithms on
different data sets. The results of Greedy oncensus
andcovtypeare not available because the algorithm
does not terminate in 10 hours; the results of Greedy
Approximate onadultandIdahoare not available be-
cause the input tuple number is less than30000.
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Data Sets
Greedy Greedy Approximate

time utility time utility
adult 19s 5 2s 5
covtype 2 hours 38 104s 37
idaho 147s 24 30s 23
wa 646s 23 35s 23
texas 1149s 19 34s 19
ca 728s 16 30s 16
census - - 170s 17

Table 3. Algorithms for masking 0.8-separation
quasi-identifiers. The column “Greedy” represents
the greedy algorithm on the entire table, and the
column “Greedy Approximate” represents running
greedy algorithm on a random sample of50000 pairs
of tuples. We compare the running time and the utility
of the two algorithms on different data sets. The
result of Greedy oncensusis unavailable because the
algorithm does not terminate in 10 hours.

Table 2 and 3 compare the running time and the utility
(the number of published attributes) of running the greedy
algorithm on the entire table versus on a random sample
(we use a sample of30000 tuples in Table 2 and a sample
of 50000 pairs of tuples in Table 3). Results on all data
sets confirm that the random sampling technique is able to
reduce the running time dramatically especially for large
tables, with only minor impact on the utility. For the largest
data setcensus, running the greedy algorithm on the entire
table does not terminate in 10 hours, while with random
sampling it only takes no more than 13 minutes for masking
0.5-distinct quasi-identifier and 3 minutes for masking0.8-
separation quasi-identifier.

4.3 Approximate Minimum Key Algorithms

Finally we examine the greedy algorithms for finding
minimum key and (ε, δ)-separation or -distinct minimum
key in Section 2. Table 4 shows the experimental results
of the Greedy Minimum Key, Greedy(0.1, 0.01)-Distinct
Minimum Key, and Greedy(0.001, 0.01)-Separation Mini-
mum Key algorithms on different data sets.

The Greedy Minimum Key algorithm (applying greedy
algorithm directly on the entire table) works well for small
data sets such asadult, idaho, but becomes unaffordable
as the data size increases. The approximate algorithms for
separation or distinct minimum key are much faster. For the
tableCalifornia, the greedy minimum key algorithm takes
almost one hour, while the greedy distinct algorithm takes
2.5 minutes, and greedy separation algorithm merely sec-
onds; for the largest tablecensus, the greedy minimum key
algorithm takes more than 10 hours, while the approximate
algorithms take no more than 15 minutes. The space and

time requirements of our approximate minimum key algo-
rithms are sublinear in the number of input tuples, and we
expect the algorithms to scale well on even larger data sets.

We measure the distinct and separation ratios of the
output quasi-identifiers, and find the ratios always within
errorε. This confirms the accuracy of our algorithms.

Theorem 2.3 and 2.4 provide the theoretical bounds on
the size of the quasi-identifiers found by our algorithms
(ln m or ln mn times the minimum key size). Those
bounds are worst case bounds, and in practice we usually
get much smaller quasi-identifiers. For example, we find
that the minimum key size ofadult is 13 by exhaustive
search, and the greedy algorithm for both distinct and
separation minimum key find quasi-identifiers no larger
than the minimum key. (For other data sets in Table 4,
computing the minimum key exactly takes prohibitively
long time, so we are not able to verify the approximation
ratio of our algorithms.) We also generate synthetic tables
with known minimum key sizes, then apply the greedy
distinct minimum key algorithm (withε = 0.1) on those
tables and are always able to find quasi-identifiers no larger
than the minimum key size. Those experiments show
that in practice our approximate minimum key algorithms
usually perform much better than the theoretical worst case
bounds, and are often able to find quasi-identifiers with high
separation (distinct) ratio and size close to the minimum.

5 Related Work

The implication of quasi-identifiers to privacy is first
formally studied by Sweeney, who also proposed the k-
anonymity framework as a solution to this problem [25, 24].
Afterwards there is numerous work which studies the com-
plexity of this problem [17, 2], designs and implements
algorithms to achieve k-anonymity [23, 4], or extends
upon the framework [16, 14]. Our algorithm for mask-
ing quasi-identifiers can be viewed as an approximation to
k-anonymity where the suppression must be conducted at
the attribute level. Also it is an “on average” k-anonymity
because it does not provide perfect anonymity for every
individual but does so for the majority; a similar idea is
used in [15]. On the other side, our algorithms for find-
ing keys/quasi-identifiers attempt to attack the privacy of
published data from the adversary’s point of view, when the
publish data is not k-anonymized. To the best of our knowl-
edge, there is no existing work addressing this problem.

Our algorithms exploit the idea of using random samples
to trade off between accuracy and space complexity, and can
be viewed as streaming algorithms. Streaming algorithms
emerged as a hot research topic in the last decade; see [20]
for a survey of this area.

Keys are special cases of functional dependencies, and
quasi-identifiers are a special case of approximate func-
tional dependency. Our definitions of separation and dis-
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Data Sets
Greedy distinct Greedy (ε = 0.1) separation Greedy (ε = 0.001)

time key size time key size distinct ratio time key size separation ratio
adult 35.5s 13 8.8s 13 1.0 3.11s 5 0.99995
covtype 964s 5 78.1s 3 0.9997 27.1s 2 0.999996
idaho 50.4s 14 15.2s 8 0.997 1.07s 3 0.9999
wa 490s 22 34.1s 8 0.995 7.14s 3 0.99993
texas 2032s 29 120s 14 0.995 13.2s 4 0.99995
ca 3307s 29 145s 13 0.994 16.3s 4 0.99998
census - - 808s 17 0.993 120s 3 0.99998

Table 4. Running time and output key sizes of the Greedy Minimum Key, Greedy(0.1, 0.01)-Distinct Minimum
Key, and Greedy (0.001, 0.01)-Separation Minimum Key algorithms. The result of Greedy Minimum Key on
censusis not available because the algorithm does not terminate in 10 hours.

tinct ratios for quasi-identifiers are adapted from the mea-
sures for quantifying approximations of functional depen-
dencies proposed in [13, 22].

6 Conclusions and Future Work
In this paper, we designed efficient algorithms for dis-

covering and masking quasi-identifiers in large tables.
We developed efficient algorithms that find small quasi-
identifiers with provable size and separation/distinct ratio
guarantees, with space and time complexity sublinear in the
number of input tuples. We also designed efficient algo-
rithms for masking quasi-identifiers in large tables.

All algorithms in the paper can be extended to the
weighted case, where each attribute is associated with a
weight and the size/utility of a set of attributes is defined as
the sum of their weights. The idea of using random samples
to trade off between accuracy and space complexity can
potentially be explored in other problems on large tables.
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Abstract

Lindell and Pinkas demonstrated that it is feasible
to preserve privacy in data mining by employing a
combination of general-purpose and specialized secure-
multiparty-computation (SMC) protocol components.
Yet practical obstacles of several sorts have impeded
a fully practical realization of this idea. In this pa-
per, we address the correctness and practicality of one
of their primary contributions, a secure natural loga-
rithm computation, which is a building block crucial
to an SMC approach to privacy-preserving data min-
ing applications including construction of ID3 trees and
Bayesian networks. We first demonstrate a minor error
in the Lindell-Pinkas solution, then provide a correction
along with several optimizations. We explore a modest
trade-off of perfect secrecy for a performance advantage,
a strategy that adds flexibility in the effective applica-
tion of hybrid SMC to data mining.

1 Introduction

Privacy-preservation objectives in data mining can of-
ten be framed ideally as instances of secure multiparty
computation (SMC), wherein multiple parties cooperate
in a computation without thereby learning each other’s
inputs. The characterization of SMC is very encom-
passing, admitting a great variety of input and output
configurations, so that a general recipe for adding the
SMC input security to arbitrary well-specified multi-
party computations would seem to solve many quite
different problems in one fell swoop. Indeed, general
approaches to SMC were proposed for a variety of set-
tings already in the 1980s. Yet the framing of privacy
preservation for particular data-mining tasks as SMC
problems, making them amenable to the general ap-
proaches, is usually not useful. For all but the most

∗Supported in part by ONR grant N00014-01-1-0795 and by
US-Israel BSF grant 2002065.

†Supported in part by NSF grant 0331584.

trivial computations, the general SMC solutions have
been too cumbersome to apply and would be impracti-
cal to run. They require the computation to be repre-
sented as an algebraic circuit, with all loops unrolled to
as many iterations as would possibly be needed for the
supported inputs, and with all contingent branches of
the logic as conventionally expressed—such as iterations
that happen not to be needed—executed in every run
regardless of the inputs. One may reasonably conclude
that SMC is just a theoretical curiosity, not relevant for
real-world privacy-preserving data mining, where inputs
are not just a few bits but rather entire databases.

Lindell and Pinkas [LP00, LP02] have shown the lat-
ter conclusion to be inappropriate. A privacy-preserving
data-mining task, they point out, need not be cast as a
monolithic SMC problem to which to apply an expen-
sive general SMC solution. Instead, the task may be
decomposed into modules requiring SMC, all within a
computational superstructure that may itself admissi-
bly be left public. The modules requiring SMC may,
in part, be implemented with special-purpose proto-
cols with good performance, leaving general SMC as
a fallback (at the module-implementation level) only
where special approaches have not been found. The
key to such construction is that we are able to en-
sure secure chaining of the secure protocol components.
We prevent information from leaking at the seams be-
tween the SMC components by having them produce
not public intermediate outputs but rather individual-
party shares of the logical outputs, shares that may
then be fed as inputs to further SMC components. Lin-
dell and Pinkas illustrate this creative, hybrid method-
ology by designing a two-party SMC version of the
ID3 data-mining algorithm for building a classification
tree, a query-sequencing strategy for predicting an un-
known attribute—e.g., loan worthiness—of a new en-
tity whose other attributes—e.g., those characterizing
credit history, assets, and income—are obtainable by
(cost-bearing) query. At each construction step, the
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ID3 algorithm enters an episode of information-theoretic
analysis of the database of known-entity attributes. The
privacy concern is introduced, in the Lindell-Pinkas set-
ting, by horizontal partitioning of that database be-
tween two parties that must not share their records.
The computation is to go through as if the parties have
pooled their data, yet without them revealing to each
other in their computational cooperation any more re-
garding their private data than is implied by the ulti-
mate result that is to be made known to them both.

While demonstrating the potential in a modular
SMC approach to prospective appliers of the theory,
Lindell and Pinkas offer SMC researchers and imple-
mentors some design suggestions for particular SMC
modules needed in their structuring of the two-party
ID3 computation. Strikingly, they need only three such
SMC modules, all relatively small and clearly useful for
building other protocols, namely, shares-to-shares log-
arithm and product protocols and a shares-to-public-
value minindex protocol. Their intriguing recommen-
dation for the secure logarithm protocol, critical to the
accuracy and performance of SMC data mining when-
ever information-theoretic analysis is involved, is our
focus in this paper.

The present authors have been engaged in a privacy-
preserving data-mining project [YW06, KRWF05] very
much inspired by Lindell and Pinkas. Our setting is sim-
ilar: a database is arbitrarily partitioned between two
parties wishing to keep their portions of the data pri-
vate to the extent that is consistent with achieving their
shared objective of discovering a Bayes-net structure in
their combined data. The information-theoretic consid-
erations and the scoring formula they lead to are very
similar to those in the ID3 algorithm for classification-
strategy building, as is the external flow of control that
invokes scoring on candidate next query attributes given
a set of query attributes that has already been decided
upon. (The details and their differences are not ger-
mane to the present discussion.) The adaptation we do
for privacy preservation in our two-party setting is, not
surprisingly, very similar to what Lindell and Pinkas do.
Indeed, we need the same SMC components that they
do and just one more, for computing scalar products of
binary-valued vectors. The latter additional need has
more to do with the difference in setting—we are admit-
ting arbitrary, rather than just horizontal, partitioning
of the data—than with the difference in analytical ob-
jective. In fact, our software would not require much ad-
justment to serve as a privacy-preserving two-party ID3
implementation—in fact, supporting arbitrarily parti-
tioned data, given the incorporated scalar-product com-
ponent.

Launching our investigation a few years after Lin-

dell and Pinkas’s paper, we have had the advantage of
the availability of the Fairplay system [MNPS04] for ac-
tually implementing the Yao-protocol components. We
have created tools to support the entire methodology,
enabling us to take our protocol from a theoretical sug-
gestion all the way to usable software. This exercise has
been illuminating. On one hand, it has produced the
most convincing vindication of which we are aware of
Lindell and Pinkas’ broad thesis regarding the practical
achievability of SMC in data mining while teaching us
much about the software engineering required for com-
plex SMC protocols. On the other hand, as is typical in
implementation work, it has revealed flaws in a number
of areas of the underlying theoretical work, including
our own. In this paper, we present our observations
on the Lindell-Pinkas logarithm proposal. We correct a
mathematical oversight and address a general modular-
SMC issue that it highlights, the disposition of scaling
factors that creep into intermediate results for technical
reasons.

We begin in Section 2 with a careful account of the
Lindell-Pinkas proposal for a precision-configurable se-
cure two-party shares-to-shares computation of natural
logarithms. In Section 3, we explain the mathemati-
cal oversight in the original proposal and show that the
cost of a straightforward fix by scale-up is surprisingly
low, although leaving us with a greatly inflated scale-up
factor. In Sections 4 and 5, we propose efficient alterna-
tives for doing arbitrary scaling securely. These enable a
significant optimization in the first phase of the Lindell-
Pinkas protocol, allowing removal of the table look-up
from the Yao circuit evaluation. We briefly point out
the effectiveness of a simple dodge of most of the prob-
lematics of the Lindell-Pinkas protocol in Section 6. We
conclude with a discussion of our implementation of the
revised Lindell-Pinkas protocol and its performance in
Section 7.

2 The Lindell-Pinkas ln x protocol

The Lindell-Pinkas proposed protocol for securely com-
puting lnx is intended as a component in a larger se-
cure two-party protocol. The parties are presumed not
to know, and must not hereby learn, either the argu-
ment or its logarithm. They contribute secret shares
of the argument and obtain secret shares of its log-
arithm. The proposed design for this protocol mod-
ule is itself modular, proceeding in two chained phases
involving different technology. The first phase inter-
nally determines n and ε such that x = 2n(1 + ε) with
−1/4 ≤ ε < 1/2. Note that, since n is an approximate
base-2 logarithm of x, the first phase gets us most of
the way to the desired logarithm of x. Furthermore,
this phase dominates the performance time of the en-
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tire logarithm protocol: in absence of a specialized SMC
protocol for the first phase, Lindell and Pinkas fall back
to dictating it be implemented using Yao’s general ap-
proach to secure two-party computation, entailing gate-
by-gate cryptography-laden evaluation of an obfuscated
Boolean circuit. Yet the main thrust of the Lindell-
Pinkas recommendation is in the second phase, which
takes (the secret shares of) ε delivered by phase one
and computes an additive correction to the logarithm
approximation delivered (as secret shares) by phase one.

We will return to the performance-critical consid-
erations in implementing phase one, not addressed by
Lindell and Pinkas. We assume that its Boolean cir-
cuitry reconstitutes x from its shares; consults the top
1-bit in its binary representation and the value of the
bit following it to determine n and ε as defined; repre-
sents n and ε in a manner to be discussed; and returns
shares of these representations to the respective par-
ties. These values allow an additive decomposition of
the sought natural logarithm of x,

(2.1) lnx = ln 2n(1 + ε) = n ln 2 + ln(1 + ε)

The purpose is to take advantage of the Taylor expan-
sion of the latter term,
(2.2)

ln(1 + ε) =

∞∑

i=1

(−1)i−1εi

i
= ε −

ε2

2
+

ε3

3
−

ε4

4
+ · · ·

to enable, in phase two, correction of the phase-one ap-
proximation of the logarithm with configurable preci-
sion by choice of the number of series terms to be used—
a parameter k to be agreed upon by the parties. The
computation in the second, refining phase is to proceed
by oblivious polynomial evaluation, a specialized SMC
technology which is inexpensive compared to the Yao
protocol of the first phase.

In this rough mathematical plan, the value ε to
be passed from phase one to phase two is a (generally
non-integer) rational and the terms in the decomposi-
tion of the final result in equation (2.1) are (generally
non-integer) reals, whereas the values we will accept
and produce in the two SMC phases are most natu-
rally viewed as integers. We are, then, representing
the rational and the reals as integers through scale-up
and finite-precision approximation. We have consider-
able latitude in choice of the scale-up factors, partic-
ularly considering that the scale-up of a logarithm is
just the logarithm to a different base—just as good for
information-theoretic purposes as long as the base is
used consistently. Still, several considerations inform
our choice of scale-up factors. We want the scale-ups to
preserve enough precision. On the other hand, there is
a performance penalty, here and elsewhere in the larger

computation to which this component is contributing,
especially in Yao-protocol episodes, for processing addi-
tional bits. The chosen scale-up must work mathemati-
cally within the larger computation. If an adjustment of
the scaling were to be needed for compatibility with the
rest of the computation—other than further scale-up by
an integer factor—it would entail another secure compu-
tation. (We return to this issue in §4.) For the Lindell-
Pinkas ID3 computation or for our Bayes-net structure-
discovery computation, both information-theoretic, no
adjustment would be needed. All the terms added and
subtracted to get scores within the larger computation
would be scaled similarly, and those scaled scores serve
only in comparison with each other.

We assume that the parties have common knowl-
edge of some upper bound N on n, the approximate
base-2 logarithm of the input x, and we have phase one
deliver the rational ε scaled up by 2N . This loses no in-
formation, deferring control of the precision of the cor-
rection term, ln 2n(1+ε) in some scale-up, to phase two.
Bearing in mind that the slope of the natural-logarithm
function is around 1 in the interval around 1 to which
we are constraining 1 + ε, we aim for a scale-up of the
correction term by at least 2N , and plan to scale up
the main term of the decomposition, n ln 2, to match.
Lindell and Pinkas suggest that the mapping from n to
n ln 2 · 2N be done by table look-up within the Yao pro-
tocol of phase one. Any further integer scale-up of the
main term to match the scaling of the correction term
can be done autonomously by the parties, without SMC,
by modular multiplication of their respective shares.

Lindell and Pinkas stipulate that the sharing be
with respect to a finite field F that is large enough
in a sense we discuss in more detail in Section 3.
A non-field ring will do provided that any particular
needed inverses exist. This allows us, e.g., to use
Paillier homomorphic encryption in a Zpq both for
the oblivious polynomial evaluation needed in phase
two of this logarithm component and, subsequently in
the larger computation, for the shares-to-shares secure
multiplication to compute x ln x—without additional
secure Yao computations to convert the sharing from
one modulus to another. The only inverses Lindell and
Pinkas need here are of powers of 2, and these would be
available in Zpq.

The set-up for phase two, then, preserving the
Lindell-Pinkas notation, is that phase one has delivered
to the parties, respectively, shares β1 and β2 such that
β1 +F β2 = n ln 2 · 2N , toward (whatever ultimate scale-
up of) the main term of the decomposition (2.1); and
shares α1 and α2 such that α1 +F α2 = ε · 2N , toward
the phase-two computation of (the scale-up of) the
correction term of the decomposition. We continue to
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phase two.
Replacing ε in formula (2.2) with (α1 +F α2)/2N ,

we get

(2.3) ln(1 + ε) =

∞∑

i=1

(−1)i−1(α1 +F α2)
i

i 2Ni

In this infinite-series expression, the only operation to
be carried out in the finite ring F is the recombination
of the shares, α1 and α2, as noted. The objective in
phase two is to compute the series in sufficiently good
approximation through oblivious polynomial evaluation
by the two parties, returning shares of the value to the
parties. So we need to get from the infinite series—
a specification of a limit in R for what appear to be
operations in Q—to a polynomial over the finite ring F
that may be evaluated so as to contribute to the sought
shares. This will entail several steps of transformation.

Step 1. The computation must be finite. We take
only k terms of the series.

Step 2. We deal somehow with the division that
appears in the summand. We need to be sure we end up,
when the transformation is complete, with a polynomial
over F . We can scale up the whole formula to cancel
some or all of the division. The disposition of any
remaining division, as we work toward determining the
coefficients of the polynomial to be evaluated, turns out
to be problematic, largely occasioning this paper. (The
existence of modular inverses in F for the remaining
divisors is not sufficient.) For the moment, let σ be
whatever scale-up factor we decide to use here.

Step 3. We reinterpret the outer summation and
the multiplication, including the binomial exponentia-
tion and the multiplication by σ, as modular addition
and multiplications in F . Note that we cannot even
open the parentheses by formal exponentiation, apply-
ing a distributive law, without first reinterpreting the
multiplication as in F . We have no law regarding the
distribution of multiplication in Z over addition in F .
This requires that we assure ourselves that the rein-
terpretation does not alter the value of the expression.
Lindell and Pinkas ensure this by requiring F to be suf-
ficiently large, and we will review the consideration.

Step 4. We replace the occurrence of ‘α2’ in
(2.3)—as truncated, division-resolved, and modularly
reinterpreted—with the variable ‘y’. Knowing α1, party
1 does the formal exponentiations and collects terms, all
modulo |F|, yielding a polynomial in ‘y’ over F . Party
1 randomly chooses z1 ∈ F and subtracts it from the
constant term of the polynomial. Where Q(y) is the
resulting polynomial and z2 is its value at y = α2, to be
obtained by party 2 through the oblivious polynomial

evaluation to follow, we have
(2.4)

z2 = Q(y) |y=α2
=

k∑

i=1

σ(−1)i−1(α1 + y)i

i 2Ni
− z1

∣∣∣∣∣
y=α2

where all operations—once the approach to the division
in the summand is sorted out—are in F , so that

z1 +F z2 ≈

∞∑

i=1

σ(−1)i−1(α1 +F α2)
i

i 2Ni
= ln(1 + ε) · σ

—all operations here, except as indicated, back in
R. Thus, the computation of z2 according to (2.4)
by oblivious polynomial evaluation accomplishes the
sharing of ln(1 + ε) · σ as z1 and z2. The parties
may autonomously modularly multiply β1 and β2 by
lcm(2N , σ)/2N , giving β′

1
and β′

2
, respectively; and

modularly multiply z1 and z2 by by lcm(2N , σ)/σ,
giving z′

1
and z′

2
, respectively; and modularly add their

respective results from these scale-ups. Then, per the
decomposition in (2.1),

(β′

1
+F z′

1
) +F (β′

2
+F z′

2
) = (β′

1
+F β′

2
) +F (z′

1
+F z′

2
)

≈ (n ln 2 + ln(1 + ε)) · lcm(2N , σ) = lnx · lcm(2N , σ)

accomplishing the original goal of securely computing
shares of ln x from shares of x—if with a scale-up that
we hope is innocuous. But this sketch of the protocol
still needs to be fleshed out. We back up now, first
briefly to step 3, and then to step 2, our main focus.

By the time we get to step 3, we should be left with
an expression prescribing finitely many operations in Z,
viewing +F as an operation in Z and viewing division
as a partially-defined operation in Z. Looking ahead to
step 4, we will be replacing the occurrences of ’α2’ in
this expression with the variable ’y’ and algebraically
reorganizing it into the polynomial Q(y) (with a change
to the constant term). In this step 3, we change only
the semantics of the expression arrived at, not its syn-
tactic composition. The claim to be made is that the
hybrid expression at hand, involving some modular ad-
ditions but otherwise non-modular operations, can be
reinterpreted to involve only modular operations with-
out change to the induced expression value—allowing
the expression then to be transformed syntactically with
guarantee of preservation of value, but now with respect
to the new semantics. This tricky claim, made implic-
itly, bears explicit examination. We can frame the issue
abstractly. Suppose ϕ is an arbitrarily complex numeri-
cal expression built recursively of variables and function
symbols (admitting constants as 0-ary function sym-
bols). We have a conventional interpretation of ϕ in
the domain Z. We also have an alternate interpretation
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of ϕ in the domain Zm. Furthermore, we have an alter-
nate expression, ϕ′, obtained from ϕ by transformations
guaranteed to preserve the value of the whole under the
interpretation in Zm for any assignment of values from
Zm to the variables. We intend to compute ϕ′ as in-
terpreted in Zm. Under what circumstances can we be
assured that this computation will yield the same value
as does evaluation of the original expression ϕ according
to the original interpretation in Z? In the case at hand,
ϕ is

(2.5)

k∑

i=1

σ(−1)i−1(α1 +F y)i

i 2Ni

(with some decision as to how to interpret the division),
whereas ϕ′ is

Q(y) + z1

to be interpreted in Zm (where m = |F|) and be so
computed, with the value to be assigned to ’y’ in both
cases being α2.

There are obvious strong sufficient conditions under
which modular reinterpretation preserves value. We do
have to be careful to take into account, in generaliz-
ing, that in our instance ε may be negative, and that
our summation expression has sign alternation, so we
need to proceed via a “signed-modular” interpretation,
wherein the mod-m integers ⌈m

2
⌉ to m − 1 are viewed

as “negative”, i.e., they are isomorphically replaced by
the integers −⌊m

2
⌋ to −1. (Choosing the midpoint for

the cutover here is arbitrary, in principle, but appro-
priate for our instance.) If (a) for the values we are
contemplating assigning to the variables, the recursive
evaluation of ϕ under the original interpretation assigns
values to the subexpressions of ϕ that are always inte-
gers in the interval [−⌊m

2
⌋, ⌊m

2
⌋]; and if (b) the functions

assigned to the function symbols in the signed-modular
reinterpretation agree with the functions assigned by
the original interpretation whenever the arguments and
their image under the original function are all in that
signed-mod-m interval; then the signed-modular rein-
terpretation will agree with the original interpretation
on the whole expression ϕ for the contemplated value
assignments to the variables. Note that we need not
assume that the reinterpretation associates with the
function symbols the signed-modular analogues of the
original functions, although this would ensure (b). Nor
would a stipulation of modular agreement be sufficient,
in general, without condition (a), even if the original
evaluation produces only (overall) values in the signed-
mod-m domain for value assignments of interest. The
danger is that modular reduction of intermediate values,
if needed, may lose information present in the original

evaluation. In our case, the single variable, ’y’, is as-
signed the value α2, which may be as large as, but no
larger than, m − 1. The constant α1 is similarly less
than m. We can view these mod-m values, returned by
the Yao protocol in phase one, as being the correspond-
ing signed-mod-m values instead, with +F operating on
them isomorphically. Moreover, α1 +F y then evaluates
into the interval [− 1

4
2N , 1

2
2N ), where we can arrange

for the endpoints to be much smaller in absolute value
than ⌊m

2
⌋. This allows Lindell and Pinkas to reason

about setting m high enough so that indeed all subex-
pressions of our ϕ will evaluate, in the original inter-
pretation, into the signed-mod-m domain. Note that if
formal powers of ’α1’ and of ’y’ appeared as subexpres-
sions in our original expression ϕ, as they do in our ϕ′,
the polynomial Q(y)+z1 which we actually compute, we
would have concern over potential loss of information in
modular reduction impeding the modular reinterpreta-
tion; but the power subexpressions appear only after we
have reinterpreted and transformed ϕ, and are by then
of no concern.

We now return to step 2, attending to the division
in the Taylor-series terms.

3 The division problem

We have already seen that choices of scaling factor are
governed by several considerations including preserva-
tion of precision, avoidance of division where it cannot
be carried out exactly, and compatibility among inter-
mediate results. For preservation of precision, we have
been aiming to compute the main and correction terms
of (2.1) scaled up by at least 2N . Lindell and Pinkas in-
corporate this factor into their σ in preparing the poly-
nomial. To dispose of the i factors in the denomina-
tor in (2.4), they increase the scale-up by a factor of
lcm(2, . . . , k). With σ now at 2N lcm(2, . . . , k), the trun-
cated Taylor series we are looking at in step 2 becomes

ln(1 + ε) · 2N lcm(2, . . . , k) ≈
k∑

i=1

(−1)i−1 (lcm(2, . . . , k)/i) (α1 +F α2)
i

2N(i−1)
(3.6)

We know that in step 3 we will be reinterpreting the
operations in this expression—more precisely, in the
expression we intend this expression to suggest—as
operations in F . Clearly, since k is agreed upon before
the computation, the subexpression ’lcm(2, . . . , k)/i’
may be replaced immediately by (a token for) its integer
value. We are still left with a divisor of 2N(i−1), but
Lindell and Pinkas reason that (α1 +F α2)

i, although
not determined until run time, will be divisible by
2N(i−1). After all, (α1 +F α2)

i will be (ε · 2N )i, and
the denominator was designed expressly to divide this
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to leave εi·2N . Apparently, all we need to do is allow the
division bar to be reinterpreted in step 3 as the (partially
defined) division operation in Zm, i.e., multiplication by
the modular inverse of the divisor. We can assume that
m is not even, so that powers of 2 have inverses modulo
m. Furthermore, whenever a divides b (in Z) and b < m,
if a has an inverse (a ∈ Z∗

m) then a−1b in Zm is just the
integer b/a. It would appear that the strong sufficient
conditions for reinterpretation are met.

The trouble is that, although (α1 +F α2)
i = (ε ·2N )i

is an integer smaller than m (given that we will ensure
that m is large enough) and although the expression

‘(ε · 2N)i’ appears to be formally divisible by the
expression ‘2N(i−1)’, the integer (ε · 2N)i is not, in
general, divisible by the integer 2N(i−1). In Q, the
division indeed yields εi2N , which is just the scale-up
by 2N we engineered it to achieve. That rational scale-
up is an integer for i = 1, but will generally not be an
integer for i > 1. (Roughly, εi2N is an integer if the
lowest-order 1 bit in the binary representation of x is
within N/i digits of its highest-order 1 bit—a condition
that excludes most values of x already for i = 2.) This
undermines the sufficient condition Lindell and Pinkas
hoped to rely on to justify the modular reinterpretation,
our step 3. Without the divisibility in the integers,
there is no reason to believe that reinterpretation of
the division by 2N(i−1) as modular multiplication by
its mod-m inverse (2N(i−1))−1 would have anything
to do with the approximation we thought we were
computing. The ensuing formal manipulation in step
4 to get to a polynomial to be evaluated obliviously
would be irrelevant.

The immediate brute-force recourse is to increase
the scale-up factor, σ, currently at 2N lcm(2, . . . , k),
to 2Nklcm(2, . . . , k). This leaves our truncated Taylor
series as

ln(1 + ε) · 2Nklcm(2, . . . , k) ≈
k∑

i=1

(−1)i−1 2N(k−i)(lcm(2, . . . , k)/i) (α1 +F α2)
i(3.7)

Phase one still feeds phase two shares of ε scaled up
by 2N . For compatibility with the larger scale-up
of the correction term of the decomposition as now
delivered (in shares) by phase two, the parties will
autonomously scale up their shares of the main term
of the decomposition by a further factor of 2N(k−1).

The natural concern that a scaling factor so much
larger will require F to be much larger, with adverse
performance implications, turns out to be unfounded.
Surprisingly, the guideline given by Lindell and Pinkas
for the size of F—namely, 2Nk+2k or more—need not
be increased by much. The original guideline actually

remains sufficient for the step-3 reinterpretation of the
operations to be sound. But now, with the (unshared)
scaled-up correction term alone so much wider, requir-
ing some 2Nk bits of representation, we are in danger of
running out of room in the space for the scaled-up main
term if log

2
N > 2k. Raising the size requirement for F

to 2Nk+2k+log
2

N should be sufficient. If we want to pro-
vide, in the larger protocol, for computation of x ln x,
scaled up to x(σ ln x), in the same space F , we need to
raise the size requirement for F to 2Nk+2k+log

2
N+N

Our larger scale-up here does not carry any addi-
tional information, of course. The creeping growth in
the computational space does affect performance, but
only minimally. Even in Yao SMC episodes, the larger
space affects only the modular addition to reconstitute
shared inputs at the outset and the modular addition
to share the computed results at the end. The compu-
tation proper is affected by the size of the space of the
actual unshared inputs, but not by the size of the space
for modular sharing.

The more significant issue is that we continue to be
saddled with scaling factors that are best not incurred
in building blocks intended for general use. We explore
efficient ways to reverse unwanted scaling. The problem
is tantamount to that of efficiently introducing wanted
arbitrary—i.e., not necessarily integral—scaling. Lin-
dell and Pinkas need such scaling to get from base-2
logarithms to natural logarithms in phase one of the
protocol. A good solution to this problem of secure ar-
bitrary scaling will enable us to do better than (even a
smart implementation of) the table look-up inside the
phase-one Yao protocol that they call for, in addition
to allowing reversal of whatever scale-up is delivered by
the entire logarithm protocol.

4 Secure non-integer scaling of shared values

Suppose parties 1 and 2 hold secret shares modulo
m, respectively γ1 and γ2, of a value γ; and suppose
σ = κ + ρ is a scaling factor to be applied to γ, where
κ is a non-negative integer and 0 ≤ ρ < 1. σγ is not,
in general, an integer, but a solution that can provide
the parties shares of an integer approximation of σγ
suffices. κγ may be shared exactly simply by having the
parties autonomously modularly scale up their shares
by κ. That leaves the sharing of (an approximation of)
ργ, the shares to be added modularly to the shares of
κγ to obtain shares of (an approximation of) σγ. The
problem is that approximate multiplication by a non-
integer does not distribute over modular addition, even
approximately!

A bifurcated distributive property does hold, how-
ever. If the ordinary sum γ1 + γ2 is < m, the usual
distributive law for multiplication of the sum by ρ holds
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approximately for approximate multiplication. If, on
the other hand, the ordinary sum γ1 + γ2 is ≥ m, then
the modular sum is, in ordinary terms, γ1 + γ2 − m,
so that the distribution of the multiplication by ρ over
the modular addition of γ1 and γ2 will need an adjust-
ment of approximately −ρm. This suggests the follow-
ing protocol to accomplish the scaling by ρ mostly by
autonomous computation by the parties on their own
shares, but with a very minimal recourse to a Yao pro-
tocol to select between the two cases just enumerated.
The Yao computation takes ργ1 and ργ2, each rounded
to the nearest integer, as computed by the respective
parties; and the original shares γ1 and γ2 as well. Party
1 also supplies a secret random input z1 < m. The cir-
cuit returns to party 2 either (ργ1 + ργ2) +modm z or
(ργ1 + ργ2 − ρm) +modm z accordingly as γ1 + γ2 < m
or not. Party 1’s share is m − z1. The integer approx-
imation of ρm is built into the circuit. The cumulative
approximation error is less than 1.5, and usually less
than 1.

But an unconventional approach can allow us to do
better still.

5 The practical power of imperfect secrecy

In implementing secure protocols, we tend to be induced
by different considerations to choose moduli for sharing
that are vastly larger than the largest value that will be
shared. In the Lindell-Pinkas logarithm proposal, for
instance, if N is 13, as to accommodate ID3 database
record counts of around 8,000, and k is 4, our share
space is of a size greater than 1020. Prior to our
correction, logarithms are to be returned scaled up by
around 105, making for a maximum output of around
106. Thus, the size of the sharing space is larger than
the largest shared value by a factor of 1014. In such
a configuration, it is a bit misleading to state that the
distributive law is bifurcated. The case of the shares not

jointly exceeding the modulus is very improbable. If we
could assume the nearly certain case of the shares being
excessive—i.e., needing modular reduction—to hold, we
would not need a Yao episode to select between two
versions of the scaling computation. Each party would
scale autonomously and party 1 would subtract ρm to
correct for the excess.

We could abide the very small chance of error in
this assumption. But better would be to guarantee
(approximate) correctness of the autonomous scaling
by contriving to ensure that the shares be excessive.
This turns out to be quite tricky in theory while
straightforward in practice. It entails a small sacrifice
of the information-theoretic perfection of the secrecy in
the sharing, but the sacrifice should be of no practical
significance.

Let t be the largest value to be shared, much
smaller than the modulus m. We can ensure that
shares are excessive by restricting the independently set
share to be greater than t. But we can show that if
it is agreed that the independent share will be chosen
uniformly randomly from the interval [t+1, m−1] then,
if it is actually chosen within t of either end of this
interval, information will leak to the other party through
the complementary share given him for certain of the
values from [0, t] that might be shared—to the point
of completely revealing the value to the other party
in the extreme case. If the choice is at least t away
from the ends of the choice interval, perfect secrecy is
maintained. But if we take this to heart and agree
that the independent share must be from the smaller
interval [2t + 1, m − 1 − t] then the same argument
can be made regarding the possibility that the choice
is actually within t of the ends of this smaller interval.
Recursively, to preserve secrecy, we would lop off the
ends of the choice interval until nothing was left.

But as in the “surprise quiz” (or “unexpected
hanging”) paradox, wherein we establish that it is
impossible to give a surprise quiz “some day next week,”
the conclusion here, too, is absurd from a practical
point of view. If the independent share is chosen from
some huge, but undeclared, interval around m/2, huge
by comparison with t but tiny by comparison with m,
there simply is no problem with loss of secrecy. We
can assume that the sharing is excessive, and arbitrary
scaling can be accomplished by the parties completely
autonomously.

We may be able to look at the random choice of the
independent share from an undeclared interval instead
as a non-uniform random choice, the distribution being
almost flat, with the peak probability around m/2
dropping off extremely gradually to 0 as the ends
of [t + 1, m − 1] are approached. As long as the
probabilities are essentially the same in a cell of radius t
around whatever independent share is actually chosen—
and it is exceedingly unlikely that there not exist
a complete such cell around the choice—secrecy is
preserved. But theorizing about the epistemology here
is beyond our scope. The point is that, in practice, it
seems worth considering that we can gain performance
by not requiring Yao episodes when non-integer scaling
is needed.

In the Lindell-Pinkas protocol, for scaling the ap-
proximate base-2 logarithms determined in phase one
to corresponding approximate natural logarithms, this
approach is fine. For getting rid of the scale-up de-
livered in the final result, beyond whatever scale-up is
sufficient for the precision we wish to preserve, we would
need to extend the size of F somewhat before using this
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approach, now that our correction has greatly increased
the maximum value that may be delivered as shares by
the oblivious polynomial evaluation. On balance, con-
sidering the added expense that would be incurred in
other components of the larger protocol, it is best not
to enlarge F (further) and to reverse the scaling of the
result, if necessary, by the method of the preceding sec-
tion.

6 Alternative: Pretty good precision, high

performance

For many purposes, a much simpler secure computation
for logarithms may offer adequate precision. The base
is often not important, as noted, so base 2 may do—as
indeed it would in the ID3 computation. Noting that in
the interval [1, 2] the functions y = log

2
x and y = x− 1

agree at the ends of the interval and deviate by only
0.085 in the middle, we have the Yao circuit determine
the floor of the base-2 logarithm and then append to
its binary representation the four bits of the argument
following its top 1-bit. This gives a result within 1/16 of
the desired base-2 logarithm. We used this approach in
our Bayes-net structure computation [YW06, KRWF05]
while sorting out the issues with the much more complex
Lindell-Pinkas proposal. As in the Lindell-Pinkas secure
ID3 computation, the logarithms inform scores that, in
turn, are significant only in how they compare with
other scores, not in their absolute values. As long as
the sense of these score comparisons is not affected,
inaccuracies in the logarithms are tolerable. We bear in
mind also that, in the particular data-mining contexts
we are addressing, the algorithms are based on taking
the database as a predictive sample of a larger space.
In so depending on the database, they are subject to
what may be regarded as sampling error in any case.
From that perspective, even the reversal of sense in
some comparisons of close scores cannot be regarded
as rendering the approach inappropriate.

However, as much simpler as this approach is, the
performance consideration in its favor is considerably
weakened once we remove the conversion from base-2
to scaled-up natural logarithms from the Yao portion of
the Lindell-Pinkas protocol, as we now see we can do.

7 Implementation and performance

We have evolved an array of tools to aid in developing
hybrid-SMC protocols of the style demonstrated by
Lindell and Pinkas. These will be documented in a
Yale Computer Science Department technical report
and will be made available. Among the resources are
a library of Perl functions offering a level of abstraction
and control we have found useful for specifying the
generation of Boolean circuits; scripts for testing circuits

without the overhead of secure computation; particular
circuit generators, as for the phase-one Yao episode
in the Lindell-Pinkas logarithm protocol and for the
minindex Yao episode needed for the best-score selection
in their larger secure ID3 computation; additional SMC
components not involving circuits; and a library of
Perl functions facilitating the coordination of an entire
hybrid-SMC computation involving two parties across a
network.

We have been developing and experimenting on
NetBSD and Linux operating systems running on Intel
Pentium 4 CPUs at 1.5 to 3.2 GHz. We use the Fairplay
run-time system, written in Java and running over Sun
JRE 1.5, to execute Yao-protocol episodes. The Yao
episode in phase one of the Lindell-Pinkas logarithm
protocol completely dominates the running time of the
entire logarithm computation, making the peformance
of Fairplay itself critical.

We cannot address the performance of multiparty
computations without giving special attention to the
cost of communication. This element is a wildcard,
dependent on link quality and sheer propagation de-
lay across the network distance between the parties.
We have done most of our experimentation with the
communication component trivialized by running both
parties on the same machine or on two machines on
the same LAN. For a reality check, we did some ex-
perimenting with one party at Yale University in New
Haven, CT and the other party at Stevens Institute of
Technology in Hoboken, NJ, with a 15 ms round-trip
messaging time between them. There was no significant
difference in performance in Yao computations. Admit-
tedly, this is at a relatively small network distance. But
there is another way to look at this. If network distance
were really making the communication cost prohibitive,
the two parties anxious to accomplish the joint data-
mining computation securely could arrange to run the
protocol from outposts of theirs housing prepositioned
copies of their respective private data, the outposts se-
curely segregated from each other but at a small network
distance. From this perspective, and recognizing that
the protocols we are considering involve CPU-intensive
cryptographic operations, it is meaningful to assess their
performance with the communication component mini-
mized.

With the parties running on 3.2 GHz CPUs, and
working with a 60-bit modulus, it takes around 5
seconds to run the complete Lindell-Pinkas logarithm
computation. In more detail, to accommodate input
x of up to 17 bits (≤ 131071), with k = 3 terms of
the series to be computed in phase 2 (for an absolute
error within 0.0112), we generate a circuit of 1497 gates
and the computation runs in around 5.0 seconds. With
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the same modulus, to accommodate input x of only
up to 13 bits (≤ 8191), allowing k = 4 terms of
the series to be computed in phase 2 (for an absolute
error within 0.0044), we generate a circuit of 1386
gates and the computation runs in around 4.9 seconds.
Accommodating inputs of only up to 10 bits (≤ 1023),
allowing as many k = 5 series terms (for an absolute
error within 0.0018), the gate count comes down to 1314
and the running time comes down to around 4.8 seconds.

Clearly, a 5-second wait for a single result of
a Lindell-Pinkas secure-logarithm computation seems
quite tolerable, but it serves little purpose in itself, of
course. This is a shares-to-shares protocol intended for
incorporation in a larger data-mining protocol that will
ultimately leave the parties with meaningful results. It
is reasonable to ask, in such a larger hybrid-SMC pro-
tocol, how badly would a 5-second delay for each loga-
rithm computation—and, presumably, comparable de-
lays for other needed SMC building blocks—bog down
the entire data-mining algorithm?

We can give a rough idea, based on experiment,
of the performance that appears to be possible now
in an entire privacy-preserving data-mining computa-
tion based on a hybrid-SMC approach. Without fully
qualifying the tasks, software versions, and hardware
involved, our secure Bayes-net structure-discovery im-
plementation has run against an arbitrarily privately
partitioned database of 100,000 records of six fields in
about 2.5 hours. This involved almost 500 invocations
of the secure logarithm protocol, each involving a Yao-
protocol episode run using the Fairplay system, as well
as other component protocols. The overall time, com-
puting against this many records, was dominated not by
the Yao protocol episodes of the logarithm and minin-
dex components but rather by the scalar-product com-
putations needed to determine securely the numbers of
records matching patterns across the private portions
of the logical database. The scalar-product computa-
tions require a number of homomorphic-encryption op-
erations linear in the number of records in the database.

In developing and using these tools over some time,
we note that the room for improvement in performance
as implementations are optimized is large. Improve-
ments that do not affect complexity classes, hence of
lesser interest to theoreticians, are very significant to
practitioners. Improvements in complexity class are
there as well; we gained a log factor in our gate counts in
the logarithm circuits over our initial naive implementa-
tion. Meanwhile, it is clear that significant hybrid-SMC
computations are already implementable in a maintain-
able, modular manner with a development effort that
is not exorbitant. Performance of such computations
is becoming quite reasonable for realistic application in

privacy-preserving data-mining contexts.
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Abstract: In the last few years, due to new privacy 
regulations, research in data privacy has flourished. A 
large number of privacy models were developed most 
of which are based on the k-anonymity property. 
Because of several shortcomings of the k-anonymity 
model, other privacy models were introduced (l-

diversity, p-sensitive k-anonymity, (α, k) – anonymity, 
t-closeness, etc.). While differing in their methods and 
quality of their results, they all focus first on masking 
the data, and then protecting the quality of the data as a 
whole. We consider a new approach, where 
requirements on the amount of distortion allowed to the 
initial data are imposed in order to preserve its 
usefulness. Our approach consists of specifying quasi-
identifiers generalization boundaries, and achieving k-
anonymity within the imposed boundaries. We think 
that limiting the amount of generalization when 
masking microdata is indispensable for real life 
datasets and applications. In this paper, the constrained 

k-anonymity model and its properties are introduced 
and an algorithm for generating constrained k-
anonymous microdata is presented. Our experiments 
have shown that the proposed algorithm is comparable 
with existing algorithms used for generating k-
anonymity with respect to results quality, and that by 
using existing unconstrained k-anonymization 
algorithms the generalization boundaries are violated. 
We also discuss how the constrained k-anonymity 
model can be easily extended to other privacy models. 

 

1 Introduction 

A huge interest in data privacy has been generated 
recently within the public and media [14], as well as in 
the legislative body [6] and research community. 
 Many research efforts have been directed towards 
finding methods to anonymize datasets to satisfy the k-
anonymity property [16, 17]. These methods also 
consider minimizing one or more cost metrics between 
the initial and released microdata (a dataset where each 
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tuple corresponds to one individual entity). Of 
particular interest are the cost metrics that quantify the 
information loss [2, 5, 19, 27]. Although producing the 
optimal solution for the k-anonymity problem w.r.t. 
various proposed cost measures has been proved to be 
NP-hard [9], there are several polynomial algorithms 
that produce good solutions for the k-anonymity 
problem for real life datasets [1, 2, 8, 9, 21]. 
 Recent results have shown that k-anonymity fails 
to protect the privacy of individuals in all situations 
[12, 20, 26]. Several privacy models that extend the k-
anonymity model have been proposed in the literature 
to avoid k-anonymity short-comings: p-sensitive k-
anonymity [20] with its extension called extended p-

sensitive k-anonymity [3], l-diversity [12], (α, k)-
anonymity [24], t-closeness [10], (k, e)-anonymity [28], 
(c, k)-safety [13], m-confidentiality [25], personalized 
privacy [26], etc. 
 In general, the existing anonymization algorithms 
use different quasi-identifiers generalization strategies 
in order to obtain a masked microdata that is k-
anonymous (or satisfies an extension of k-anonymity) 
and conserves as much information intrinsic to the 
initial microdata as possible. To our knowledge, a 
privacy model that considers the specification of the 
maximum allowed generalization level for quasi-
identifier attributes in the masked microdata does not 
exist, nor does a corresponding anonymization 
algorithm capable of controlling the generalization 
amount. The ability to limit the amount of allowed 
generalization could be valuable, and, in fact, 
indispensable for real life datasets. For example, for 
some specific data analysis tasks, available masked 
microdata with the address information generalized 
beyond the US state level could be useless. In this case 
the only solution would be to ask the owner of the 
initial microdata to have the anonymization algorithm 
applied repeatedly on that data, perhaps with a 
decreased level of anonymity (a smaller k) until the 
masked microdata satisfies the maximum 
generalization level requirement (i.e. no address is 
generalized further than the US state). 
   In this paper, we first introduce a new anonymity 

model, called constrained k-anonymity, which 
preserves the k-anonymity requirement while 
specifying quasi-identifiers generalization boundaries 
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(or limits). Second, we describe an algorithm to 
transform a microdata set such that its corresponding 
masked microdata will comply with the constrained k-
anonymity. This algorithm relies on several properties 
stated and proved for the proposed privacy model.  
 The paper is organized as follows. Section 2 
introduces basic data privacy concepts; and 
generalization and tuple suppression techniques as a 
mean to achieve data privacy. Section 3 presents the 
new constrained k-anonymity model. An 
anonymization algorithm to transform microdata to 
comply with constrained k-anonymity is described in 
Section 4. Section 5 contains comparative quality 
results, in terms of information loss, processing time, 
for our algorithm and one of the existing k-
anonymization algorithms. The paper ends with future 
work directions and conclusions. 
 

2 K-Anonymity, Generalization and Suppression 

Let IM be the initial microdata and MM be the released 

(a.k.a. masked) microdata. The attributes characterizing 
IM are classified into the following three categories:  

� identifier attributes such as Name and SSN that can 
be used to identify a record. 

� key or quasi-identifier attributes such as ZipCode and 
Age that may be known by an intruder.  

� sensitive or confidential attributes such as 
PrincipalDiagnosis and Income that are assumed to 
be unknown to an intruder.  

 While the identifier attributes are removed from 
the published microdata, the quasi-identifier and 
confidential attributes are usually released to the 
researchers / analysts. A general assumption is that the 
values for the confidential attributes are not available 
from any external source. This assumption guarantees 
that an intruder cannot use the confidential attributes’ 
values to increase his/her chances of disclosure, and, 
therefore, modifying this type of attributes values is 
unnecessary. Unfortunately, an intruder may use record 
linkage techniques [23] between quasi-identifier 
attributes and external available information to glean 
the identity of individuals from the masked microdata. 
To avoid this possibility of disclosure, one frequently 
used solution is to modify the initial microdata, more 
specifically the quasi-identifier attributes values, in 
order to enforce the k-anonymity property. 

 To rigorously and succinctly express the k-
anonymity property, we use the following concept: 

Definition 1 (QI-Cluster): Given a microdata M, a QI-

cluster consists of all the tuples with identical 
combination of quasi-identifier attribute values in M. 

 There is no consensus in the literature over the 
term used to denote a QI-cluster. This term was not 
defined when k-anonymity was introduced [17, 18]. 
More recent papers use different terminologies such as 
equivalence class [24] and QI-group [26].  
 We define k-anonymity based on the minimum size 
of all QI-clusters. 

Definition 2 (K-Anonymity Property): The k-

anonymity property for an MM is satisfied if every QI-

cluster from MM contains k or more tuples. 

 A general method widely used for masking initial 
microdata to conform to the k-anonymity model is the 
generalization of the quasi-identifier attributes. 
Generalization consists in replacing the actual value of 
the attribute with a less specific, more general value 
that is faithful to the original [18].  

Initially, this technique was used for categorical 
attributes and employed predefined domain and value 
generalization hierarchies [18]. Generalization was 
extended for numerical attributes either by using pre-

defined hierarchies [7] or a hierarchy-free model [9]. 
To each categorical attribute a domain 

generalization hierarchy is associated. The values from 
different domains of this hierarchy are represented in a 
tree called value generalization hierarchy. We 
illustrate domain and value generalization hierarchy in 
Figure 1 for attributes ZipCode and Sex. 
 There are several ways to perform generalization. 
Generalization that maps all values of a quasi-identifier 
categorical attribute from IM to a more general domain 

in its domain generalization hierarchy is called full- 

domain generalization [9, 16]. Generalization can also 
map an attribute’s values to different domains in its 
domain generalization hierarchy, each value being 
replaced by the same generalized value in the entire 
dataset [7]. The least restrictive generalization, called 
cell level generalization [11], extends Iyengar model 
[7] by allowing the same value to be mapped to 
different generalized values, in distinct tuples.  
  

 
Figure 1: Examples of domain and value generalization hierarchies. 

Z1 = {482**, 410**} 

Z2 = {*****} 

Z0 = {48201, 41075,   
41076, 41088, 41099} 

***** 

482** 410** 

41075 41076 41088 41099 48201 S0 = {male, female} 

S1 = {*} 
* 

male(M) female(F) 
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 Tuple suppression [16, 18] is the only other method 
used in this paper for masking the initial microdata. By 
eliminating entire tuples we are able to reduce the 
amount of generalization required for achieving the k-
anonymity property in the remaining tuples. Since the 
constrained k-anonymity model uses generalization 
boundaries, for many initial microdata sets suppression 
has to be used in order to generate constrained k-
anonymous masked microdata. 
 

3 Constrained K-Anonymity 

In order to specify a generalization boundary, we 
introduce the concept of a maximum allowed 
generalization value that is associated with each 
possible quasi-identifier attribute value from IM. This 

concept is used to express how far the owner of the data 
thinks that the quasi-identifier’s values could be 
generalized, such that the resulted masked microdata 
would still be useful. Limiting the amount of 
generalization for quasi-identifier attribute values is a 
necessity for various uses of the data. The data owner is 
often aware of the way various researchers are using the 
data and, as a consequence, he/she is able to identify 
maximum allowed generalization values. For instance, 
when the released microdata is used to compute various 
statistical measures related to the US states, the data 
owner will select the states as maximal allowed 
generalization values. The desired protection level 
should be achieved with minimal changes to the initial 
microdata IM. However, minimal changes may cause 

generalization that surpasses the maximal allowed 
generalization values and the masked microdata MM 

would become unusable. More changes are preferred in 
this situation if they do not contradict the generalization 
boundaries. 
 At this stage, for simplicity, we use predefined 
hierarchies for both categorical and numerical quasi-
identifier attributes, when defining maximal allowed 
generalization values. Techniques to dynamically build 
hierarchies for numerical attributes exist in the literature 
[4] and we intend to use them in our future research. 

Definition 3. (Maximum Allowed Generalization 

Value): Let Q be a quasi-identifier attribute (categorical 
or numerical), and HQ its predefined value 

generalization hierarchy. For every leaf value v ∈ HQ, 

the maximum allowed generalization value of v, 
denoted by MAGVal(v), is the value (leaf or not-leaf) in 
HQ situated on the path from v to the root, such that: 

� for any released microdata, the value v is permitted to 
be generalized only up to MAGVal(v) and 

� when several MAGVals exist on the path between v 
and the hierarchy root, then the MAGVal(v) is the first 
MAGVal that is reached when following the path from 
v to the root node. 

Figure 2 contains an example of defining maximal 
allowed generalization values for a subset of values for 
the Location attribute. The MAGVals for the leaf values 
“San Diego” and “Lincoln” are “California”, and, 
respectively, “Midwest” (the MAGVals are marked by * 
characters that delimit them). This means that the quasi-
identifier Location’s value “San Diego” may be 
generalized to itself or “California”, but not to “West 
Coast” or “United States”.  Also, “Lincoln” may be 
generalized to itself, “Nebraska”, or “Midwest”, but not 
to “United States”. 

 

Figure 2: Examples of MAGVals. 
  

 The second requirement in the MAGVal’s definition 
specifies that the hierarchy path between a leaf value v 
and MAGVal(v) can contain no node other than 
MAGVal(v) that is a maximum allowed generalization 
value. This restriction is imposed in order to avoid any 
ambiguity about the MAGVals of the leaf values in a 
sensitive attribute hierarchy. Note that several MAGVals 
may exist on a path between a leaf and the root as a 
result of defining MAGVals for other leaves within that 
hierarchy.  

Definition 4. (Maximum Allowed Generalization Set): 
Let Q be a quasi-identifier attribute and HQ its 

predefined value generalization hierarchy. The set of all 

MAGVals for attribute Q is called Q’s maximum 

allowed generalization set, and it is denoted by 

MAGSet(Q) = { MAGVal(v) | ∀v ∈ leaves(HQ) } (The 

notation leaves(HQ) represents all the leaves from the 

HQ value generalization hierarchy).  

 Given the hierarchy for the attribute Location 
presented in Figure 2, MAGSet(Location) = {California, 
Kansas, Midwest}. 
 Usually, the data owner/user only has 
generalization restrictions for some of the quasi-
identifiers in a microdata that is to be masked. If for a 
particular quasi-identifier attribute Q there are not any 
restrictions in respect to its generalization, then no 
maximal allowed generalization values are specified for 
Q’s value hierarchy; in this case, each leaf value in HQ is 

considered to have the HQ’s root value as its maximal 

allowed generalization value. 

 

*Kansas* 

United States 

*Midwest* 

*California* Nebraska 

San Diego Los Angeles Wichita Kansas City Lincoln 

West Coast 
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Record Name SSN Age Location Sex Race Diagnosis Income 
r1 Alice 123456789 32 San Diego M W AIDS 17,000 

r2 Bob 323232323 30 Los Angeles M W Asthma 68,000 

r3 Charley 232345656 42 Wichita M W Asthma 80,000 

r4 Dave 333333333 30 Kansas City M W Asthma 55,000 

r5 Eva 666666666 35 Lincoln F W Diabetes 23,000 

r6 John 214365879 20 Lincoln M B Asthma 55,000 

r7 Casey 909090909 25 Wichita F B Diabetes 23,000 

Figure 3: An initial microdata set IM 
 

Record Age Location Sex Race  Record Age Location Sex Race 
r1 30-32 California M W  r1 30-32 California M W 

r2 30-32 California M W  r2 30-32 California M W 
           

r3 30-42 MidWest * W  r3 25-42 Kansas * * 

r4 30-42 MidWest * W  r4 25-42 Kansas * * 

r5 30-42 MidWest * W  r7 25-42 Kansas * * 
           

r6 20-25 MidWest * B  r5 20-35 Lincoln * * 

r7 20-25 MidWest * B  r6 20-35 Lincoln * * 

a)       b) 

Figure 4: Two masked microdata sets MM1 and MM2 for the initial microdata IM. (Only the quasi-identifier 

attribute values are shown in the masked microdata sets) 

Definition 5. (Constraint Violation): We say that the 

masked microdata MM has a constraint violation if one 

quasi-identifier value, v, in IM, is generalized in one 

tuple in MM beyond its specific maximal generalization 

value, MAGVal(v).  

Definition 6. (Constrained K-Anonymity): The masked 

microdata MM satisfies the constrained k-anonymity 

property if it satisfies k-anonymity and it does not have 
any constraint violation. 

 We note that a k-anonymous masked microdata 
may have multiple constraint violations, but any masked 
microdata that satisfies constrained k-anonymity 
property will not have any constraint violations; or in 
other words, any quasi-identifier value, v, from the 
initial microdata will never be generalized beyond its 
MAGVal(v) in any constrained k-anonymous  masked 
microdata. 
 Consider the following example. The initial 
microdata set IM in Figure 3 is characterized by the 

following attributes: Name and SSN are identifier 
attributes (to be removed from the masked microdata), 
Age, Location, Sex, and Race are the quasi-identifier 
attributes, and Diagnosis and Income are the sensitive 
attributes. The attribute Location values and their 
MAGVals are described by Figure 2. The remaining 
quasi-identifier attributes do not have any generalization 
boundary requirements.  
 Figure 4 illustrates two possible masked microdata 
MM1 and MM2 for the initial microdata IM. In this 

figure, only quasi-identifier values are shown, the 
confidential attribute values will be kept unchanged 
from the initial microdata IM (Diagnosis and Income 

attributes from Figure 3). The first masked microdata, 

MM1, satisfies 2-anonymity, but contradicts constrained 

2-anonymity w.r.t. Location attribute’s maximal allowed 
generalization. On the other hand, the second microdata 
set, MM2, satisfies constrained 2-anonymity: every QI-

cluster consists of at least 2 tuples, and none of the 
Location initial attribute’s values are generalized 
beyond its MAGVal. 

 

4 GreedyCKA - An Algorithm for Constrained K-

Anonymization 

In this section we assume that the initial microdata set 
IM, the generalization boundaries for its quasi-identifier 

attributes, expressed as MAGVals in their corresponding 
hierarchies, and the k value (as in k-anonymity) are 
given. First, we will describe a method to decide if IM 

can be masked to comply with constrained k-anonymity 
using generalization only, and second, we will introduce 
an algorithm for achieving constrained k-anonymity.  
 Our approach to constrained k-anonymization 
partially follows an idea found in [1] and [2], which 
consists in modeling and solving k-anonymization as a 
clustering problem. Basically, the algorithm takes an 
initial microdata set IM and establishes a “good” 

partitioning of it into clusters. The released microdata 
set MM is afterwards formed by generalizing the quasi-

identifier attributes’ values of all tuples inside each 
cluster to the same values (called generalization 
information for a cluster). However, it is not always 
possible to mask an initial microdata to satisfy 
constrained k-anonymity only by generalization. 
Sometimes a solution to constrained k-anonymization 
has to combine generalization with suppression. In this 
case, our algorithm suppresses the minimal set of tuples 
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from IM such that is possible to build a constrained k-

anonymous masked microdata for the remaining tuples. 
 The constrained k-anonymization by clustering 
problem can be formally stated as follows. 

Definition 7. (Constrained K-Anonymization by 

Clustering Problem): Given a microdata IM, the 

constrained k-anonymization by clustering problem 
for IM is to find a partition S = {cl1, cl2, … , clv, clv+1} 

of IM, where clj ⊆ IM, j=1..v+1, are called clusters 

and: =

=

U
v

j

jcl

1

IM – clv+1; =I ji clcl ∅, i, j = 1..v+1, i≠j; 

|clj | ≥ k, j=1..v ; and a cost measure is optimized. The 
cluster clv+1 is formed of all the tuples in IM that have to 

be suppressed in MM, and the tuples within every 

cluster clj, j=1..v will be generalized (their quasi-
identifier attributes) in MM to common values. 

 The generalization information of a cluster, which 
is introduced next, represents the minimal covering 
“tuple” for that cluster. Since in this paper we use 
predefined value generalization hierarchies for both 
categorical and numerical attributes, we do not have to 
consider a definition that distinguishes between these 
two types of attributes [21]. 

 Definition 8. (Generalization Information): Let cl = 
{r1, r2, …, ru} be a cluster of tuples selected from IM, 

QI = {Q1, Q2, ..., Qs} be the set of quasi-identifier 

attributes. The generalization information of cl w.r.t. 
quasi-identifier attribute set QI is the “tuple” gen(cl), 

having the scheme QI, where for each attribute Qj ∈ QI, 

gen(cl)[Qj] = the lowest common ancestor in HQj of 

{r1[Qj],  …, ru[Qj]}. 

 For the cluster cl, its generalization information 
gen(cl) is the tuple having as value for each quasi-
identifier attribute the most specific common 
generalized value for all that attribute values from cl’s 
tuples. In the corresponding MM, each tuple from the 

cluster cl will have its quasi-identifier attributes values 
replaced by gen(cl). 
 To decide whether an initial microdata can be 
masked to satisfy constrained k-anonymity property 
using generalization only, we introduce several 
properties. These properties will also allow us, in case 
that constrained k-anonymity cannot be achieved using 
generalization only, to select the tuples that must be 
suppressed. 

Property 1. Let IM be a microdata set and cl a cluster 

of tuples from IM. If cl contains two tuples ri and rj such 

that MAGVal(ri[Q]) ≠ MAGVal(rj[Q]), where Q is a 
quasi-identifier attribute, then the generalization of the 
tuples from cl to gen(cl) will create at least one 

constraint violation. 

Proof. Assume that there are two tuples ri and rj within 

cl such that MAGVal(vi) ≠ MAGVal(vj), where vi = ri[Q] 

and vj = rj[Q], vi, vj ∈ leaves(HQ). Let a be a value 

within HQ that is the first common ancestor for 
MAGVal(vi) and MAGVal(vj). Depending on how 
MAGVal(vi) and MAGVal(vj) are located relatively to 
one another in the Q’s value generalization hierarchy, a 
can be one of them, or a value on a superior tree level. 
In any case, a will be different from, and an ancestor for 
at least one of MAGVal(vi) or MAGVal(vj). This is a 

consequence of the fact that MAGVal(vi) ≠ MAGVal(vj): 
a common ancestor of two different nodes x and y in a 
tree is a node which is different from at least one of the  
nodes x and y. Because of this fact, when cl will be 
generalized to gen(cl), gen(cl)[Q] will be a (or 
depending on the other tuples in cl, even an ancestor of 
a) – therefore at least one of the values vi and vj will be 
generalized further than its maximal allowed generali-
zation value, leading to a constraint violation. // q.e.d. 

 Property 1 restricts the possible solutions of the 
constrained anonymization by clustering problem to 
those partitions S of IM for which every cluster to be 

generalized doesn’t show any constraint violation w.r.t. 
each of the quasi-identifier attributes. The following 
definition introduces a masked microdata that will help 
us to express when the IM can be transformed to satisfy 

constrained k-anonymity using generalization only. 

Definition 9. (Maximum Allowed Microdata): The 

maximum allowed microdata for a microdata IM, 

MAMMAMMAMMAM, is the masked microdata where every quasi-

identifier value, v, in IM is generalized to MAGVal(v).  

Property 2. For a given IM, if its maximum allowed 

microdata MAM is not k-anonymous, then any masked 

microdata obtained from IM by applying generalization 

only will not satisfy constrained k-anonymity. 

Proof. Assume that MAM is not k-anonymous, and there 

is a masked microdata MM that satisfies constrained k-

anonymity. This means that every QI-cluster from MM 

has at least k elements and it does not have any 
constraint violation. Let cli be a cluster of elements from 
IM that is generalized to a QI-cluster in MM (i = 1, .., 

v). Because MM satisfies constrained k-anonymity, the 

generalization of cli to gen(cli) does not create any 
constraint violation. Based on Property 1, for each 
quasi-identifier attribute, all entities from cli share the 
same MAGVals. As a consequence, by generalizing all 
quasi-identifier attributes values to their corresponding 
MAGVals (this is the procedure to create the MAM 

microdata) all entities from the cluster cli (for all i = 1, 
.., v) will be contained within the same QI-cluster. This 
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means that each QI-cluster in MAM contains one or 

more QI-clusters from MM and its size will, then, be at 

least k. In conclusion, MAM is k-anonymous, which is a 

contradiction with our initial assumption. // q.e.d. 

Property 3. If MAM satisfies k-anonymity then MAM 

satisfies the constrained k-anonymity property. 

Proof. This follows from the definition of MAM. 

Property 4. An initial microdata, IM, can be masked to 

comply with constrained k-anonymity using only 
generalization if and only if its corresponding MAM 

satisfies k-anonymity. 

Proof. “If”: If MAM satisfies k-anonymity, then based 

on Property 3, MAM is also constrained k-anonymous, 

and IM can be masked to MAM (in the worst case – or 

even to a less generalized masked microdata) to comply 
with constrained k-anonymity.  

      “Only If”: If MAM does not satisfy k-anonymity, 

then based on Property 2, any masked microdata 
obtained by applying generalization only to IM will not 

satisfy constrained k-anonymity. // q.e.d. 

 Now we have all the tools required to check 
whether an initial microdata IM can be masked to 

satisfy the constrained k-anonymity property using 
generalization only. We follow the next two steps: 

� Compute MAM for IM. This is done by replacing 

each quasi-identifier attribute value with its 
corresponding MAGVal. 

� If all QI-clusters from MAM have at least k entities 

than the IM can be masked to satisfy constrained k-

anonymity. 

 It is very likely that there are some QI-clusters in 
MAM with size less than k. We use the notation OUT to 

represent all entities from these QI-clusters (for 
simplicity we use the same notation to refer to entities 
from both IM and MAM). Unfortunately, the entities 

from OUT cannot be k-anonymized while preserving the 

constraint condition, as shown by the Property 6. For a 
given IM with its corresponding MAM and OUT sets the 

following two properties hold: 

Property 5. IM \ OUT can be masked using 

generalization only to comply with constrained k-
anonymity. 

Proof. By definition of the OUT set, all QI-clusters from 

MAM \ OUT  have size k or more, which means that 

MAM \ OUT satisfies the k-anonymity property. Based 

on Property 4 (MAM \ OUT  is the maximum allowed 

microdata for IM \ OUT ), IM \ OUT can be masked 

using generalization only to comply with constrained k-
anonymity. // q.e.d. 

Property 6. Any subset of IM that contains one or more 

entities from OUT cannot be masked using 

generalization only to achieve constrained k-anonymity.    

Proof. We assume that there is an initial microdata IM’, 

a subset of IM, that contains one or more entities from 

OUT, and IM’ can be masked using generalization only 

to comply with constrained k-anonymity. Let x ∈ OUT 

∩ IM’. Let MAM’ be the maximum allowed microdata 

for IM’. Based on Property 4, if IM’ can be masked to 

be constrained k-anonymous, then MAM’ is k-

anonymous, therefore x will belong to a QI-cluster with 
size at least k. By construction MAM’ is a subset of 

MAM, and therefore, the size of each QI-cluster from 

MAM is equal to or greater than the size of the 

corresponding QI-cluster from MAM’. This means that x 

will belong to a QI-cluster with size at least k in the 

MAM. This is a contradiction with x ∈ OUT. // q.e.d. 

 The Properties 5 and 6 show that OUT is the 

minimal tuple set that must be suppressed from IM such 

that the remaining set could be constrained k-
anonymized. To compute a constrained k-anonymous 
masked microdata using minimum suppression and 
generalization only we follow an idea found in [1] and 
[2], which consists in modeling and solving k-
anonymization as a clustering problem. First, we 
suppress all tuples from the OUT set. Next, we create all 

QI-clusters in the maximum allowed microdata for IM \ 

OUT. Last, each such cluster will be divided further, if 

possible, using the clustering approach from [1, 2], into 
several clusters, all with size greater than or equal to k. 
This approach uses a greedy technique that tries to 
optimize an information loss (IL) measure. The 
information loss measure we use in our algorithm 
implementation was introduced in [2]. We present it in 
Definitions 10 and 11. Note that this IL definition 
assumes that value generalization hierarchies are 
predefined for all quasi-identifier attributes.  

Definition 10. (Cluster Information Loss): Let cl ∈ S 

be a cluster, gen(cl) its generalization information and 

QI = {Q1, Q2, .., Qt} the set of quasi-identifier attributes. 

The cluster information loss caused by generalizing cl 

tuples to gen(cl) is: 

∑
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where:  

� |cl| denotes the cluster cl cardinality; 

� Λ(w), w∈HQj is the subhierarchy of HQj rooted in w; 
� height(HQj) is the height of the tree hierarchy HQj. 
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Definition 11. (Total Information Loss): Total 

information loss for a partition S of the initial microdata 

set is the sum of the information loss measure for all 
clusters in S. 

 In is worth noting that, for the constrained k-
anonymization by clustering problem, the cluster of 
tuples to be suppressed, clv+1, will have the maximum 
possible IL value for a cluster of the same size as clv+1. 
The information loss for this cluster will be:  IL(clv+1) = 

|clv+1|⋅n, where n is the number of quasi-identifier 
attributes. When performing experiments to compare 
the quality of constrained k-anonymous microdata and 
k-anonymous microdata, produced for the same IM, the 

information loss of the constrained k-anonymous 
solution includes the information loss caused by the 
suppressed cluster as well, and not only for the 
generalized clusters. More than that, for every 
suppressed tuple we consider the maximum information 
loss that it can cause when it is masked. This way, the 
quality of the constrained k-anonymous solutions will 
not be biased because of a favored way of computing 
information loss for the suppressed tuples.  
  The two-stage constrained k-anonymization 
algorithm called GreedyCKA is depicted in Figure 5. 

We present below the pseudocode of the 
GreedyCKA Algorithm: 

 
Algorithm GreedyCKA is 

Input IM – initial microdata;  
  k – as in k-anonymity; 

Output  S ={cl1,cl2,… clv,clv+1} - a solution for 
the constrained k-anonymization by 

clustering problem for IM; 
 Compute MAM and OUT;  

  S = ∅; 

 For each QI-cluster from MAM \ OUT, cl,  
 { 

   // By cl we refer to the entities from IM  

   // that are clustered together in MAM. 

   S’ = Greedy_k-member_Clustering(cl, k); // [2] 

   S = S ∪ S’;  
 } 

 v = | S |; 

 clv+1 = OUT; 
 

End GreedyCKA; 

 

This idea of dividing IM into clusters based on 

common MAGVals of the quasi-identifiers can be 
employed for other privacy models as well, not only for 
k-anonymity. For instance, if we use an algorithm that 
creates a p-sensitive k-anonymous masked microdata 
[20], such as EnhancedPKClustering [22], we just need 
to execute that algorithm instead of Greedy_k-

member_Clustering, for each QI-cluster from MAM \  

OUT. The obtained masked microdata will be p-

sensitive k-anonymous and will satisfy the 
generalization boundaries. We can define this new 

privacy model as constrained p-sensitive k-anonymity. 
Using similar modifications in the GreedyCKA 
algorithm, we can introduce constrained versions of 

other privacy models such as: constrained l-diversity 

[12], constrained t-closeness [10], etc. and generate 
their corresponding masked microdata sets. 

 

5 Experimental Results 

In this section we compare the GreedyCKA and 
Greedy_k-member_Clustering [2] algorithms with 
respect to: the quality of the results they produce 
measured against the information loss measure; the 
algorithms’ efficiency as expressed by their running 
time; the number of constraint violation that k-
anonymous masked microdata produced by Greedy_k-

member_Clustering have; and the suppression amount 
performed by GreedyCKA in order to produce 
constrained k-anonymous masked microdata in presence 
of different constraint sets. 

The two algorithms were implemented in Java; tests 
were executed on a dual CPU machine with 3.00 GHz 
and 1 GB of RAM, running Windows 2003 Server.  

A set of experiments were performed for an IM 

consisting of 10,000 tuples randomly selected from the 
Adult dataset from the UC Irvine Machine Learning 
Repository [15]. In all the experiments, we considered a 
set of eight quasi-identifier attributes: education-num, 
workclass, marital-status, occupation, race, sex, age, 
and native-country. 

 

Figure 5: The two-stage process in creating constrained k-anonymous masked microdata. 

Initial microdata IM QI-clusters in MAM 

Stage 1, 
forming 
MAM 

 

Suppressed tuples 

Final QI-clusters in IM, k=3 
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 The GreedyCKA and Greedy_k-member_Clus-

tering algorithms were applied to this microdata set, for 

different k values, from k=2 to k=10. Two different 

generalization constraint sets were successively 

considered for every k value. First, only the native-

country attribute’s values were subject to generalization 

constraints, as depicted in Figure 6. Second, both 

native-country and age had generalization boundaries; 

the value generalization hierarchy and the maximum 

allowed generalization values for the age attribute are 

illustrated in Figure 7. In Figures 6 and 7, the MAGVals 

are depicted as bold and delimited by * characters. Of 

course, Greedy_k-member_Clustering proceeded 

without taking into consideration the generalization 

boundaries, as it is a “simple”, unconstrained k-

anonymization algorithm. This is why the masked 

microdata it produces will generally contain numerous 

constraint violations. On the other side, the k-

anonymization process of GreedyCKA is conducted in 

respect to the specified generalization boundaries; this is 

why the masked microdata produced by GreedyCKA is 

free of constraint violations. 

The quasi-identifier attributes without 

generalization boundaries have the following heights for 

their corresponding value generalization hierarchies: 

education-num – 4, workclass – 1, marital-status – 2, 

occupation – 1, race – 1, and sex – 1. 

However, masking microdata to comply with the 

more restrictive constrained k-anonymity model 

sometimes comes with a price. As the experiments 

show, it is possible to lose more of the intrinsic 

microdata information when masking it to satisfy 

constrained k-anonymity than when masking it to satisfy 

k-anonymity only. Figure 8 presents comparatively the 

information loss measure for the masked microdata 

created by GreedyCKA and Greedy_k-

member_Clustering, with the two different constraint 

sets and for k values in the range 2-10. 

As expected, the information loss value is generally 

greater when constraints are considered in the k- 

anonymization process. Exceptions may however occur. 

For example, GreedyCKA obtained better results then 

Greedy_k-member_Clustering for k = 8, 9 and 10, when 

only native_country was constrained. The information 

lost is influenced, of course, by the constraint 

requirements and by the microdata distribution w.r.t. the 

constrained attributes. When more quasi-identifiers have 

generalization boundaries or more restrictive generalize-

tion boundaries, the information lost in the constrained 

k-anonymization process will generally increase. 

Regarding the running time, we can state that 

GreedyCKA will always be more efficient than 

Greedy_k-member_Clustering. The explanation for this 

fact is that, when generalization boundaries are imposed, 

they will cause the initial microdata to be divided in 

several subsets (the QI-clusters of MAM), on which 

Greedy_k-member_Clustering will be afterwards 

applied. Greedy_k-member_Clustering has an O(n2) 

complexity, and applying it on smaller microdata 

subsets will reduce the processing time. More 

constraints and QI-clusters exist in MAM, more 

significant is the reduction of the processing time for 

microdata masking (see Figure 9).  

 

 
 

Figure 6: MAGVals for the quasi-identifier attribute Country. 
 

 
Figure 7: MAGVals for the quasi-identifier attribute Age. 
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Figure 8: Information Loss (IL) for GreedyCKA and Greedy_k-member_Clustering. 
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Figure 9: Running Time for GreedyCKA and Greedy_k-member_Clustering.

 As pointed out, when Greedy_k-member_Cluste-

ring is applied to k-anonymize IM, the resulting masked 

microdata usually contains numerous constraint 

violations. Table 1 reports the number of constraint 

violations in the outcome of the Greedy_k-member_ 

Clustering unconstrained k-anonymization algorithm, 

for two maximal generalization requirement sets. 
   

k No of constraint violations 

for 1 constrained attribute – 

native_country 

No of constraint violations 

for 2 constrained attributes – 

native_country, age 

2 605 2209 

3 991 3824 

4 1377 5297 

5 1657 6163 

6 1906 6964 

7 2198 7743 

8 2354 8417 

9 2550 8931 

10 2728 9549 

Table 1: Constraint violations in Greedy_k-

member_Clustering  
 

k 2 3 4 5 6 7 8 9 10 

No of suppressed tuples for 
1 constrained attribute – 

native_country 

0 0 0 0 0 0 0 0 0 

No of  suppressed tuples for 
2 constrained attributes– 

native_country, age 

5 15 24 28 48 60 81 97 106 

Table 2: Number of tuples suppressed by GreedyCKA 
 

 Table 2 shows the number of tuples suppressed by 

GreedyCKA, while masking the initial microdata. 

 All in all, our experiments proved that constrained 

k-anonymous masked microdata can be achieved 

without sacrificing the data quality to a significant 

extent, when compared to a corresponding k-anonymous 

unconstrained masked microdata.  

 While the constrained k-anonymity model responds 

to a necessity in real-life applications, the existing k-

anonymization algorithms are not able to build masked 

microdata that comply with it. In this context, 

GreedyCKA takes optimal suppression decisions, based 

on the proved properties of the new model (Properties 5 

and 6), and builds high-quality constrained k-

anonymous masked microdata. 

 

6 Conclusions and Future Work 

In this paper we defined a new privacy model, called 
constrained k-anonymity, which takes into consideration 
generalization boundaries imposed by the data owner 
for quasi-identifier attributes. Based on the model 
properties, an efficient algorithm to generate a masked 
microdata to comply with constrained k-anonymity 
property was introduced. Our experiments showed that 
the proposed algorithm obtains comparable information 
loss values with Greedy_k-member_Clustering 

algorithm, while the masked microdata sets obtained by 
the latter have many constraint violations.  

(h
o
u
rs
) 
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 In this paper we used predefined hierarchies for all 
quasi-identifier attributes. As future work we plan to 
extend this concept further for numerical attributes. We 
plan to provide a technique to dynamically determine 
for each numerical quasi-identifier value, its maximal 
allowed generalization, based on that attribute’s values 
in the analyzed microdata and a minimal user input. 
 We also pointed out that the constraint k-anonymity 
property and even our proposed algorithm, GreedyCKA, 
can be extended to other privacy models (models such 

as constrained l-diversity, constrained (α, k)-anonymity, 
constrained p-sensitive k-anonymity, etc. can be easily 
defined). Finding specific properties for these enhanced 
privacy models, and developing improved algorithms to 
generate masked microdata to comply with such models 
are subject of future work.  
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Abstract

Privacy-preserving data mining (PPDM) is a recent emer-

gent research area that deals with the incorporation of pri-

vacy preserving concerns to data mining techniques. We

consider a real clinical setting where the data is horizontally

distributed among different institutions. Each one of the

medical institutions involved in this work provides a data-

base containing a subset of patients. There is recent work

that shows the potential of the PPDM approach in med-

ical applications. However, there is few work in develop-

ing/implementing PPDM for predictive personalized medi-

cine. In this paper we use real data from several institutions

across Europe to build models for survival prediction for

non-small-cell lung cancer patients while addressing the po-

tential privacy preserving issues that may arise when shar-

ing data across institutions located in different countries.

Our experiments in a real clinical setting show that the pri-

vacy preserving approach may result in improved models

while avoiding the burdens of traditional data sharing (legal

and/or anonymization expenses).

1 Introduction

Privacy-preserving data mining (PPDM) is a recent
emergent research area that deals with the incorpo-
ration of privacy preserving concerns to data mining
techniques. We are particularly interested in a scenario
when the data is horizontally distributed among dif-
ferent institutions. In the medical domain this means
that each medical institution (hospitals, clinics, etc.)
provides a database containing a complete (or almost
complete) subset of item sets (patients). An efficient
PPDM algorithm should be able to process the data
from all the sources and learn data mining/machine
learning models that take into account all the infor-
mation available without sharing explicitly private
information among the sources. The ultimate goal of a
PPDM model is to perform similarly or identically to
a model learned by having access to all the data at the
same time.

P3DM’08, April 26, 2008, Atlanta, Georgia, USA.

There are have been a push for the incorporation of
electronic health records (EHR) in medical institutions
worldwide. There seems to be a consensus that the
availability of EHR will have several significant benefits
for health systems across the world, including: improve-
ment of quality of care by tracking performance on
clinical measures, better and more accurate insurance
reimbursement, computer assisted diagnosis (CAD)
tools, etc. Therefore, there is a constant increase on
the number of hospitals saving huge amounts of data
that can be used to build predictive models to assist
doctors in the medical decision process for treatment,
diagnosis, and prognosis among others. However,
sharing the data across institutions becomes a difficult
and tedious process that also involves considerable
legal and economic burden on the institutions sharing
the medical data.

In this paper we explore two privacy preserving
techniques applied to learn survival predictive models
for non-small-cell lung cancer patients treated with
(chemo) radiotherapy. We use real data collected from
patients treated on three European institutions in two
different countries (the Netherlands and Belgium) to
build our models. The framework we are describing in
this paper allows to design/learn improved predictive
models that perform better than the individual models
obtained by using local data from only one institution,
without addressing the local and international privacy
preserving concerns that arise when sharing patient-
related data. As far as we know, there is none previous
work related to learning survival models for lung cancer
radiation therapy addressing PP concerns.

The rest of the paper is organized as follows: in
the next section, we introduced the notation used in
the paper. In section 3 we present an overview of the
related work. In sections 4.1 and 4.3 we present the
overview of the two methods used for our predictive
models: Newton-Lagrangian Support Vector Machines
[5] and Cox Regression [3]. Later in sections 4.2 and
4.4, we present the technical details of the corresponding
privacy preserving (PP) algorithms used. We conclude

40



the paper describing our application with experimental
results performed in a real clinical setting and the
conclusions.

2 Notation

We describe our notations now. All vectors will be
column vectors unless transposed to a row vector by a
prime ′. For a vector x ∈ Rn the notation xj will signify
either the j-th component or j-th block of components.
The scalar (inner) product of two vectors x and y in
the n-dimensional real space Rn will be denoted by x′y.
The notation A ∈ Rm×n will signify a real m×n matrix.
For such a matrix, A′ will denote the transpose of A,
Ai will denote the i-th row or i-th block of rows of A.
A vector of ones in a real space of arbitrary dimension
will be denoted by e. Thus for e ∈ Rm and y ∈ Rm the
notation e′y will denote the sum of the components of y.
A vector of zeros in a real space of arbitrary dimension
will be denoted by 0. For A ∈ Rm×n and B ∈ Rk×n,
a kernel K(A,B′) maps Rm×n × Rn×k into Rm×k. In
particular, if x and y are column vectors in Rn then,
K(x′, y) is a real number, K(x′, B′) is a row vector in
Rk and K(A,B′) is an m× k matrix. The abbreviation
“s.t.” stands for “subject to”.

3 Related Work

As a consequence of the recent advances of network com-
puting, there has been recently great interest in privacy-
preserving data mining techniques. An extensive review
of PPDM techniques can be found in [14]. Most of the
available data mining techniques require and assume
that there is complete access to all data at all times.
This may not be true for example, in an uncentralized
distributed medical setting where for each data source
or institution, there are local procedures in place to en-
force privacy and security of the data. If this is the
case, there is a need to use efficient data mining and
machine learning techniques that can use data across
institutions while complying with the non-disclosure na-
ture of the available data. There are two main kinds of
data partitioning when dealing with distributed setting
where PPDM is needed: a) the data is partitioned verti-
cally, this means that all institutions have some subset
of features (predictors, variables) for all the available
patients. When this is the case, several techniques have
been proposed to address the issue including: adding
random perturbations to the data [2, 4]. The other pop-
ular PPDM setting occurs when the data is partitioned
horizontally among institutions, that means that differ-
ent entities hold the same input features for different
groups of individuals. This case have been addressed in
[16, 15] by privacy-preserving SVMs and induction tree
classifiers. There are several other recently proposed

privacy preserving classifying techniques including cryp-
tographically private SVMs [7], wavelet-based distortion
[10]. There is recent work that shows the potential of
the approach [6, 12] in medical settings. However , there
is few work in developing/implementing PPDM for pre-
dictive personalized medicine.

4 Privacy-Preserving Predictive Models

(PPPM)

In this section we introduce two PP predictive models,
namely PP Support Vector Machines and PP Cox
Regression. We first give an overview of the two
techniques in sections 4.1 and 4.3, and then present the
PP versions in sections 4.2 and 4.4.

4.1 Overview of Support Vector Machines. We
describe in this section the fundamental classification
problems that lead to the standard quadratic Support
vector machine (SVM) formulation that minimizes a
quadratic convex function. We consider the problem
of classifying m points in the n-dimensional real space
Rn, represented by the m × n matrix A, according to
membership of each point Ai in the classes +1 or -1 as
specified by a given m×m diagonal matrix D with ones
or minus ones along its diagonal. For this problem, the
standard support vector machine with a linear kernel
AA′ [13] is given by the following quadratic program
for some ν > 0:

(4.1)

min
(w,γ,y)∈Rn+1+m

νe′y + 1

2
w′w

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0.

As depicted in Figure 1, w is the normal to the bounding
planes:

(4.2)
x′w − γ = +1
x′w − γ = −1,

and γ determines their location relative to the origin.
The first plane above bounds the class +1 points and
the second plane bounds the class -1 points when the
two classes are strictly linearly separable, that is when
the slack variable y = 0. The linear separating surface
is the plane

(4.3) x′w = γ,

midway between the bounding planes (4.2). If the
classes are linearly inseparable then the two planes
bound the two classes with a “soft margin” determined
by a nonnegative slack variable y, that is:
(4.4)
x′w − γ + yi ≥ +1, for x′ = Ai and Dii = +1,
x′w − γ − yi ≤ −1, for x′ = Ai and Dii = −1.
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The 1-norm of the slack variable y is minimized with
weight ν in (4.1). The quadratic term in (4.1), which is
twice the reciprocal of the square of the 2-norm distance

2

‖w‖
between the two bounding planes of (4.2) in the n-

dimensional space of w ∈ Rn for a fixed γ, maximizes
that distance, often called the “margin”. Figure 1 de-
picts the points represented by A, the bounding planes
(4.2) with margin 2

‖w‖
, and the separating plane (4.3)

which separates A+, the points represented by rows of A
with Dii = +1, from A−, the points represented by rows
of A with Dii = −1. For this paper we used Newton-
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Figure 1: The bounding planes (4.2) with margin 2

‖w‖
,

and the plane (4.3) separating A+, the points represented

by rows of A with Dii = +1, from A−, the points

represented by rows of A with Dii = −1.

Lagrangian SVM (NSVM), an algorithm based on an
essentially equivalent formulations of this classification
problem [5]. In this formulation, the square of 2-norm of
the slack variable y is minimized with weight ν

2
instead

of the 1-norm of y as in (4.1). In addition the distance
between the planes (4.2) is measured in the (n + 1)-
dimensional space of (w, γ) ∈ Rn+1, that is 2

‖(w,γ)‖
.

Measuring the margin in this (n+1)-dimensional space
instead of Rn induces strong convexity and has little or
no effect in general on the problem.

4.2 Privacy Preserving SVMs. For our privacy
preserving application we chose to use a technique on
random kernel mappings recently proposed by Man-
gasarian and Wild on [11]. The algorithm is based on
two simple basic ideas:

1. The use of reduced kernel mappings [9, 8],
where the kernel centers are randomly chosen.
Instead of using the complete kernel function
K(A,A′) : Rm×n → Rm×m as it is usually done
in kernel methods they propose the use of a re-

duced kernel K(A,B′) : Rm×n → Rm×m̃, where
B ∈ Rm̃×n is a completely random matrix with
fewer rows than the number of available features,
(m̃ < n) .

2. Each entity makes public only a common

randomly generated linear transformation

of the data given by the matrix product of its
privately held matrix of data rows multiplied by
the transpose of a common random matrix B for
linear kernels, and a similar kernel function for
nonlinear kernels. In our experimental setting,
we assumed that all the available patient data
is normalized between 0 and 1 and therefore the
elements of B were generated according to a normal
distribution with mean zero, variance one and
standard deviation one.

Next, we formally introduce the PPSVM algorithm
as presented in [11]

Algorithm 4.1. Nonlinear PPSVM Algorithm

(I) All q entities agree on the same random matrix

B ∈ Rm̄×n with m̄ < n for security reasons as

justified in the explanation immediately following

this algorithm. All entities make public the class

matrix D (labels) where Dll = ±, l = 1, . . . ,m for

the each of the data matrices Ai, i = 1, . . . , q that

they all hold.

(II) Each entity generates its own privately held random

matrix B·j ∈ Rm̄×nj , j = 1, . . . . . . , p, where nj is

the number of input features held by entity j.

(III) Each entity j makes public its nonlinear kernel

K(Aj , B
′). This does not reveal Aj but allows the

public computation of the full nonlinear kernel:

(4.5)

K(A,B′) = K









A1

A2

...

Aq



 , B′



 =





K(A1, B
′)

K(A2, B
′)

...

K(Aq, B
′)





(IV) A publicly calculated linear classifier K(x′, B′)u −
γ = 0 is computed by any linear hyperplane based

classification or regression method method such as

the ones presented in sections 4.1 and 4.3.

(V) For each new x ∈ Rn, obtained by an entity, that

entity privately computes K(x′, B′) and classifies

the given x according to the sign of K(x′, B′)u−γ.

Note that algorithm 4.1 works for any kernel with
the following associative property:

K

([
C
D

]
, F

)
=

[
K(C,F )
K(D,F )

]
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Which is, in particular, the case of the linear kernel
K(A,B′) = AB′ and that we will use for the rest of the
paper.

As stated in [11], it is important to note than in the
the above algorithm no entity j reveals its data nor its
components of a new testing data point. When m̄ < n,
there is an infinite number of matrices Ai ∈ Rmi×n in
the solution set of the equation AiB

′ = Pi, when B and
Pi are given. This claim can be justified by the well-
known properties of under-determined systems of lin-
ear equations. Furthermore, the following proposition
which is originally stated and proved in [11] is aimed to
formally support the claim presented above:

Proposition 4.2. (infinite solutions of AiB
′ = Pi

if m̄ < n) Given the matrix product P ′

i = AiB′ ∈
Rmi×m̄, where Ai ∈ Rmi×n is unknown and B is a

known matrix in Rm̄×n with m̄ < n, there are an infinite

number of solutions, including:

(
n
m̄

)mi

=

(
n!

(n − m̄)!m̄!

)mi

possible solutions Ai ∈ Rmi×n to the equation AiB
′ =

Pi. Furthermore, the infinite number of matrices in

the affine hull of these

(
n
m̄

)mi

matrices also satisfy

AiB
′ = Pi.

4.3 Overview of Cox Regression. Cox regression,
or the Cox propositional-hazards model, is one of the
most popular algorithms for survival analysis [3]. Apart
from baing a classification algorithm which directly deal
with binary or multi-class outcomes, Cox regression
defines a semi-parametric model to directly relate the
predictive variables with the real outcome which is in
general the survival time (e.g., in years).

Let T represent survival time. The so-called haz-

ard function is a representation of the distribution of
survival times, which assesses the instantaneous risk of
demise at time t, conditional on survival to that time:

h(t) = lim
∆t→0

Pr[(t ≤ T < t + ∆t)|T ≥ t]

∆t
.

The Cox regression model assumes a linear model for the
log-hazard, or as a multiplicative model for the hazard:

(4.6) log h(t) = α(t) + w′x,

where x denote the covariates for each observation, and
the baseline hazard α(t) is unspecified. This model is
semi-parametric because while the baseline hazard can
take any form, the covariates enter the model linearly.

Now given any two observations xi and xj , from the
definition of hazard function we can get

h(ti)

h(tj)
= exp[w′(xi − xj)],

which is independent of time t. The baseline hazard
α(t) also does not affect the hazard ratio. This is why
the Cox model is a proportional-hazards model.

And Cox has showed in [3] that even though the
baseline hazard is unspecified, the Cox model can still be
estimated by the method of partial likelihood. It is also
possible to extract an estimate of the baseline hazard
after having fit the model.

4.4 Privacy Preserving Cox Regression. The
main idea of the privacy preserving SVM is to perform
a random mapping of the original predictive variables
into a new space, and then perform standard SVM on
the new space. Since in the Cox regression the interac-
tion between the parameter of the models and the data
is linear, we can also apply the same idea presented in
section 4.2 for the privacy preserving Cox regression.
Given the random matrix B and assuming that we are
using a linear kernel, equation 4.6 is slightly changed to:

(4.7) log h(t) = α(t) + w′xB′,

Again it is important to note, that to our knowledge,
this is the first time that privacy preserving techniques
are applied for survival analysis methods.

5 Application: 2-Year Survival Prediction for

Non-Small Cell Lung Cancer Patients

Radiotherapy, combined with chemotherapy, is treat-
ment of choice for a large group of non-small cell lung
cancer (NSCLC) patients. The treatment is not re-
stricted to patients with mediastinal lymph node metas-
tasis, but is also indicated for patients who are inoper-
able because of their physical condition. In addition,
the marginal role of radiotherapy and chemotherapy for
the survival of NSCLC patients has been changed into
one of significant importance. Improved radiotherapy
treatment techniques allow an increase of the radiation
dose, while at the same time more effective chemoradi-
ation schemes are being applied. These developments
have lead to an improved outcome in terms of survival.
Although the introduction of FDG-PET scans has en-
abled more accurate detection of positive lymph nodes
and distant metastases, leading to stage migration, the
TNM staging system is still highly inaccurate for the
prediction of survival outcome for this group of patients
[1]. In summary, an increasing number of patients is
being treated successfully with (chemo) radiation, but
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an accurate estimation of the survival probability for an
individual patient, taking into account patient, tumor
as well as treatment characteristics and offering the pos-
sibility for treatment decision-making, is currently not
available.

At present, generally accepted prognostic factors
for inoperable patients are performance status, weight
loss, presence of comorbidity, use of chemotherapy in
addition to radiotherapy, radiation dose and tumor size.
For other factors such as gender and age the literature
shows inconsistent results, making it impossible to draw
definitive conclusions. In these studies CT-scans were
used as the major staging tool. However, the increasing
use of FDG-PET scans offers the possibility to identify
and use new prognostic factors. In a recent study it was
shown that number of involved nodal areas quantified
by PET-CT was an important prognostic factor [1].
We performed this retrospective study to develop and
validate several prediction models for 2-year survival of
NSCLC patients, treated with (chemo) radiotherapy,
taking into account all known prognostic factors. To
the best of our knowledge, this is the first study of
prediction models for NSCLC patients treated with
(chemo)radiotherapy

5.1 Patient Population. Between May 2002 and
January 2007, a total number of 455 inoperable NSCLC
patients, stage I-IIIB, were referred to MAASTRO clinic
to be treated with curative intent. Clinical data of all
these patients were collected retrospectively by review-
ing the clinical charts. If PET was not used as a stag-
ing tool, patients were excluded from the study. This
resulted in the inclusion of 399 patients. The primary
gross tumor volume (GTVprimary) and nodal gross tu-
mor volume (GTVnodal) were calculated, as delineated
by the treating radiation oncologist, using a commercial
radiotherapy treatment planning system (Computerized
Medical Systems, Inc, CMS). The sum of GTVprimary

and GTVnodal resulted in the GTV. For patients treated
with sequential chemotherapy these volumes were cal-
culated using the post-chemotherapy imaging informa-
tion. The creation of the volumes was based on PET
and CT information only; bronchoscopic findings were
not taken into account. The number of positive lymph
node stations was assessed by the nuclear medicine spe-
cialist using either an integrated FDG-PET-CT scan or
a CT-scan combined with FDG-PET-scan. T-stage and
N-stage were assessed using pre-treatment CT, PET and
mediastinoscopy when applicable. For patients treated
with sequential chemotherapy stage as well as number
of positive lymph node stations was assessed using pre-
chemotherapy imaging information.

Additionally, a smaller number of patients treated

at the other two centers, the Gent hospital and the
Leuven hospital, were also collected for this study.
There are respectively 112 and 40 patients from the
Gent and Leuven hospitals, and the same set of clinical
variables as the MAASTRO patients were measured.

5.2 Radiotherapy Treatment Variables. No elec-
tive nodal irradiation was performed and irradiation was
delivered 5 days per week. Radiotherapy planning was
performed with a Focus (CMS) system, taking into ac-
count lung density and according to ICRU 50 guide-
lines. There were four different radiotherapy treatment
regimes applied for these patients in this retrospective
study, therefore to account for the different treatment
time and number of fractions per day, the equivalent
dose in 2 Gy fractions, corrected for overall treatment
time (EQD2,T), was used as a measure for the inten-
sity of chest radiotherapy 5.8. Adjustment for dose per
fraction and time factors were made as follows:

EQD2,T = D

(
d + β

2 + β

)
− γ max(0, T − Tk),(5.8)

where D is the total radiation dose, d is dose per
fraction, β = 10 Gy, T is overall treatment time, Tk

is the accelerated repopulation kick-off time which is
28 days, and γ is the loss in dose per day due to
repopulation which is 0.66 Gy/day.

5.3 Experimental Setup. In this paper we focus on
2-year survival prediction for these NSCLC patients,
which is the most interesting prediction from clinical
perspective. The survival status was evaluated in
December 2007. The following 6 clinical predictors
are used to build the prediction models: gender (two
groups: male/female), WHO performance status (three
groups: 0/1/ ≥ 2), lung function prior to treatment
(forced expiratory volume, in the range of 17 ∼ 139),
number of positive lymph node stations (five groups:
0/1/2/3/ ≥ 4), natural logarithm of GTV (in the range
of −0.17 ∼ 6.94), and the equivalent dose corrected by
time (EQD2,T) from (5.8). The mean values across
patients are used to impute the missing entries if some
of these predictors are missing for certain patients. To
account for the very different number of patients from
the three sites, a subset of MAASTRO patients were
selected for the following study. In the following we
use the names “MAASTRO”, “Gent” and “Leuven” to
denote the data from the three different centers.

For the SVM methods, since they can only deal
with binary outcome, we only use the patients with 2-
year follow-up and create an outcome for them with +1
meaning they survived 2 years, and −1 meaning they
didn’t survive 2 years. This setting leads to 70, 37 and
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Figure 2: AUC comparison for privacy preserving SVMs with 40% (left) and 60% (right) training patients. The error bars
are calculated based on 100 times of random splits of the data.
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Figure 3: AUC comparison between PP-SVMs and non PP-SVMs (which explicitly use all the training data from different
centers, and thus upper-bound the predictive performance of PP-SVMs). We compare the two with different percentages
of training patients (left), in a scatter plot (middle), and with different dimensions m̄ for PP-SVMs (right) for a 40% split.

23 patients for the MAASTRO, Gent and Leuven sets,
respectively. For the Cox regression methods, we can
potentially use all the patients with the exact number of
survived years, and do right censoring for those patients
who are still alive. Under this setting we end up with 80,
85 and 40 patients for MAASTRO, Gent and Leuven,
respectively.

Under the privacy preserving setting, we are inter-
ested in assessing the predictive performance of a model
combining the patient data from the three centers to-
gether, compared to the models trained based on each of
these centers. The data combination needs to be done
in a way that sensitive information is not uncovered.
Therefore for our experiments we trained the following
4 models under each configuration:

• PP model: Apply the privacy preserving tech-
niques we have introduced and train a model using
combined data from the three centers.

• MAASTRO, Gent and Leuven models: Train

models using only the MAASTRO, Gent and Leu-
ven training patients repectively.

For each of the configurations, we vary the percentage of
training patients in each of the centers, and report the
Area Under the ROC Curve (AUC) for the test patients.
Note that the testing was performed using all the test
patients from all centers.

6 Results

In Figure 2 we show the results for privacy preserving
SVM models, with 2 example training percentages (40%
and 60%). The other percentages yield similar results.
The error bars are over 100 runs with random split of
training/test patients for each center, and each time a
random B matrix of dimensionality 5×6 is used for the
PP-SVM models. As can be seen, the PP-SVM models
achieve the best performance compared to other single-
center based models. This is mainly because PP-SVM
models are able to use more data in model training, at
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Figure 4: AUC comparison for privacy preserving Cox regression models with 40% (left) and 60% (right) training patients.
The error bars are calculated based on 100 times of random splits of the data.
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Figure 5: AUC comparison between PP-CoxReg and non PP-CoxReg (which explicitly use all the training data from
different centers, and thus upper-bound the predictive performance of PP-CoxReg). We compare the two with different
percentages of training patients (left), in a scatter plot (middle), and with different dimensions m̄ for PP-CoxReg (right)
in a 40% split.

the same time without violating the privacy regulations.
When we increase the training percentages, all models
will improve (compare Figure 2 right to left), and the
single-center based models have a higher improvement.
However the PP-SVM models still perform the best.

It is easy to realize that PP-SVM will end up with
a performance loss compared to a non PP-SVM model,
which explicitly combines all the training patients from
different centers and does not preserve privacy. This
is because in PP-SVMs a random matrix B projects
each patient into a lower dimensional space (for privacy
preserving purpose), and thus leads to information loss.
To empirically evaluate how much performance loss the
PP-SVMs have, we show a more extensive comparison
in Figure 3. On the left we show the comparison with
different percentages of the training/test splits, and as
can be seen the gaps between PP-SVMs and non PP-
SVMs are not very big. This indicates PP-SVMs can
achieve similar predictive performance while satisfying

the privacy preserving requirement. The scatter plot in
the middle is another way to visualize these results. On
the right we vary the mapping dimensions m̄ for the B
matrix we used in PP models, and as expected, bigger
m̄ yield better predictive performance. Therefore, in
practice we normally choose m̄ = n − 1 to maximize
the performance of the PP models (which still perfectly
satisfies the privacy preserving requirements). From
this comparison we see that there is a big error bar for
different B matrices, and one interesting future work is
to identify the best B matrix for PP models.

In Figure 4 we also empirically evaluate the results
for privacy preserving Cox regression models, also with
the 2 example training percentages (40% and 60%).
They have the same trend as we have seen in Fig-
ure 2, but it is interesting that with a higher per-
centage of training data (e.g., 60% on the right), PP-
CoxReg performs the same as the model trained using
only MAASTRO training patients. This indicates PP-
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CoxReg model is more sensitive to the different charac-
teristics of the data from different centers. In practice,
we need to carefully investigate the different data dis-
tributions to estimate the benefits of combining them.

We also empirically compare the PP Cox regres-
sion models with non PP-CoxReg models in Figure 5.
As can be seen, the gaps between PP-CoxReg and non
PP-CoxReg models are even smaller than those be-
tween PP-SVM and non PP-SVM models, meaning PP-
CoxReg models are more accurate toward the non pri-
vacy preserving solutions. In practice we still need to
choose m̄ = n − 1 to maximize the PP-CoxReg perfor-
mance, and to choose the best B matrix if possible.

7 Discussion and Conclusions

We have applied a simple recently proposed PP tech-
nique in a real clinical setting where data is shared
across three European institutions in order to build
more accurate predictive models than the ones obtained
using only data from one institute. We have extended
the previously proposed PP algorithm (originally sug-
gested for SVM) to cox regression. As far as we know
this is the first work that addresses privacy preserving
concerns for survival models. The work presented here
is based on preliminary results and we are already work-
ing on designing improved algorithms to address several
concerns that arise when performing our experiments.
One of the concerns that arise (as shown in section 6)
is how to address the impact of the variability of the
matrix B on the performance of the predictive models.
For that, we are currently experimenting with formu-
lations in which the B matrix is intended not only to
“de-identify” the data but also to optimally improve
model performance. Another relevant concern that we
are looking into is, how to weight the importance of data
from different institutions, assuming that the reliability
of the data or the labels varies among institutions.
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