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ABSTRACT

Occupancy count in rooms is valuable for applications such as
room utilization, opportunistic meeting support, emergency
responses in buildings and efficient heating and cooling oper-
ations. Few buildings, however, have the means of knowing
occupancy beyond simple binary presence-absence. In this
paper we present the PerCCS algorithm that explores the pos-
sibility of estimating person count from C'O5 sensors already
integrated in everyday room air-conditioning infrastructure.
PerCSS uses task-driven Sparse Non-negative Matrix Factor-
ization (SNMF) to learn a non-negative low-dimensional rep-
resentation of the C'O, data in the preprocessing stage. This
denoised C'O; acts as the predictor variable for estimating
occupancy count using Ensemble Least Square Regression.
We tested the algorithm to estimate 15 minutes average occu-
pancy count from a classroom of capacity 42 and compared
its performance against existing methods from the literature.
PerCSS estimates occupancy with a normalized mean squared
error (NMSE) of 0.075 and outperformed our comparative
methods in predicting occupancy count with 91 % and 15
% for exact occupancy estimation, when the room was un-
occupied and occupied respectively, whereas the competing
methods failed completely.
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Knowledge of occupancy count can be leveraged in several
smart building applications including smart meeting space al-
location, emergency evacuation, opportunistic meetings, as-
sessment of collaboration-space usage and energy efficient
and comfortable heating-cooling operation. Smart meeting
space allocation systems attempt to predict how best to al-
locate a finite set of meeting rooms to match desired room
requests. Many of these systems attempt to solve this pre-
dictive resource allocation problem using energy-related cost
functions [22]. In simulations, Majumdar et al. found that, of
several factors, matching the room capacity with the desired
meeting size resulted in the lowest daily energy use from all
the meeting rooms.

In addition to predictive meeting allocation, it may also be
important to track attendance at a meeting or seminar to deter-
mine whether they should be canceled due to low attendance
or moved to bigger rooms due to higher than expected atten-
dance. Under such circumstances, obtaining an occupancy
count using only an infrastructure-integrated system can min-
imize human labor and be used to automatically update room
schedules. Currently, rooms are scheduled for meetings and
classes assuming attendance of all registered participants, re-
sulting in inefficient space scheduling and usage.

Another use of occupancy count is for opportunistic meet-
ings. Opportunistic meetings are a form of informal com-
munication mediated by close physical proximity of workers.
Such meetings are important in R&D organizations for initi-
ating collaborations [18]. Horvitz et al. [12] proposed CO-
ORDINATE, a complex sensor fusion system that fostered
such meetings by informing coworkers of each others pres-
ence and availability. COORDINATE could forecast the pres-
ence, availability and meeting status of a person from calen-
dar and status of appointment features. Occupancy count can
enhance the functionality of COORDINATE-like systems by
providing information about whether a user is alone in her
room or has visitors and can also validate system forecasts.

Building maintenance is a major contributor to society’s over-
all energy consumption [1]. The age of a building, the build-



ing’s envelope, the kind of HVAC system that is installed in
the building, and organizational choices such as supporting a
24/7 workplace all contribute to the overall cost of building
maintenance. Traditional temperature control systems use es-
timates of when a building is occupied to define a static tem-
perature control schedule. Knowing the actual room usage
and occupancy pattern can significantly influence how effi-
ciently a control system can balance energy savings consider-
ations and thermal comfort [28, 16, 3].

Existing HVAC systems are controlled to support maximum
occupancy. For example, the ventilation airflow rate is main-
tained as a linear function of maximum occupancy. In vari-
able air volume systems, the cooling airflow rate is main-
tained at 30% of the maximum ventilation airflow rate [33]. A
temperature setpoint-based cooling control therefore means
higher volumes of cool air blasted in larger rooms than rooms
of smaller capacity. It works well for offices, which usually
have less than five occupants, but for large shared spaces (e.g.,
conference rooms or classrooms) without a designated owner,
the actual occupancy can largely vary depending on the cur-
rent use. For sparsely occupied rooms, this blasting of cool
air can lead to local discomfort. Recent research has shown
that knowledge of occupancy count alone can save 42% of an-
nual air conditioning energy in commercial buildings [7] by
controlling the minimum ventilation rate based on actual oc-
cupancy rather than the maximum designed occupancy. An-
other simulation study found that in large commercial build-
ings, precise occupancy count-based cooling and heating con-
trol can save 2 to 3 times more energy than binary occupancy-
based control for particular climate zones [33]. The projected
savings on a national scale is 17.8%.

Despite the obvious benefits of having a reliable occupancy
count, very few building systems have a measure of occu-
pancy beyond simple binary presence-absence. However,
much research has been dedicated to occupancy estima-
tion, most of which use multi-sensor fusion [23, 19, 20]
and/or intrusive instrumentation like imaging [14, 32]. Re-
searchers have used multi-sensor fusion to infer small occu-
pancy counts (20 or less). These sensors measure tempera-
ture, humidity, capacitance, sound, electrical interference and
even water, electrical load, ventilation air flow rate and pres-
sure. Other systems are tracking based and use Bluetooth or
WiFi beacons, door-way crossing sensors [26] and thermal
array sensors. All of these above approaches of occupancy
sensing call for additional infrastructure. Moreover, none of
these methods have been employed to estimate large occu-
pancy counts in classrooms or lecture halls.

Occupancy count has also been treated as a prediction prob-
lem, where future occupancy is inferred from existing occu-
pancy data. Most applications of predictive methods have
been limited to binary occupancy and individual user track-
ing scenarios [28, 16]. Other methods require building related
information such as floor plans, thermal properties of build-
ing materials and operational characteristics of the ventilation
systems such as ventilation air flow rate and C'O concentra-
tion in the supply air.

In our work, we estimate occupancy count using only a sin-
gle sensor, a C'O5 sensor. C'O4 sensors monitor only a sin-
gle environmental variable, CO2 concentration measured at
one point in the room. They are an integral part of the room
air-conditioning infrastructure in most buildings and thus ob-
viate the need for additional infrastructure. Unlike most
prior research conducted on office spaces with small and rel-
atively static occupancy, our research is focused on spaces of
high and variable occupancy like classrooms and conference
rooms.

We investigate a new algorithm for performing occupancy es-
timation, which we call PerCCS: Person Count from CO.
using Sparse non-negative matrix factorization (SNMF).
SNMF is a task-driven approach for denoising the C'O5 data.
This processed CO- data is then used as a predictor in an
ensemble least square regression for occupancy estimation.
The method is referred to as task-driven because the denois-
ing of the predictor is performed iteratively so as to minimize
the above regression error. Denoising is required due to the
fact that C'O4 represents an aggregate of multiple generat-
ing factors, of which occupancy count is just one and hence
C O, data has higher fluctuations than occupancy count. This
SNMF denoising method has not been explored in the domain
of smart spaces to the best of our knowledge.

We compare the performance of our method with algorithms
from the literature that have achieved the highest accuracy
in estimating occupancy count from only C'Os concentration
or in combination with other sensor data such as sound and
humidity. Note that different units have been used to define
the accuracy of occupancy estimation. In the binary occu-
pancy detection case, accuracy refers to number of correct
detections [19]. For a regression problem such as ours, we
report accuracy in terms of the Normalized Mean Square Er-
ror (NMSE) and mean /¢ error.

We also consider a baseline scenario where we use raw C'Oq
data without denoising. In order to evaluate the performance
of our method, we collected ground truth occupancy counts
and C'O4 data from a classroom with a capacity of 42. Using
13 days of data, we demonstrate that our method is able to
estimate zero occupancy during 91% of unoccupied periods
and exactly track the occupancy during 15% of the occupied
periods, unlike the baseline method and SVR which could
not predict exact occupancy at all. On average, PerCCS over-
estimates the occupancy count by 1.0 person compared to the
baseline error of 1.3 and SVR error of 2.54 persons. More-
over PerCCS has an overall NMSE of 0.075, while the base-
line and SVR have NMSEs of 0.16 and 0.51, respectively. We
conclude that PerCCS is a significant improvement over these
existing methods.

The benefits of our work are two-fold. In addition to our novel
approach that outperforms existing approaches, our work ex-
tends past work by leveraging only a single sensor that is al-
ready available in most buildings, and predicts occupancy in
large rooms with variable occupancy.

RELATED WORK



The goal of our work is to accurately estimate occupancy
count from carbon dioxide measurements. We do so by ap-
plying SNMF based regression to this new problem domain.
We divide our discussion of the related literature into two cat-
egories: 1) environmental sensing that supports the estimation
of occupancy count and ii) algorithms from the literature used
in occupancy counting from environmental sensors.

Occupancy estimation using multi-sensor

The simplest and the most ubiquitous occupancy sensor is
Passive Infrared (PIR) which provides binary occupancy in-
formation. Erickson et al. showed that while some energy
savings can be achieved with binary information, approxi-
mate occupancy count provides higher potential for building
controls and energy savings. Several methods have been pro-
posed for detecting, counting, tracking, and identifying peo-
ple inside buildings using a combination of different sensing
modalities and machine learning approaches [30].

Many of these methods are either privacy-intrusive or require
additional instrumentation that can be costly or difficult to
deploy. Others use an indirect means of counting people like
tracking of devices that people carry [3]. Even though they
allow for a very precise occupant count, they do not scale to
large buildings since both the rooms as well as the occupants
need to be instrumented. Modern technology such as iBea-
cons and WiFi access-points might make this concept more
feasible, but still require the distribution of additional sensors
in each room. Furthermore they, along with smartphone lo-
calization, have the larger privacy drawback.

In this paper we investigate passive, room-level counting of
people by using ubiquitous C'Os monitors. C'O5 is a measur-
able physical quantity that has a direct relationship to human
occupancy. Teixeira et al. [29] refer to these physical quanti-
ties as static intrinsic traits. Static intrinsic traits are directly
affected by human presence and do not require any additional
activity or input or addtional device to be carried by user be-
yond mere presence (unlike, for example, motion detectors or
accelerometers), thus respecting occupants’ privacy.

Many such intrinsic traits like temperature, capacitance, car-
bon dioxide, humidity, even water usage and electric loads
have been used by researchers to estimate the occupancy
count in a room. Even though these methods have shown
promise, some of them are not practical in the long run.
For example, temperature sensors will require a high fidelity
model of the buildings thermal capacity and will have in-
terference from heat generated by several other unrelated
sources in the indoor environment like electrical appliances.
Alternative forms of thermal sensors, like thermopile sensor
arrays require appropriate installation and significant calibra-
tion [10].

Shape and weight also fall under the category of static intrin-
sic traits, both of which are good for tracking and identifica-
tion, but they require additional instrumentation such as cam-
eras or pressure sensitive surfaces. Cameras require sophis-
ticated image processing that is both computationally costly
and introduces multiple privacy concerns. Weight sensors, on
the other hand, might not differentiate between people leav-

ing and entering a room and thus compute a wrong occupancy
count, unless at least a pair of sensors are deployed similar to
doorway monitoring, but this requires additional infrastruc-
ture.

Erickson et al. have contributed largely to the literature on
occupancy estimation, specifically in the testing of several of
occupancy sensing technologies as occupants move through
spaces. The technologies range from single passive infrared
sensors [14, 10, 8, 13, 32, 6] to more sophisticated thermopile
and camera arrays [4, 9].

In [24], occupancy count estimation is performed by mak-
ing an assumption that the C'O4 generation rate per person is
a constant of 0.01 SCFM (cfm standardized by temperature
and pressure condition of the surrounding gas). The method
also relies on measurements of C'Oy concentrations in both
the space and the supply air as well as the supply air flow rate.
The authors used steady state and transient equations for pre-
dicting occupancy from the above measurements and reported
an accuracy of estimation within 2 occupants during walk-
through counts in a room of capacity 25. The author noted
that transient C'O5 measurements resulted in impractical oc-
cupancy count that needed to be damped” by restricting the
allowed change to 1 person/15 seconds. The motivation of the
paper was to present the usefulness of real-time occupancy in-
formation on outdoor airflow control without sufficient elab-
oration on the results that can be leveraged for comparison.
The aforementioned work is the only one in the smart space
literature that has tried to predict occupancy from C'O, data
alone, however, it required measurements at several points
beyond a single room sensor.

We selected carbon dioxide based occupancy counting for
several reasons. C'Oq sensors are an integral part of in-
frastructure for demand-controlled ventilation. Furthermore
C O3 based occupancy counting is not prone to accumulated
counting errors, as are sensors that detect state transitions be-
tween occupied and unoccupied. While some researchers ar-
gue against the slow build up time of carbon dioxide due to
ventilation, a preliminary feasibility study that we conducted
found that depending on the room ventilation air flow rate, the
C Oy build up time varies between 10 - 20 minutes. Hence a
CO5 based occupancy estimation system may have a reaction
time of at most 20 minutes.

Algorithms for Occupancy estimation

A number of research papers have discussed the use of C'O4
sensing for occupancy detection, sometimes restricting to the
problem of binary presence-absence detection. The major-
ity of existing research has used multi-modal environmental
sensing for occupancy count estimation. To date the highest
prediction accuracy, estimated as the percentage of correct
predictions, has been reported by Lam et al. [19]. Using in-
formation gain for feature selection, the authors found that
COs, the second order change of C'O,, the difference be-
tween indoor and outdoor C'Os levels, and the 20 minutes
moving average of C'Oy are the most relevant features for
explaining occupancy variation. Besides C'O2, sound data
was found to bear a strong correlation with occupancy count



compared to other environmental data. In this study, the high-
est prediction accuracy of 75 % was achieved using Hidden
Markov Models, followed by Support Vector Regression at
70 %. The authors argued that HMMs can leverage the latent
correlation between current and past occupancy and C'Oz dy-
namics for prediction. However, the maximum occupancy of
the test bed at any given time was only four with occasional
fluctuations which HMMs failed to address.

Support Vector Machines (SVMs) address the non-linearity in
the relationship between C'O, and occupancy count and also
account for variations in the room occupancy patterns. SVMs
can also accommodate discrete variables like count. Erickson
et al. [10] modeled room occupancy as a multi-variate Gaus-
sian distribution even though occupancy count is a discrete
data. While [10] used only the temporal pattern of occupancy
in this model, [7] implemented three Markov Chain models to
leverage the spatio-temporal correlation in occupancy pattern.
Their models use inter-room occupancy correlation from im-
age data to predict future occupancy count with 80% accu-
racy, and a false positive rate of 13%. The rationale for mod-
eling inter-room occupancy is justified by the use of image
sensors that record the movement of a person from one room
to another, e.g., transition between two adjoining spaces. The
number of states exponentially grows with large room sizes
and more interconnected rooms, even after ignoring repeated
state transitions. Furthermore, the amount of data required to
ensure reasonable prediction accuracy is much higher in such
state space models compared to regression. Since the study
closest to our approach obtained the best results using HMMs
and SVMs [19], we decided to compare the performance of
our algorithm to these methods.

BACKGROUND

Understanding the problem space

CO5 exhaled by a person is an intrinsic trait and varies from
person to person. Equations 1 and 2 are empirical models
of CO4 exhaled by a person and partially explains why C'O2
concentration (measured in ppm) in room air does not linearly
grow with the number of people in the room.

~0.00276Ap.M.RQ W
©02 = T023RQ + 0.77

AD — 0.203H0.725W0.425 (2)

Ap is the DuBois surface area of a person in m?2, M is the
metabolic activity equivalent or MET value: 1.25 for students
in school. H is the height of a person in meters and weight is
body mass in kilograms, R(Q) is the respiratory quotient typ-
ically taken as 0.83. Ap is variable from person to person.
One of the co-authors body surface area is 1.489 m?2, while
that of an average American of age 20-30 is 1.8 m?. The
corresponding Voo are 0.0042 and 0.0052 L/ s respectively.
For a room with a 850 c¢fm (cubic feet per minute) venti-
lation rate, the above difference in the Ap means a 3 ppm
difference in steady state C Oy concentration, which may be
less than the sensor error. For a smaller room, however, the

above surface area difference may amount to a concentration
difference as high as 100 ppm.
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Figure 1. Distribution of occupant count and C'Os for one day in a lab-
oratory with a capacity of 15 people
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Figure 2. Distribution of occupant count and C'O for one day in a class-
room with a capacity of 42 people
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Figure 3. Ordinary Least Square Regression Mean Squared Error be-
tween predicted and actual occupancy minimum at 10 minutes lagged
predictor data

Feasibility study

In order to ascertain the feasibility of inferring occupancy
count from C'O, we collected occupancy count and C'O, data
in a lab space of capacity 15 and a classroom of capacity 42.
For our feasibility study, we selected two rooms to understand



the difference in COs dynamics from room to room. We in-
stalled our own C'O5 sensor in the lab which is in an older part
of the building and does not have a COs sensor. This CO2
sensor has a maximum sampling rate of 5 minutes. The 42-
person capacity classroom we used also serves as our final test
bed, and its ventilation system came already equipped with a
COs sensor that samples every minute. Figure 1 shows the
distribution of occupancy and C'O in a lab with a capacity of
15 people. The two variables are well correlated as the lab is
located in a basement with constant ventilation air flow rate
and no external facade. However in larger spaces like class-
rooms (capacity>40) open windows and doors facing corri-
dors with glass linings can impact such correlations (see Fig-
ure 2). Moreover CO, exhaled by people slowly reaches a
static and uniform concentration in the room air, so that the
full change must be captured by the sensor located high up
on the room wall, at different distances from the sources. The
above dynamics depend on the room volume, amount of air
mixing and density of occupants in the room.

Agarwal et al. [2] mentioned that while occupancy may be
inferred from C'O5, the slow evolution time of C'O4 as a re-
sult of occupancy may prevent real-time occupancy detection.
Moreover, Lam et al. observed that a 20 minutes moving av-
erage of C'O5 is one of the most informative features for oc-
cupancy inference [19].

In order to understand the COy dynamics in room air as a
function of occupancy, we performed i) a cross-correlation
analysis between C'O2 and occupant count, and ii) a linear
regression between C'Oy and differentially lagged instanta-
neous counts. The measurements were taken in both the
rooms of capacity 15 and 42. Our preliminary feasibility
study shows that depending on the room ventilation air flow
rate and the room capacity, the C'O5 build up time varies. For
example, in the 15-person capacity lab, the build up time is 20
minutes, whereas in the 42-person capacity large classroom,
the build up time is 10 minutes (see Figure 3). In Figure 3
the x axis is the chosen lag in time steps applied to occupancy
data and the y axis is the mean squared error of linear regres-
sion between lagged occupancy of the classroom and C'O-
data. The NMSE is lowest at 10 time steps lagged occupancy,
which is 10 minutes at a 1 minute sampling rate.

C'O4 concentration as a predictor of occupancy is both noisy
and redundant since it represents an aggregate of multiple
generating factors of which room occupancy count is just one.
The temporal pattern of occupancy in our testbed is fairly reg-
ular over the course of the day, say at an hourly resolution,
however quite irregular at a time scale of 1 minute, especially
during the time when many people enter or leave the space.
Such rapid changes in occupancy cannot be captured using
COs data, because of C'O3’s slow dynamics.

In this paper, we focus on occupancy estimation at 15 min-
utes resolution, sufficient or practical for energy management
purposes. This is because any change in supply air to the
room in response to occupancy change will manifest in the
room air slowly. For example in case of temperature con-
trol in residential buildings, Koehler et al. [16] found that
homes in their study took an average of 59 minutes to heat

up to the set point temperature from the time the heating was
initiated. In our test bed building we observed that any tem-
perature set point change triggered by a change in binary oc-
cupancy takes approximately 5 minutes per degree change to
take effect. In other words controlling air supply volume flow
based on occupancy changes faster than 15 minutes will not
be effective. However, once the occupancy count has reached
a steady state, our method should be able to initiate reactive
air conditioning based on this steady state value.

We also examine the ability of our algorithm to predict zero
occupancies. This is because minimizing false positives is
of paramount importance from an energy efficiency stand-
point. The resultant problem of predicting occupancy from
COs, therefore, has the following characteristics: Non-linear
relationship, Time lag, Noisy predictor data with some redun-
dancy and Target variable has several zero values.

Our problem can be cast as one of source separation, where
CO, is an aggregate of multiple generating factors including
room occupant count, ventilation airflow rate, outdoor CO2
concentration (if the room has infiltration and/or natural ven-
tilation) and contributions of plants. We assume that each
of the these contributing factors have additive effects on the
C'O4 development in a space. We, therefore chose to denoise
the C'O5 data prior to regression analysis.

Regression with denoising and disaggregation

Non-negative matrix factorization (NMF) is an approach for
source-separation applied to problems such as speaker iden-
tification and energy disaggregation. In NMF a source signal
is expressed as a linear combination of several source com-
ponents, like music composed by the addition of notes. The
composing sources are together called a dictionary. When
the number of composing signals are more than the data di-
mensionality, the dictionary is said to be over-complete. The
composing sources may not be present in all parts of the com-
posite signal. In other words the weights of the linear models
may sometimes be zero. The weight matrix is sparse in that
case. This is particularly true for over-complete dictionaries.

The NMF method that allows us to learn the sparse weights
is called Sparse Non-negative matrix factorization (SNMF).
Sparsity can also be applied when we perform dimensionality
reduction. Here the number of constituent signals in the dic-
tionary is lesser than the data dimension, but sparsity of the
weights may still be required for accurate representation of
the composite signal. For example, in our study, a classroom
may have several unoccupied periods, where occupancy does
not contribute to room C'Oy concentration. Originally SNMF
was used by Schmidt and Ollson (2006) [27] for speech sep-
aration of multiple speakers. The authors experimented with
the sparsity coefficient and the number of dictionary elements
and concluded that a larger number of dictionary elements
improves speech separation performance.

Kolter et al. (2011) [17] applied the similar principle of sin-
gle channel source separation to the energy disaggregation
problem: identifying which devices in a building are con-
suming energy. Dictionaries were trained on individual en-
ergy end uses, and the weights of the learnt dictionaries were



updated. The authors implemented an SNMF formulation of
the dictionary learning problem. For cases of disaggregation,
where individual components of energy consumption cannot
be measured, but factors affecting those components (con-
texts) are available, Wytock and Kolter (2014) [31] proposed
a contextually supervised source separation method. In or-
der to account for arbitrary delays between the actual energy
components and their contexts, they used a sliding window.
This problem is similar to ours, except that instead of predict-
ing the components responsible for energy use, we want to
predict one of the contexts for CO2, namely occupancy.

A related approach is Task-driven dictionary learning, pro-
posed by Mairal et al. (2012). This dictionary learning
approach accommodates other objective functions of dictio-
nary learning besides minimizing reconstruction error. The
aforementioned problem of source separation is an example
of discriminative dictionary learning, where the objective is
to maximize separation while reducing the aggregate recon-
struction error. Another case of a task-driven dictionary learn-
ing is where least square regression is used for signal recovery
from a noisy measurement of the signal [21].

In matrix factorization based source separation problems, de-
noising and separation can be improved with knowledge of
the noise structure. For example, in the energy disaggregation
problem, if the goal is to identify the contribution of a kitchen
appliance alone, the contribution of the rest of the devices
could be considered as a structured noise. [17] implemented
a method to verify that the learnt basis functions, when up-
dated, do actually represent the original sources. While this
approach is promising, for our setting, we only know one of
the composing signals of C'O4, occupancy, which we are try-
ing to learn. Hence we cannot make use of the noise struc-
ture in our algorithm. However we select the number of the
composing signals, more formally the dictionary size and the
coefficient of sparsity based on domain knowledge in room
heating and air conditioning.

Building on the past work in source-separation for composite
signals, we use SNMF to obtain a low-dimensional represen-
tation of C'O5 and use the resultant, presumably less redun-
dant and less noisy data as a predictor for occupant count. We
now describe our algorithm in detail.

PERCCS ALGORITHM

Sparse Non-negative Matrix Factorization with Regular-
ization

The task in this paper is to obtain an occupant count Y as
a function of the lower dimensional representation of C'Os
data X. A task-driven approach ensures that the learnt dictio-
nary minimizes the regression error between Y and the rep-
resentation of X. Let X be a real-valued matrix such that
X € R™*™_ In NMF, we express X as a product of two ma-
trices W € R™** and H € R¥*™, where k < min(m,n).
Therefore, X ~ W H is a matrix factorization problem, that
reduces the dimension of the input matrix X. One of the fac-
tors is called the weight, W, and the other is the basis matrix
or the dictionary, H. NMF focuses on boundaries of the dis-
tribution of the data. The NMF representation characterizes

all data as lying within a compact convex region. The goal is
to select bases H so as to maximize the compactness of the
solution and also to enclose as much data as possible within
the bases. An approximation error results from an inability of
the solution bases to enclose all the data points in the matrix
X. The bases and the associated weights are learnt iteratively
to minimize the following objective function.

1
minW7H§||X ~WH|%s.t.W >0,H>0 3)

The above objective function is the ¢, divergence. KL diver-
gence D(X||WH) is an information theoretic error that ac-
counts for the length of the data vectors when computing the
divergences, and hence is a more reliable and popular cost
function for NMF. Several other algorithms have been pro-
posed for NMF [15], some of which include Block Principal
Pivoting [15], Hierarchical Alternating Least Squares [5] and
more recently block coordinate descent [25]. Unlike other
projection methods like PCA, NMF can generate sparse re-
sults due to the strict positivity of the bases and the weights.
Howeyver, bases fewer than the data dimension can lead to less
accurate solutions. This drawback can be overcome by using
an over-complete dictionary H (k > 'm) and applying spar-
sity constraints to the weights matrix 1. Sparsity is imposed
in the form of the ¢; norm, which is the sum of absolute val-
ues of the weights. Sometimes regularization, as in the case
of elastic net formulation [34], can prevent the weights from
assuming arbitrarily large values by constraining the /5 norm
of W. The resulting objective function for sparse NMF is
given by equation 4 with positivity constraints on W and H.

1
IX = WH[E + ol WIS + BIWh )

« and [ are the regularization coefficients and the sparsity
coefficient respectively. We used a Block Principal Pivoting
(BPP) solver for Sparse and regularized NMF to learn the
dictionary and weights from raw C'O5 data. We also tested
multiplicative updates using both KL divergence and ¢ diver-
gence. The performances of all the solvers were comparable
in terms of accuracy. BPP allowed for elastic net formulation
and was faster than other solvers.

In the “Background” section, we presented an analysis of
CO4 dynamics resulting from occupancy. In order to account
for the slow evolution of C'O> as a function of occupancy,
we assume that each 15 minutes span of occupancy changes
affect the C'O- readings over the following several minutes,
henceforth referred to as time length. Let the C'O5 readings
in ppmbe x = 1, 9, ..., x y Where the sampling interval is 1
minute and N is the total number of samples.The correspond-
ing occupant count data is y = ¥1,¥2, ..., yn. The matrix X
and the target vector Y, defined earlier in this section, have
the following structures.
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In the above matrices the time length is 30 minutes and the

occupancy prediction resolution is 15 minutes. Thus, assum-

ing N is a multiple of 30, the number of rows n in X and
N

Y are {z. Using the BPP formulation, we learn the weights

W € R™ ' from training data X € R™**, where k is
the time length. We used a Boosted Least Square regression
(LSQ) to compute Y as a function of learnt W. In a task-
driven approach to SNMF parameter selection, we iterated
through four parameters: time length, dictionary size, spar-
sity coefficient and regularization coefficient and selected the
parameter values for the lowest normalized mean square er-
ror of regression. Parameter selection was performed through
cross-validation explained later in the paper.

During task-driven dictionary learning, we optimize the dic-
tionary size and the sparsity of W in order to minimize the
{5 error of occupancy count estimation from C'O. The esti-
mation process trains several Least Square regression models
that map occupancy as a linear function of low dimensional
representation of C'Os, a regression method known as En-
semble Least Square.

PerCCS algorithm

At the core of the PerCCS algorithm is a two step process.
Step 1 is a task-driven data denoising process, applied to
C'O4 data, which we label as task-driven Sparse Non-negative
Matrix Factorization (SNMF) with regularization and time-
shifted predictor variables. Step 2 uses this lower dimensional
COs signal to infer 15 minute average occupancy using the
Ensemble Least Square Regression. The predictor data is
time-shifted to account for delay between occupancy change
and the resultant C'O5 concentration change, applied through
the parameter time length. The basic structure of the algo-
rithm is as follows:

1. During the data preprocessing phase, take all the C'O, and
occupancy data up to now and construct the matrix X and
vector Y as shown in the previous subsection.

2. During the modeling phase, learn the parameters of the
SNMEF, the dictionary H and the lower-dimension repre-
sentation (weights) W of X that minimizes the estimation
error for 15 minutes average occupancy. Use an Ensemble
Least Square Regression (LSQ) to map the representations
to the past occupancy count.

3. During the prediction phase, take all the C'O, data un-
til now and construct the matrix X’. Compute its low-
dimensional representation W’ using the SNMF parame-
ters and learnt dictionary H. Estimate average occupancy

for the past 15 minutes Y from W’ using the already learnt
LSQ model.

EVALUATION

Competing Methods

We compared the performance of our PerCCS algorithm with
that of Hidden Markov Models and Support Vector Regres-
sions, as these methods had the highest prediction accuracy
in the literature. Given that one of the main purposes of Per-
CCS was to denoise the data appropriately so as to minimize
the occupancy estimation error, we also present a baseline
scenario where the same Ensemble LSQ is used without task-
driven denoising. Similarly for HMMs and SVMs as well,
we used the raw feature matrix X, in place of its lower-
dimension representation W. In the original study by Lam
et al. (2009), the authors used second order change in C'Os,
moving average C'O, and the difference between indoor and
outdoor C'O», in addition to acoustics as the feature set. For
fair comparison with our algorithm, we chose to use only in-
door C'O5 concentration. The 20 minutes moving average of
C Oy used by [19] performs filtering and induces delay in the
predictor features, thereby accounting for redundancy and the
slow impact of occupancy on C'Oy. However, from our ini-
tial feasibility study in two different rooms, we found that
this delay varies from room to room between 10 and 20 min-
utes. Therefore, using a 20 minutes window of averaging may
not be optimal for all scenarios. In PerCCS, the time length
parameter takes care of the varying delay and representation
learning removes redundancy through appropriate dictionary
size selection. The feature selection is performed using cross-
validation. More details about this can be found in the “Test-
ing” section.

Performance Metric

We use the normalized mean squared error (NMSE) of the re-
gression and mean of ¢ error. NMSE is a variant of ¢ error
between actual and predicted results of a model, defined as
NMSE = % S (9; — yi)?, where y is the actual occu-

pancy, y is the predicted occupancy, 05 is the variance of y
and n is the total number of samples. The extent to which the
estimated count deviates from actual occupancy is captured
by the mean of ¢; error. We do not report accuracy in terms
of percentage correct detection as used in Lam et al. [19]
because accuracy in this form is more appropriate for binary
presence and does not allow for small deviations from actual
occupancy in large shared spaces, which may be tolerable in
certain applications.

Zero occupancy is valuable information for space control,
room management and space usage evaluation. Therefore,
we also considered the performance of the algorithms during
unoccupied periods. Further we analyzed the performance of
the algorithms for periods of transient occupancy, high and
low occupancy.

Data Acquisition

We collected ground truth occupant count data for 13 days
in summer 2014 for a classroom of capacity 42 in a large
building within the university campus. The data acquisition



was event triggered, in that we manually counted the people
entering and exiting our test bed from 7 am to 9 pm. This
data was used to construct an occupancy based dataset with 1
minute granularities The C'O, data for this classroom at a 1
minute sampling rate was obtained from a building manage-
ment BACNet server. We recorded the status of the classroom
doors and windows as closed or open and the position of the
CO3 sensor relative to the door, occupant density and dis-
tance from the sensor, as this contributes to C'O5 dynamics
in space. This manual data collection was performed by two
undergraduate students.

Over a 13 day period, 84% of the time the test bed was un-
occupied. Rest of the time the classroom was only partially
occupied with a maximum recorded occupancy of 34. Dur-
ing occupied periods, the average was 17.34 people (std. dev.
10.6). Our data followed a dual peak daily pattern, as ex-
pected in classrooms with an unoccupied period during the
lunch break. Even though the classroom had a design ca-
pacity of 42, the peak occupancy count varied significantly,
during the first half of the day in particular. We observed a
maximum occupancy of 16 over the first six days and then
very small occupancy for the following two days. During the
last four days of monitoring, the occupancy in the first half
of the day varied between 27 and 34. The occupancy fluc-
tuates frequently before the class begins. Occasionally one
or two persons left the classroom to come back right before
a class started. Besides classes, small groups of students or
single students used the classroom informally for meetings
and phone calls. We noted that for an average of 20 min-
utes before a class, the occupancy gradually changed from
zero to 34. Other transient periods are in between classes
when some students leave and other students come in at the
same time. These transients sometimes can be as short as 5
or even 10 minutes. Such transients are short for affecting
the control of thermal and ventilation systems. Furthermore
it would also be impractical to change the control set points
of these systems just for the beginning of the class. How-
ever, the 20 minutes gradual build up of occupancy does offer
an appropriate window to reset the system from unoccupied
to occupied mode. The goal of our occupancy count system
would be to maintain comfortable temperature and air flow
rate for the small groups of people informally using the class-
room and when a class is partially occupied during a full class
hour. We therefore chose to estimate 15 minutes average oc-
cupancy from COs.

Testing

We partitioned the 13 days of C'O, and occupancy data into
training and test sets and performed 20-fold cross-validation
on the training data of 863 samples spanning a period of 9
days. We performed a parametric study of SNMF and SVR
for each fold and reported the mean NMSE of 20 folds for
each of the SNMF, SVR, HMM and baseline methods. We
explored the significance of dictionary size (number of dic-
tionary elements) from domain knowledge, degree of sparse-
ness, regularization and time length of C'O5 dynamics for our
model. The time length parameter accounts for slow dynam-
ics of CO3, as explained in the “PerCCS algorithm” section.
Y is the mean occupancy of 15 minutes. We tested the effect

Metric Baseline| PerCCS | SVR
NMSE 0.16 | 0.075 | 0.51
Mean ¢, error total (persons) 1.3 1.0 2.54
Std. dev. ¢ error total 3.4 2.1 5.5
Mean /7 error OP (persons) 5.1 3.2 7.1
Std dev ¢, error OP 4.1 3.4 10.7
Zero occupancy detection 0 91 0
(% UP)

Exact occupancy detection 0 15 0
(transience) (% OP)

Table 1. Algorithm performances for two metrics. OP and UP stand for
occupied period and unoccupied period respectively.

of current occupancy count on C'O5 dynamics for the next 7
time steps, with each time step being 15 minutes. The dimen-
sion of X, therefore, varies between 15 and 120. The reduced
dimension of W after performing SNMF on X is governed by
the dictionary size. The parameters for SVR are model cost
function, and error tolerance affecting the number of support
vectors. Similar to the work of Lam et al. [19] we use a Gaus-
sian kernel for SVR. The baseline method uses the same 15
minutes average Y and X matrix without denoising.

RESULTS

One of our first observations was that while regression ap-
proaches like SNMF-regression and SVR perform satisfacto-
rily with only 9 days of sparse training data, using an HMM
requires a greater number of samples per state to achieve rea-
sonable accuracy. Our test dataset consisted of 73 data points
of occupied periods and 310 data points of unoccupied peri-
ods after averaging over 15 minutes. Moreover some of the
higher occupancy values were observed only 1 - 5 times in the
test data and some values in the test data did not have a corre-
sponding match in the training data. After testing the HMM,
we found that the predictions were biased towards low values
and performed worse than random due to skewed data. In or-
der to increase the number of samples per state we could bin
the data, but that would be an approximation already. While
HMMs have been found to be accurate for a small occupancy
of 4, they do not provide a scalable solution, as the data re-
quirement grows with the maximum occupancy of the space.
Discriminative models such as as regression are known to per-
form better with small datasets. This means that the required
training period can be smaller for our algorithm. We choose
not to report the HMM results further.

Table 1 presents the comparison of performance of our
method against baseline (column 1) and SVR (column3) in
terms of NMSE, overall mean ¢; error and the standard de-
viation of ¢; error and during occupied period only. SVR
with the Gaussian kernel has the highest error, followed by
the baseline method. The baseline model over-estimates the
occupancy compared to SNMF-regression overall (1.3 ver-
sus 1.0). Further, focusing on periods when the room is oc-
cupied, PerCCS considerably outperforms the baseline and
SVR. This could be attributed to high transient peaks in
the C'O4 concentration, not necessarily contributed by occu-
pancy, that is not removed without denoising. Moreover, the
standard deviation of ¢; error is higher for the baseline and
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Figure 4. Prediction results of occupant count from three algorithms during the validation period

SVR approaches (see Table 1). SNMF-regression, on the
other hand, captures the fluctuations in occupancy better than
SVR, especially during the occupied period. SVR also fails to
predict zero occupancy, which SNMF-regression models ac-
curately. This is because the low dimension representation W
learnt using SNMF is always positive and possibly represents
the sparsity of the occupancy to some extent.

A demonstration of the results of prediction of the three meth-
ods are displayed in Figure 4. The NMSE results in in-
creasing order are 0.075 (PerCCS), 0.16 (baseline) and 0.51
(SVR). Also, note that the during occupied periods, the mean
of the ¢; error in occupancy estimation are 3.2 people as op-
posed to 5.1 and 7.1 for the baseline and SVR, respectively.

We also examined the performance of the 3 algorithms during
zero occupancy. SVR shows a mean error of 1 with negligi-
ble standard deviation. While both the baseline and PerCCS
are able to predict zero occupancy with an ¢; error < 1, 91%
of the unoccupied periods is estimated correctly by PerCCS,
unlike baseline or SVR, which have almost a 100% incorrect
prediction. We also studied how well our algorithm is able to
estimate fluctuations in occupancy during the occupied peri-
ods. We report this is terms of percentage of occupied periods
when the occupancy count is estimated exactly. This is 15%
for PerCCS, but baseline and SVR were never able to predict
occupancy count exactly i.e., 0%.

The purpose of the task-driven dictionary learning was to
learn the dictionary and weight matrix parameters in such
a way that minimizes the occupancy estimation error. Prior
research indicated concern about latency of occupancy esti-
mation from COz due to slow dynamics of the latter. We
found that occupancy has some observable effect on one time
step ahead (in our case, 15 minutes) for the CO2 dynamics,
as seen across several time series. In other words using a
time length of 30 produced better results than that of 15. This
means that the average occupancy of the current 15 minutes
time step has the highest correlation with the next 15 min-
utes of COs. This aligns with our initial finding from the
feasibility study for the same test bed, where occupancy was
best predicted by C'O, data with 10 minutes lead. Using 20
folds cross-validation, the minimum NMSE was obtained for
a dictionary size of 5.

DISCUSSION

In PerCCS we learnt a lower-dimensional representation from
noisy C'O5 data and used it as a predictor to estimate 15 min-
utes average occupancy count with Ensemble Least Square
Regression method.

We found that small dictionary size produced lower NMSE,
which means that a small number of contributing factors
can explain the evolution of C'O5 in our test classroom.
This supports our initial domain knowledge, that mostly four
indoor parameters like occupant count, ventilation airflow
rate, outdoor C'O5 concentration (if the room has infiltration



and/or natural ventilation) and plants’ contribution contribute
to measured C Oy concentration in room air. Moreover we
are concerned about only one of the contributing factors, i.e.,
occupancy count, for which the patterns can be captured with
a small number of basis functions. The rest of the factors can
in fact be aggregated into a single structured noise represen-
tation for the purpose of our regression. Thus, even though
the reconstruction error of SNMF decreases with higher dic-
tionary sizes, the same does not improve the regression per-
formance. Low sparsity is probably an outcome of the small
dictionary size, when few basis functions are able to explain
the sparsity structure of most of the C'O5 data.

We compared the performance of this model with that of
LSQ regression without data denoising and SVR in terms of
NMSE, mean and standard deviation of ¢; error during oc-
cupied and unoccupied period. We found that SVR has the
lowest performance as this model generalizes more and is un-
able to capture the fluctuations in C'O,, probably because of
several zero values in the data. PerCCS predicted 15 min-
utes average occupancy fairly accurately (1.0 person error on
average) with an NMSE of 0.075.

We also observed that our algorithm performs better than
both the baseline method and SVR during unoccupied peri-
ods as well with 91% accuracy. PerCCS can also better cap-
ture transient occupancy without overshooting like the base-
line method or over-generalizing like the SVR approach. The
task-driven denoising plays a key role in capturing the spar-
sity of occupancy in low-dimensional representations of C'Oq
as we had hypothesized. Next we evaluate how the perfor-
mance of PerCCS in terms of accuracy and latency, will affect
the potential smart environment applications like smart meet-
ing space allocation, opportunistic meeting support, design
evaluation of collaborative environments and energy-efficient
and comfort-sensitive heating and cooling operation. We also
point out the limitations of our system based on the charac-
teristics of our testbed.

In current building management systems, lights are turned
off or temperature setups or setbacks are applied in rooms
that have been detected as unoccupied for more than 10-15
minutes, typically using Passive Infrared (PIR) sensors which
are fast but unreliable. PerCCS, can accurately (91%) detect
unoccupied periods with 15 minutes latency. If C'O- sen-
sors are deployed for binary occupancy-based building oper-
ations, then the current 10-15 minutes inaction period after
occupancy detection should be adjusted to allow for the built-
in latency of our system. The mean ¢; error in occupancy
count during the unoccupied period in our testbed was found
to be less than +1, an unlikely occupancy count for rooms
with scheduled meetings. Therefore, rooms can be declared
empty with sufficient certainty based on our detection system.

PerCCS was able to estimate the exact occupancy 15% of the
time with an NMSE of 0.075 and mean ¢; error of 3.2 per-
sons as opposed to 7.1 persons using SVR and 5.1 persons
in the baseline. We observed that the highest errors occurred
during the periods when actual occupancy had exceeded 20.
The effect of this deviation on the allocation of large meet-
ing rooms may be small. While the goal of this paper was

Conditioning

Binary, PIR sensors

Temperature set by occu-

pants

Unoccupied (heating) | Temperature setpoint+4 F

Unoccupied (cooling) | Temperature setpoint-4 F

Ventilation (occupied) | Set for maximum occupancy
Table 2. Control systems in test bed.

Occupancy state
Occupancy detection
Occupied

to estimate occupancy count in large shared spaces, we also
studied the scalability of the method in scenarios like oppor-
tunistic meetings, where it is important to distinguish between
the presence of one person and multiple persons in a room.
Low occupancy was rare in our dataset. Occupancy is always
slightly overestimated or underestimated during periods when
only one person is present in the room. Occupancy ranged
between 2-5 in only 9 instances in our dataset, of which 8 in-
stances had deviations of only 1 to 2 people from the actual.

The limitations of the PerCCS system can be categorized
as sensor-specific and testbed-specific. The sensor-specific
limitation of 15 minutes latency due to slow C' Oy dynamics
should be taken into account in any control system leveraging
PerCCS. The control strategy for HVAC, heating and cooling
in the testbed building in our study is shown in Table 2. The
HVAC system in its current state does not use the C'O; data.
The constant airflow rate allows the C Oy concentration in
this room to fluctuate according to the occupancy. However,
in rooms where ventilation is controlled to limit the C'Os to a
certain level [11], the predictive capability of a C'Os-based
occupancy count system may be compromised near maxi-
mum occupancy levels irrespective of room size. While we
do not have a suitable testbed at our disposal to study the per-
formance of PerCCS in rooms with demand-controlled ven-
tilation, future studies should be conducted to ensure further
scalability of our system.

CONCLUSION

Knowledge of occupancy count is valuable for applications
such as efficient temperature and ventilation control, room
utilization, opportunistic meeting support and emergency re-
sponses in buildings. Few buildings, however, have the means
of knowing occupancy beyond binary presence-absence. Ex-
isting work has leveraged additional infrastructure, multi-
sensor fusion and/or intrusive instrumentation like imaging,
and have only been applied to the estimation of a small oc-
cupancy count (less than 20). The goal of our work was to
explore the feasibility of modeling and predicting 15 min-
utes average occupant count in large classrooms as a function
of C'O5 concentration using a new algorithm, PerCCS. Per-
CCS uses only a single sensor commonly found in rooms,
and extends occupancy count to classrooms. It uses task-
driven sparse non-negative matrix factorization with regular-
ization to reduce the redundancy and noise in measured C'Os.
We found that PerCCS can achieve a low Normalized Mean
Square Error of 0.075 and an average over-estimation of 1.0
person with a latency of 15 minutes, both significantly bet-
ter than a baseline Ensemble Least Square regression without



denoising and Support Vector Regression. PerCCS outper-
formed the baseline and existing methods in predicting occu-
pancy count with 91 % and 15 % exact occupancy estimation
when the room was unoccupied and occupied respectively,
where the baseline and existing methods failed completely.
On average PerCCS deviated from actual occupancy by 1 per-
son, better than both the baseline and SVR. Moreover, the pa-
rameters of PerCCS can be learnt for different rooms with a
few weeks of training data.

FUTURE WORK

One of the limitations of our work is the paucity of data. Dur-
ing cross-validation we already noted that inadequacy of data
may generate higher variance in errors across folds. We plan
to collect more data from a greater variety of rooms to test
PerCCS and the compared methods. A natural extension of
our work would be to determine when to automatically update
the dictionary from new raw C'Os data. PerCCS in its current
form is a reactive system, slow for temperature control. How-
ever, with more data, as we confirm that the low-dimensional
representation of C'O; learnt using SNMF reflects the occu-
pancy structure of the space well, we may be able to use C'O,
as a direct proxy for occupancy, and then use its trend for
predictive temperature control.
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