
Localizing anomalous changes in time-evolving graphs

Kumar Sricharan
Palo Alto Research Center

sricharan.kumar@parc.com

Kamalika Das
UARC, NASA Ames Research Center

kamalika.das@nasa.gov

ABSTRACT

Given a time-evolving sequence of undirected, weighted graphs,
we address the problem of localizing anomalous changes in
graph structure over time. In this paper, we use the term
‘localization’ to refer to the problem of identifying abnormal
changes in node relationships (edges) that cause anomalous
changes in graph structure. While there already exist sev-
eral methods that can detect whether a graph transition
is anomalous or not, these methods are not well suited for
localizing the edges which are responsible for a transition
being marked as an anomaly. This is a limitation in ap-
plications such as insider threat detection, where identify-
ing the anomalous graph transitions is not sufficient, but
rather, identifying the anomalous node relationships and
associated nodes is key. To this end, we propose a novel,
fast method based on commute time distance [23] called
CAD (Commute-time based Anomaly detection in Dynamic
graphs) that detects node relationships responsible for ab-
normal changes in graph structure. In particular, CAD lo-
calizes anomalous edges by tracking a measure that com-
bines information regarding changes in graph structure (in
terms of commute time distance) as well as changes in edge
weights. For large, sparse graphs, CAD returns a list of
these anomalous edges and associated nodes in O(n log n)
time per graph instance in the sequence, where n is the
number of nodes. We analyze the performance of CAD on
several synthetic and real-world data sets such as the En-
ron email network, the DBLP co-authorship network and
a worldwide precipitation network data. Based on experi-
ments conducted, we conclude that CAD consistently and
efficiently identifies anomalous changes in relationships be-
tween nodes over time.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database applications—
Data Mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’14 Snowbird, Utah USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords

graph analysis, temporal graphs, anomaly localization, anomaly
detection, commute time distance, random walks

1. INTRODUCTION
Mining for anomalies in data sets is an important prob-

lem [7], with diverse areas of application including security,
finance, health care and several other industries. While this
problem has been studied extensively for unstructured data
sets, it is only recently that methods have been developed for
detecting outliers for structured forms of data such as graph
data. Graph structured data has become ubiquitous as a
powerful representation framework for relational data such
as social interactions, communication networks, web graphs,
citation networks, gene interaction networks etc. Detecting
anomalies in graphs is necessary to address several problems
such as network intrusion, spam filtering, gene network anal-
ysis, and churn analysis in social networks.

Detection of anomalous nodes in static graphs has been
well studied [10, 17, 2, 14]. Recently, several papers have ad-
dressed the problem of anomaly detection in dynamic graphs.
These include methods based on temporal clustering [20],
node-based features extraction [1], matrix decomposition [21],
graph distance based time series analysis methods [18], and
spectral methods [12]. All of these methods for dynamic
graphs, however, are designed for event detection, i.e. to
detect when anomalous changes in graph structure occur,
and do not address the problem of localization, i.e. iden-
tifying changing node relationships that contribute to such
anomalous changes in graph structure. In a subset of these
methods ([1, 12]), it is possible to identify a set of anoma-
lous nodes by computing their contribution to the overall
anomaly score at each temporal transition. While this set
of nodes that contribute to the anomaly score may include
nodes that exhibit anomalous changes in relationships, they
also include other non-anomalous nodes that are either af-
fected by such structural changes or exhibit benign changes
in relationships, resulting in a large number of false alarms.
This point is further elaborated in Section 3.4.

In this paper, we are interested in identifying anomalous
changes in node relationships that are responsible for ab-
normal changes in graph structure, and the corresponding
anomalous nodes associated with these edges. The moti-
vation for our work comes from the problem of identifying
malicious individuals in an organization by detecting ab-
normal or unexpected changes in their social interactions
(email, instant messenger etc.) with other employees in the
organization [16]. Graph based insider threat detection has

been previously studied, but only for static graphs [10].
To this end, we propose a novel method based on com-

mute time distance [23] called CAD (Commute-time based
Anomaly detection in Dynamic graphs) to localize anoma-
lous changes in graph structure. The commute time dis-
tance between any pair of nodes is the average time needed
to traverse the distance between these two nodes via ran-
dom walks [23]. CAD localizes anomalous edges by tracking
a measure that combines information regarding changes in
graph structure (in terms of commute time distance) as well
as change in edge weights. The anomalous edge information
is subsequently summarized to identify the anomalous nodes
associated with these edges. For large, sparse graphs with n
nodes, CAD has a run-time of O(n logn) per graph instance
in the sequence.

Finally, we note that while our motivation comes from the
specific problem of insider threat detection, CAD can be ap-
plied to several other problems where detecting edges and
associated nodes responsible for changes in structure is of
interest. Examples include scientific collaboration networks
where CAD can be used to identify changes in collabora-
tion patterns, and in networks of geographic locations where
CAD can be used to identify abnormal climate patterns over
time. In this paper, we verify using ground truth informa-
tion or external anecdotal evidence that CAD consistently
finds anomalous changes in node relationships over time for
several synthetic and real-world data sets including the En-
ron data, the DBLP data and world-wide precipitation data.

The rest of this paper is organized as follows. In Section
2, the problem framework is described. In Section 3, CAD is
discussed as a solution to the problem. Section 4 describes
the results obtained when CAD is applied to synthetic and
real-world data sets. Conclusions are given in Section 5.

2. PROBLEM FRAMEWORK
Let Gt, t = 1, . . . , T be a temporal sequence of graphs.

Each Gt is a weighted undirected graph with a fixed ver-
tex (node) set V = {v1, .., vn}. Define the edge set E =
{e(1,1), .., e(n,n)} of size n2, with e(i,j) denoting the edge be-
tween nodes vi and vj . For each graph Gt, denote the cor-
responding symmetric adjacency matrix by At ∈ R

n×n, i.e.
the edge weight of edge e(i,j) in graph Gt is given by At(i, j).

Note that our definition of the edge set E includes the set
of all n2 edges in a complete graph. This does not imply
that the graphs Gt, t = 1, . . . , T are complete. Rather, the
absence of an edge between nodes i and j in graph Gt is
reflected by At(i, j) = 0. Let the average number of edges
with non-zero edge weight in the graphs Gt, t = 1, . . . , T
per time instance be given by m. In our experiments in Sec-
tion 4, we find that the large, real world graphs we analyze
are sparse graphs [3], where m = O(n) ≪ n2.

2.1 Problem Statement
For each transition between graph instances Gt and Gt+1,

our goal is to detect the set of anomalous edges Et ⊆ E
whose change in weights are responsible for structural dif-
ferences between Gt and Gt+1. We are interested in the fol-
lowing three different cases involving changes in edge weight.
They can be categorized as:

i. Case 1: high magnitude change (increase or decrease)
in edge weight from time t to t+ 1.

ii. Case 2: new edges that bring distant nodes closer.

iii. Case 3: decrease in edge weight (or deletion of edges)
between central or bridge nodes in the graph that push
proximal nodes far apart.

We illustrate the reason for choosing these three specific
cases in Section 2.2 using a toy example. We note that
there exist other possible cases involving changes in edge
weights such as small changes in edge weights including addi-
tion or deletion of edges between tightly-coupled node pairs
(node pairs i, j ∈ V which are well-connected via neighbor-
ing nodes even if the edge between i, j is deleted) which
are not significant enough for the overall graph structure to
change substantially. Such cases are not of interest in this
paper. A node vi ∈ V is deemed to be anomalous with
respect to the transition from t to t + 1 if e(i,j) ∈ Et for
some j ∈ {1, .., n}. Denote the set of anomalous nodes with
respect to the transition from t to t + 1 as Vt. Note that
the anomaly sets Et and Vt can be an empty sets in the
absence of any anomalous structural differences in the tran-
sition from time t to t+ 1.

2.2 Illustrative example
Let us consider a dynamic undirected weighted graph of 17

nodes that are loosely partitioned into two sets: blue(b) and
red(r). The nodes are labeled b1, .., b8, r1.., r9. In Figure 1,
two instances of this graph at time slices t and t + 1 are
shown. In time slice t, the edge weight (indicating say, the
number of communications) is indicated by the width of the
black lines. In time slice t+1, black lines are used to indicate
edges which remain unchanged in the transition from t to t+
1, while green lines indicate modified edges. Bold green lines
indicate edges whose weights have increased, while dotted
green lines indicate edges whose weights have decreased.

Change in edge weights: We enumerate the set of changes
in edge weights from time slice t to t + 1 with respect to
Figure 1. We stress that the 5 different scenarios (S1:S5)
considered here are only example instances of the cases de-
scribed in Section 2.1

• S1: New edge between b1, r1 (refers to Case 2)

• S2: Small decrease in edge weight between r7, r8 (refers to
Case 3)

• S3: Large increase in edge weight between b4, b5 (refers to
Case 1)

• S4: Small decrease in edge weight between b1, b3

• S5: Small increase in edge weight between b2, b7

Real-world scenarios: Anomalies in dynamic graphs mean
different things in different application contexts. For exam-
ple, in an insider threat detection application, anomalies
are people who might have malicious intentions that get re-
flected in some of their social interactions with colleagues.
In an organizational event detection setting, the anomalous
communication patterns among top corporate, finance, and
legal executives are indicative of a major event involving the
organization. On the other hand, for a scientific collabora-
tion network, anomalies are simply interesting observations
indicating change in research interests, unexpected collabo-
rations, and so on. In the interest of space, we map our toy
example to two such real-world dynamic network settings.

Insider threat detection setting : In an insider threat de-
tection setting, these nodes can be thought of as 17 employ-
ees in an organization, who are loosely partitioned into two
sets of users based on their communication patterns, per-

Figure 1: Time slices t (left) and t+ 1 (right) of the dynamic graph in the toy example with 17 nodes labeled b1, .., b8, r1.., r9. In time
slice t, the edge weight is indicated by the width of the black lines. In time slice t + 1, black lines are used to indicate edges which
remained unchanged, while green lines indicate modified edges. Bold green lines indicate new edges, while dotted green lines indicate
existing edges whose weights have decreased. The two sets of node colors, blue and red, indicate two loosely connected sets of nodes
with limited interactions among them in time slice t.

haps indicative of different groups within the organization.
In this case, S1 is suspicious because it involves contact be-
tween two employees who are fairly unrelated in terms of
their job roles and can be indicative of collusion. S2 can
reveal employee actions responsible for creating inter-group
factions with possibly malicious motivation. Likewise, S3 is
suspicious because the large increase in communication can
be indicative of an organized collusion effort. On the other
hand, S4 and S5 reflect the dynamic nature of the graph and
are benign from the perspective of threat detection.

Scientific collaboration network setting : In a author col-
laboration network setting, these nodes can be thought of as
17 different authors, who are loosely partitioned into two sets
of authors based on their research areas. In this case, S1 is
interesting because it can indicate collaboration between two
authors who are fairly unrelated in terms of their research
areas. Likewise, S3 is interesting because it suggests much
stronger and probably a more expanded research collabo-
ration, even possibly the presence of a new funding mecha-
nism. The nodes connected to these edges can be considered
the seeds for discovering a new micro-community within the
research area. The weakening of strong ties within a commu-
nity, as described in S2, can probably indicate the splitting
of a big research area into distinct groups.

In summary, the first three edge weight changes would im-
ply significant change in relationship between nodes in the
graph, either due to a increase (decrease) in the amount of
communication between two nodes that are weakly (strongly)
connected, or due to sharp change in volume of such commu-
nication. Such changes are therefore examples of anomalous
changes. The last two changes reflect the dynamic nature
of the graph and should be treated as benign from the per-
spective of threat detection. Based on this setup, the nodes
r1, r7, r8, b1, b4, b5 connected through the anomalous edges
should be considered as anomalous nodes.

In the subsequent sections, we solve the problem defined
in Section 2.1 by casting it as an optimization problem.

2.3 Graph distance metrics
For any subset of edges S ⊂ E, let d̄S(G,H) be a generic

notion of distance between any two graphs G,H that cap-
tures structural differences (of the form highlighted in Sec-
tion 2.1 (listed as Cases (i), (ii) and (iii))) that arise due
to abnormal changes in the edges in the complimentary set
E − S when transitioning between G and H . This notion is
formalized via the following definition:

Definition 2.1. Given a distance function d̄S(G,H) be-
tween any two graphs G, H that captures structural differ-
ences due to changes in edges in E − S and a dissimilarity
threshold δ, two graphs G and H are considered similar with
respect to the edge set E− S at level δ if d̄S(G,H) < δ, and
considered dissimilar if d̄S(G,H) ≥ δ.

Given a graph Gt at time instance t, and its instantiation
Gt+1 at time instance t+1, a significant structural change is
then said to occur between graphs Gt and Gt+1 with respect
to the edges in E−S when one or more edge weights in E−S
change in magnitude such that d̄S(Gt, Gt+1) ≥ δ.

If d̄S(Gt, Gt+1) < δ for some subset S, then by Defini-
tion 2.1, E − S excludes the anomalous set Et with re-
spect to d̄S(., .) at level δ, i.e., Et ⊆ S. On the other
hand, if d̄S(Gt, Gt+1) > δ, then S − Et 6= φ. The quan-
tity d̄S(Gt, Gt+1) can therefore be minimized over S in order
to identify the anomalous set Et with respect to d̄S(., .) at
level δ during the transition from t to t+ 1. Based on this,
we define the problem of structural change identification in
temporal graphs using an optimization framework.

2.4 Optimization framework
We define the set of anomalous edges Et with respect to

d̄S(., .) at level δ as solution to the optimization problem:

Et := arg min
S

|S|

subject to d̄S(Gt, Gt+1) < δ.
(1)

The goal of this optimization problem is to identify anoma-
lous edges as the minimal set of edges, which when left un-
changed during the transition from t to t + 1, would result
in the graphs Gt(S) and Gt+1(S) being structurally similar
at level δ with respect to d̄S(., .), i.e. d̄S(Gt, Gt+1) < δ.

2.4.1 Polynomial-time solution

Observe that the above formulation defined in (1) is a
combinatorial optimization problem that is intractable in
practice for any reasonably large sized graphs. The solution
to this problem, however, can be reduced to polynomial time
if d̄S(., .) has the following structure: for any S ⊆ E,

d̄S(Gt, Gt+1) =
∑

e∈E−S

∆Et(e), (2)

where ∆Et(e) is a non-negative functional of the graphs Gt

and Gt+1 independent of the set S. If the distance metric
satisfies the structure in (2), the optimization problem in (1)
is equivalent to simply sorting the set of values

{∆Et(e);∀e ∈ E}

and choosing Et to be the smallest set of edges S (in terms
of the cardinality |S| of S) such that

∑

e∈E−S
∆Et(e) < δ,

which can be solved in polynomial time.

2.4.2 Existing distance measures

Several distance functions between graphs have been pro-
posed previously, including (i) Maximum Common Subgraph
[19], (ii) Graph edit distance [11], (iii) Modality distance [6]
and (iv) Spectral distance [13]. However, none of these dis-
tance measures satisfy (2), which means it would require ex-
haustive search on the candidate edges for solving the com-
binatorial optimization problem in (1). To address this, we
propose a new distance measure that satisfies (2).

2.5 Proposed distance metric
Let dt(i, j) represent some suitable notion of distance be-

tween two nodes vi and vj with respect to graph Gt. Then,
a possible measure for capturing the structural distance be-
tween the graphs Gt and Gt+1 due to any changes corre-
sponding to scenarios (i), (ii) or (iii) would be: For any
subset S ⊆ E, define

d̄
(1)
S (Gt, Gt+1) =

∑

e(i,j)∈E−S

|dt(i, j) − dt+1(i, j)|.

However, this distance measure d̄
(1)
S (Gt, Gt+1) is a poor choice

for identifying anomalous edges for the following reason.

The use of d̄
(1)
S (Gt, Gt+1) in (1) would result in Et being the

set of edges e(i,j) with large values for |dt(i, j) − dt+1(i, j)|.
However, structural changes induced by an anomalous edge
e(i, j), not only causes the distance between nodes vi and vj
to change sharply (i.e., |dt(i, j) − dt+1(i, j)| ≫ 0), but also
causes the distance between nodes connected to node vi and
nodes connected to node vj to change significantly. This is
illustrated in detail in Section 3.4 (please see discussion on
COM method) via the illustrative example described earlier.

As a result, employing d̄
(1)
S (Gt, Gt+1) in (1) would result in

Et consisting of several benign or non-anomalous edges.

To address this issue with d̄
(1)
S (Gt, Gt+1), we propose the

following modified distance function. For any S ⊆ E, define

d̄
(0)
S (Gt, Gt+1) =

∑

e∈E−S

∆Et(e),

where ∆Et(e) for e = ei,j is given by

∆Et(ei,j) = |At+1(i, j)− At(i, j)| × |dt+1(i, j) − dt(i, j)|.

For anomalous edges corresponding to large changes in mag-
nitude (Case 1), |At+1(i, j) − At(i, j)| will be large, which

will result in |ct+1(i, j)− ct(i, j)| being large and as a result,
∆Et(ei,j) will be large. For edges corresponding to Case
2 involving new edges that bring distant nodes together,
|dt+1(i, j) − dt(i, j)| will be large while At+1(i, j) − At(i, j)
will be non-zero and positive and as a result ∆Et(ei,j) will
be large. Finally, in Case 3, once again |dt+1(i, j)− dt(i, j)|
will be large while At+1(i, j)−At(i, j) will be non-zero and
negative, and once again ∆Et(ei,j) will be large. Thus, edges
corresponding to all the three different cases will be marked
with a high anomaly score.

For non-anomalous edges e(i, j) involving small magni-
tude changes |At+1(i, j) − At(i, j)| between node-pairs i,j
that are tightly coupled, |dt+1(i, j) − dt(i, j)| will also be
small due to the coupling and therefore the product ∆Et(ei,j)
will also be small. The other scenario involving non-anomalous
edges is as follows: let e(i, j) be an anomalous edge corre-
sponding to Cases 2 or 3. In this case, for some neighboring
node of i (say ni) and j (say nj), the distance |dt+1(ni, nj)−
dt(ni, nj)| will be large because |dt+1(i, j) − dt(i, j)| will be
large. But because the edge between ni and nj is non-
anomalous, and therefore does not belong to Cases 2 or 3, it
follows that |At+1(i, j) − At(i, j)| will be 0, and as a result
∆Et(ei,j) will be 0. In either case, the score ∆Et(e(i,j)) will
be small for non-anomalous edges.

As a result, employing d̄
(0)
S (Gt, Gt+1) in (1) would result

in Et primarily consisting of edges with abnormal changes
corresponding to Cases (i), (ii) and (iii) that are of interest
in this paper. Furthermore, observe that condition (2) is

trivially satisfied by d̄
(0)
S (Gt, Gt+1). Because of these desir-

able properties, we use d̄
(0)
S (Gt, Gt+1) in the CAD algorithm

(described next) for localizing anomalous edges and nodes.

3. COMMUTE TIME BASED

ANOMALY DETECTION
In this section, we review the commute time distance mea-

sure, and subsequently describe the CAD algorithm based on

the distance metric d̄
(0)
S (Gt, Gt+1) proposed in Section 2.5.

3.1 Commute time distance
Given an arbitrary adjacency matrix A, a random walk

on the corresponding graph is a sequence of nodes described
by a finite Markov chain which is time-reversible [11]. The
commute time is the expected number of steps that a ran-
dom walk starting at i will take to reach j once and go back
to i for the first time [14]. The commute time can be com-
puted from the Moore-Penrose pseudoinverse of the graph
Laplacian matrix. Denote the degree matrix corresponding
to the weighted adjacency matrix A by D. Further denote
L = D − A and L+ as the graph Laplacian matrix and its
pseudoinverse respectively. The commute time is:

c(i, j) = VG(l
+
ii + l+jj − 2l+ij), (3)

where VG =
∑n

i=1 D(i, i) is the volume of the graph, and

l+ij is the (i, j) element of L+. The commute time c(i, j)
has been shown to be a valid distance metric between any
pair of nodes i, j. In particular, the commute time between
the nodes on a graph is the Euclidean distance in the space
spanned by the eigenvectors of the graph Laplacian L cor-
responding to A. Commute time distance has been used
previously to capture structure in graphs in clustering [23]
and for anomaly detection in static graphs [14].

Denote the commute time distance with respect to each
of the adjacency matrices At, t = {1, .., T} by ct(., .). In this
paper, we choose

dt(., .) := ct(., .).

We note that there exist several other ways to determine
distances between nodes in a graph, including shortest path,
alternative distance measures based on random walks and
others [8, 9]. While any of these distance measures can be
used as an alternative to commute time distance, we chose to
use commute time distance for the following two reasons. (i)
Robustness - the fact that commute time is averaged over all
paths (and not just the shortest path) makes it more robust
to data perturbations, and (ii) scalability - there have been
recent breakthroughs [15] in approximately computing the
commute time with high accuracy using methods that scale
to very large graphs, which we discuss next.

Computation of commute time distance for a single graph
instance having n nodes using (3) is O(n3). Clearly, this is
prohibitively expensive to use on large graphs with several
thousands of nodes. In order to address this issue, Khoa
and Chawla [15] have proposed an approximate commute
time embedding method to compute the commute time with
high accuracy in O(kn) time, where k (referred to as kRP in
[15]) is the dimension of the approximate embedding, using
near-linear time solvers for diagonally dominant systems of
equations. Furthermore, they show that for the choice of k =
O(log n/ǫ2), their method computes commute time distances
accurately within error of the order of ǫ2 (please refer to
equation (5.2) in [15]). For this choice of k = O(log n/ǫ2),
the run-time complexity of [15] is O(n log n).

3.2 CAD algorithm
The CAD algorithm is formally defined next. First, the

commute time distances ct(i, j) are calculated for every pair
of nodes vi, vj ∈ V and every time instance t = 1, .., T with
embedding dimension k using [15]. Subsequently, the scores
∆Et(.) are given by

∆Et(ei,j) = |At+1(i, j) − At(i, j)| × |ct+1(i, j) − ct(i, j)|.

are computed for each t = 1, . . . , T and i, j ∈ {1, . . . , n}.
Anomalous edges Et at each transition t to t+1 are detected
using the scores ∆Et(.) as described in Section 2.4.1, by
simply sorting the set of values

{∆Et(e);∀e ∈ E}

and choosing Et to be the smallest set of edges S (in terms of
the cardinality |S| of S) such that

∑

e∈E−S
∆Et(e) < δ for

a threshold δ. Once the anomalous edges have been deter-
mined, the nodes Vt associated with these edges are declared
as anomalous nodes. The pseudocode for the resulting CAD
algorithm is formally stated in Algorithm 1.

CAD has two input parameters: approximation parameter
k and threshold δ. The process for choosing k and δ in
practice is described in Section 4.1.1.

3.3 Runtime of CAD
The computation of the commute time distance per graph

instance is given by O(n log n) [15]. The number of non-
zero entries in {∆Et(e);∀e ∈ E} will be of the same order
as the number of non-zero entries in At, At + 1, i.e. O(m).
This implies that the runtime for sorting the set of values

{∆Et(e);∀e ∈ E} and subsequently determining the small-
est set of edges S such that

∑

e∈E−S ∆Et(e) < δ will require
runtime of order O(m logm). The total runtime of CAD is
clearly dominated by these two operations and is therefore
given by O(n log n+m logm).

For all large, sparse, real world graphs m = O(n) ≪ n2

[3]. Therefore, the overall running time for CAD is given by
O(n log n+ n log n) = O(n log n).

3.4 Comparison with related methods
We now describe the existing methods [20, 1, 21, 18, 12]

in the context of the illustrative example and contrast them
with CAD. Of these, all but [1] are designed only to de-
tect whether a graph transition is anomalous or not, and do
not address the problem of localizing anomalous edges and
nodes.

The activity vector method (henceforth referred to as ACT)
proposed by Ide and Kashima [12], is based on eigenvectors
of adjacency matrices. ACT identifies anomalies by com-
paring the activity vectors (first eigenvector of adjacency
matrices) at successive graph instances. Akoglu and Falout-
sos’ [1] method (henceforth referred to as AFM) extend this
work by first constructing dependency matrices based on
correlations between local node features, and then applying
ACT to these derived dependency matrices. As mentioned
in the introduction section, AFM [1] identifies anomalous
nodes by determining which nodes contribute the most to
the anomaly score during that transition. The same strat-
egy can be used to find anomalous nodes using ACT as well.

The drawback with using ACT to identify anomalous nodes
is that all nodes which are affected by changes in structure
contribute to the anomaly score and will be classified as
anomalies, resulting in false alarms. On the other hand,
AFM uses local features (average edge weight, degree etc.)
based on the egonets (1-step neighborhoods) of each node,
which do not necessarily differentiate between significant
changes in graph structure with benign changes.

For example, consider the change in edge weight between
nodes r7 and r8. When using AFM, the local features for
r7 and r8 only change marginally, more or less to the same
extent as the change in local features of nodes b1, b3 (due
to decrease in edge weight between b1 and b3). As a result,
when using AFM, several non-anomalous nodes (for e.g.,
b1, b3) will be detected along with anomalous nodes (for e.g.,
r7, r8), resulting in a large number of false alarms. Also, as
a consequence of the change in edge weight between nodes
r7 and r8, nodes r4, r6, r8, r9 become a loosely connected
component with respect to the rest of the graph. As a result,
when using ACT, all the nodes r4, r6, r8, r9 will contribute
to the anomaly score during the transition from t to t+1 and
will be classified as anomalies, once again resulting in false
alarms. This is verified experimentally in the AFM paper
[1] (in Section III.D and Section IV).

We note that the edges associated with nodes r4, r6, r9 re-
main the same, and that the edge responsible for this change
in graph structure is associated only with node r8. In other
words node r8 is responsible for the significant structural
change in the graph during this transition. A similar argu-
ment holds true for node r7. The objective of CAD is to only
identify anomalous nodes such as r8, as opposed to identi-
fying non-anomalous nodes that exhibit superficial changes
in relationships (such as b1, b3) or are affected by change in
structure (such as r4, r6, r9).

Algorithm 1 CAD

1: Input: Vertex set V , edge set E, adjacency matrix sequence At, t = 1, .., T , threshold δ, embedding dimension k
2: Output: Anomalous edge sets Et, node sets Vt

3: for t in {1, .., T-1} do

4: Compute commute time distance ct(i, j) for every pair of nodes vi, vj ∈ V with embedding dimension k using [15]
5: end for

6: for t in {1, .., T-1} do

7: Compute ∆Et(e(i,j)) = |At+1(i, j) − At(i, j)| × |ct+1(i, j) − ct(i, j)| for every pair of nodes vi, vj ∈ V
8: Choose anomaly edge set Et as the set of edges S with smallest cardinality |S| such that

∑

e∈E−S
∆Et(e) < δ

9: for Edge e(i,j) in Et do

10: vi ∪ vj → Vt

11: end for

12: Output anomalous edges Et, anomalous nodes Vt

13: end for

There are two other related methods to CAD: (i) ADJ,
where ∆Et(e(i,j)) is set to be |At+1(i, j)−At(i, j)|, and (ii)
COM, where ∆Et(e(i,j)) is set to be |ct+1(i, j) − ct(i, j)|.
ADJ therefore only looks at difference in adjacency matri-
ces, and COM only looks at differences in commute times.
Observe that both ADJ and COM satisfy condition (2).

However, both of them will result in detection of benign
edges as anomalies. This can be seen in the case of the
toy example as follows. In the case of ADJ, the change
in relationship between nodes b2 and b7 is benign, but will
be classified as anomalous to the same extent as the edge
between b1, r1 due to similar changes in edge weight. On
the other hand, in the case of COM, while ∆Et(r7, r8) will
be large, ∆Et(ri, rj) will also be large for all pairs of i, j :
i ∈ {1, 2, 3, 5, 7}, j ∈ {4, 6, 8, 9} because of the decreased
edge strength between r7 and r8.

Unlike ADJ and COM, ∆Et(b2, b7) will be smaller than
∆Et(b1, r1) in the case of CAD because |ct+1(b2, b7)−ct(b2, b7)|
will be smaller relative to |ct+1(b1, r1)−ct(b1, ri)| due to the
tight coupling between b2, b7. Also, ∆Et(ri, rj) will be small
for all pairs of i, j : i ∈ {1, 2, 3, 5, 7}, j ∈ {4, 6, 8, 9} except
i = 7, j = 8 because |At+1(i, j)−At(i, j)| = 0 in these cases.
CAD therefore should perform favorably compared to ADJ
and COM. This is corroborated in Section 4.1 via experi-
mental results.

3.5 Quantitative performance of CAD on toy
example

Using the toy example in Figure 1, we describe how CAD
determines anomalous nodes during the transition from time
slice t to t+ 1. Because of the small number of nodes (n =
17), we determine the exact commute time distance using
(3), and subsequently calculate the anomaly scores ∆Et(.).

Recall that the commute time distance ct(i, j) is equal [14]
to the Euclidean distance in an embedded space given by
the eigenvectors [4] of the Laplacian matrix Lt. Ignoring
the trivial first eigenvector of all 1’s, we plot the second
(Fiedler vector) and third eigenvectors corresponding to the
Laplacians of At and At+1 in Figure 2. From equation (5) in
[14], the commute time distance is approximately equal to
the Euclidean distance in the 2-dimensional embedding in
Figure 2. This implies that pairs of nodes with smaller com-
mute time distances should be closer to each other in Figure
2, and pairs of nodes with larger commute time distances
should be farther apart. In Figure 2(a), in agreement with
our intuition, all the red nodes are close together, all the
blue nodes are close together, and the blue and red nodes

are reasonably well separated. In Figure 2(b), we observe
that the nodes r4, r6, r8, r9 become distant from the rest of
the nodes - this is in agreement with the structure change in
the graph due to the weakening of the edge between r7 and
r8. Also, nodes r1 and b1 are a lot closer in 2(b) compared
to 2(a), due to the new edge between r1 and b1. Finally,
nodes b4 and b5 are a lot closer due to the strengthening of
the edge between them.

It follows from these observations that the anomaly scores
∆Et(.) corresponding to (b1, r1) (b4, b5) and (r7, r8) should
be large, and the rest of the anomaly scores should be small.
This is indeed the case, as seen from Table 1 where the
anomaly scores ∆Et(.) for all the edges with non-zero scores
are listed. For some suitable threshold δ, edges between
nodes (b1, r1) (b4, b5) and (r7, r8) and corresponding nodes
b1, b4, b5, r1, r7, r8 will be identified as anomalies.

Edge b1, r1 b4, b5 r7, r8

∆Ei(.) 10.6 9.56 8.99

Edge b1, b3 b2, b7 Rest

∆Ei(.) 0.1 0.22 0

Table 1: Table listing the values of ∆Et(.) for edges in the
illustrative example.

3.5.1 Comparison with ACT

Since the ACT method by Ide et al. [12] is closest to CAD
in terms of being an eigenvector based anomaly detection
technique, we use this method as a baseline for comparing
our results. We point out that ACT takes graph sequences
as inputs, computes the leading eigenvector (called activ-
ity vector) at ∈ R

n of the adjacency matrices At, and re-
turns a decision as to whether the t to t+1 graph transition
is anomalous based on an anomaly measure computed us-
ing the activity vectors. Although the anomaly detection
method of Akoglu and Faloutsos (AFM) [1] is an extension
of ACT, we do not use this method as a baseline. This
is because, AFM, unlike ACT and CAD, does not base its
analysis on the graph adjacency matrix, but on dependency
matrices constructed from local features based on egonets of
nodes in the graph. Also, depending on which local features
are being used, AFM can return different sets of anomalies,
making comparison of results difficult.

We apply the ACT algorithm to this data set, and com-

Node b1 b2 b3 b4 b5 b6 b7 b8 r1 r2 r3 r4 r5 r6 r7 r8 r9

∆Nt 10.5 0.30 0.20 9.56 9.56 0.00 0.30 0.00 10.29 0.00 0.00 0.00 0.00 0.00 8.99 8.99 0.00

Table 2: Table listing values of ∆Nt(.) for nodes in the illustrative example.

(a) Time t (b) Time t+ 1

Figure 2: Illustrative example: 2 dimensional Laplacian eigenmap embeddings corresponding to graph instances at time t,
t+ 1. The colored numbers indicate the node locations for r1, .., r9 (labeled in red) and b1, .., b8 (labeled in blue).

pare the results of CAD and ACT in Figure 3. Using the pro-
cedure described in [1], ACT can be used to identify anoma-
lous nodes with respect to the transition by comparing the
summary rt of the activity vector from t−w+1-th (w being
the window size) to the tth transition to the activity vector
at+1 of the (t + 1)th instance. The anomaly scores being
reported for ACT for each node vi are given by the absolute
difference |at+1(i) − rt(i)|, with w = 1. For the purposes of
comparing with ACT, we define anomaly scores with respect
to CAD for nodes as follows: The anomaly score for each
node vi ∈ V for a transition from t to t+ 1 is given by

∆Nt(i) =
∑

j∈{1,...,n}

∆Et(e(i,j)).

Anomaly scores ∆Nt(.) for all nodes are listed in Table 2.
For fair comparison, we normalize the anomaly scores

from CAD and ACT by the respective maximum anomaly
score. From Figure 3, it is clear that the anomaly scores
∆Nt(i) generated by CAD are significantly higher for the
responsible nodes b1, b4, b5, r1, r7, r8 compared to the rest
of the nodes. On the other hand, while the anomaly scores
generated using ACT for the 4 nodes b4, b5, r7, r8 is higher
compared to the rest, the scores for b1, r1 are small. Fur-
thermore, the difference between the scores corresponding to
these 4 nodes b4, b5, r7, r8 and the rest of the nodes is not
as large as is the case with CAD. This comparison reiterates
the observation in Section 3.4 that CAD only identifies re-
sponsible nodes, whereas ACT can also potentially identify
nodes which are affected by the change in graph structure.

4. EXPERIMENTS
CAD is applied to several synthetic and real world data

sets in order to localize anomalous edges and nodes respon-
sible for significant changes in graph structure over time.
Since the real data sets only provide anecdotal evidence
of anomalies, we create a synthetic data set from Gaus-

Figure 3: Normalized anomaly scores for CAD and ACT
on toy data set. CAD identifies only responsible nodes,
whereas ACT also assigns significant scores to nodes affected
by change in graph structure.

sian mixtures to quantitatively analyze the performance of
CAD, and to compare against ACT. The three real world
data sets on which we run CAD are (i) the Enron email
network data1, (ii) the DBLP co-authorship network data2,
and (iii) a world-wide precipitation network data3. The re-
sults on these data sets are presented as a proxy for our
results on a proprietary organizational email network data,
collected from a corporation for experimental purposes for
insider threat detection.

We compare the performance of CAD against several dif-
ferent algorithms. In addition to ACT, we also compare
the performance of two variants of ACT - the ADJ and
COM methods discussed in Section 3.4. Recall that ADJ

1http://www.isi.edu/~adibi/Enron/Enron.htm
2http://dblp.org/xml/
3thttp://www.cdc.noaa.gov/data/gridded/data.ncep.
reanalysis.html

8 10 12 14 16 18 20 22

4

6

8

10

12

14

16

18

(a)

0 500 1000 1500

0

500

1000

1500

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

Figure 4: Random realizations from 4-component Gaussian
mixture, and the corresponding adjacency matrix.

only looks at difference in adjacency matrices, and COM
only looks at differences in commute times. Finally, given
the commonplace nature of node centrality measures [5], we
also evaluate the performance of centrality for the purpose
of determining anomalous nodes. In particular, let cct(i)
denote the closeness centrality measure of nodes vi with
respect to graphs Gt. The anomaly scores for the close-
ness centrality (CLC) method for each node vi are given by
|cct+1(i) − cct(i)|. The measures |cc2(i) − cc1(i)| are then
thresholded to identify anomalous nodes.

Experimental setup: CAD, as well as all algorithms com-
pared as baselines, have been implemented in python and
run on a 64-bit 2.327 GHz dual quad core Dell Precision
T7500 desktop running Red Hat Enterprise Linux version
6.0 having 32 GB of physical memory.

4.1 Quantitative analysis: synthetic data
We perform experiments to evaluate the following char-

acteristics of CAD: (i) robustness to parameter selection,
(ii) accuracy, and (iii)scalability using synthetic data gen-
erated as follows. We draw 2000 random samples from a
2-dimensional Gaussian mixture distribution with 4 compo-
nents. Figure 4a shows this data set with data from each
component represented by a different color. For any pair of
points i, j in this sample, we compute the Euclidean distance
d(i, j) between them. We then construct an adjacency ma-
trix P where P (i, j) = exp(−d(i, j)). The adjacency matrix
corresponding to the set of realizations in Figure 4a is shown
in Figure 4b. The graph corresponding to this adjacency ma-
trix constitutes nodes belonging to 4 different clusters, with
strong intracluster edges and weaker inter-cluster edges. We
perturb this adjacency matrix P by adding a small amount
of random noise to the data, and compute the adjacency
matrix Q in an identical manner to P . We also construct a
random matrix R ∈ R

2000×2000 , where each entry R(i, j) in
this random matrix is given by

R(i, j) =

{

0 with probability p = 0.95

u(i,j) with probability p = 0.05,

where u(i, j) is a random number drawn uniformly between
0 and 1. We then consider a dynamic graph sequence with
two temporal instances {At, t = 1, 2}, with A1 = P and
A2 = Q+ (R +R′)/2.

In the transition from A1 to A2, we keep track of all edges
for which R(i, j) 6= 0 such that i, j belong to different clus-
ters. We consider these edges and the associated nodes to
be anomalous because these edges establish ties between
nodes belonging to different clusters, thereby contributing
to anomalous change in graph structure.

100 101 102 103 104

k

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

A
re

a
u
n
d
er

 R
O

C
 c

u
rv

e
(A

U
C

)

Figure 5: Variation of AUC against k. From the figure, it is
clear that the performance of CAD is invariant to the choice
of k for values of k > 10.

Figure 6: ROC curves comparing the 4 methods: CAD,
ACT, COM and ADJ. The performance of COM and ADJ
are close to the random baseline, and the performance of
ACT is marginally better. CAD outperforms the other
methods by a significant margin.

4.1.1 Parameter selection

There are 2 user-given parameters for CAD: δ and k.
Clearly, the anomaly scores ∆Et(.) returned by CAD are
independent of the choice of δ and do not affect the ROC
performance of CAD. The approximation parameter k for
commute time distance computation, however, affects the
accuracy of the anomaly scores. For the synthetic data, we
run CAD with various different choices of k, compute the
area under the ROC curve (AUC) as before, and plot the
variation of AUC against k in Figure 5. It is clear from
the figure that the performance of CAD is invariant to the
choice of k for values of k > 10, for the synthetic data.

4.1.2 Accuracy

We generate 100 sets of realizations of this synthetic data.
For each instance, we run CAD (with k = 50) and determine
the anomaly scores ∆E1(.) for all pairs of nodes. We then
determine the anomalous node and edge sets E1 and V1 for a
range of different values δ using Algorithm 1. The accuracy
of CAD can be evaluated either by contrasting E1 against
the ground truth set of anomalous edges, or by contrasting
V1 against the ground truth set of anomalous nodes. Qual-
itatively, the performance in terms of either edges or nodes
should be fairly similar and therefore either can be chosen
for the sake of evaluation. Because we intend to compare
the performance of CAD against ACT, we chose to evaluate

accuracy in terms of nodes instead of edges.
In order to compare the performance of the five methods

- CAD, COM, ADJ, ACT and CLC, ROC curves are gen-
erated for each of these methods by sweeping over different
values of the threshold δ and comparing the resulting anoma-
lous node sets against ground truth. The ROC curves for
these five algorithms averaged over the 100 sets of realiza-
tions of synthetic data is shown in Figure 6. From this figure,
we note that performance of ADJ, COM, ACT and CLC is
close to the random baseline. This is in sharp contrast to the
performance of CAD, which is significantly better. The area
under the ROC curves for CAD, ADJ, COM, ACT and CLC
are respectively given by 0.88, 0.53, 0.51, 0.53 and 0.49. It
is interesting to note that suitably combining the adjacency
matrix information in ADJ and commute time information
in COM together in CAD results in significant increase in
anomaly detection performance.

4.1.3 Scalability

We generate symmetric random graphs of varying sizes to
study the scalability of CAD and the different alternatives.
Based on our observation in Section 4.1.1, we select with
k = 10 wherever relevant. Since most real-world graphs are
sparse with m = O(n) [3], we fix the sparsity level at 1/n for
this study. The results indicate that CAD is able to process
synthetically generated random graphs having n = O(107)
nodes and m = O(107) edges in 5 minutes on average over
10 trials. Since COM relies on the similar computations, the
running time of COM is comparable with CAD. ACT only
has to compute the largest eigen vector and has a signifi-
cantly low computation time of close to 1 minute for graphs
having n = O(107) nodes and m = O(107). Since ADJ com-
putes the differences in sparse adjacency matrices, the run-
ning time of ADJ is the lowest at an average of 10 seconds.
For the different graph size, the CLC method takes approxi-
mately one third the time taken by CAD. However, the run-
ning time of CLC is highest affected by the graph sparsity,
and even for modestly higher sparsity such as m = 10n, it
performs worse than all the alternatives. In summary, CAD
can comfortably operate on very large graphs with runtimes
comparable to its alternatives, while providing the highest
accuracy for detecting anomalous changes.

4.2 Qualitative analysis: real data
We run CAD on 3 real-world data sets and verify the

identified anomalies based on anecdotal evidence.
Choice of approximation parameter k: During analysis on

real-world data sets, similar to our observations with the
synthetic data, we observed that we get a very consistent
set of anomalies using CAD for any choice of k > 10. Based
on these observations and also those presented in [15], we
conclude that the results are largely robust to the choice of
k and we use k = 50 in all our experiments.

Threshold (δ) selection: We automate the selection of the
threshold δ as follows. Let l > 0 be the average number
of anomalies the user is interested in per graph instance.
Then, δ is chosen such that the total number of anomalous
nodes given by

∑T−1
t=1 |Vt| = l(T − 1). This selection of the

threshold δ ensures that l anomalous nodes are selected on
average for each transition t to t + 1. By selecting a single
threshold for all t = 1, .., T − 1 rather than selecting the top
l anomalies for each transition t to t + 1, we ensure that
no anomalies are reported for transitions when there is no

0 2 4 6 8 10 12

High trading activity

Leadership change

K. Lay CEO
SEC investigation
Failed acquisition
Filed backruptcy

Number of anomalies

CAD
ACT

Figure 7: Bar plot of anomalous graph instances detected
by CAD (blue) and ACT(green) against the Enron scandal
timeline.

anomalous activity, and similarly ensure that more than l
anomalies are selected for transitions where anomalies are
present. We note that while this procedure for threshold
selection needs to be done offline, the procedure can be suit-
ably modified in an online setting by aggregating scores up
to the current graph instance and updating the threshold.

ACT results: We determine anomalies using ACT in the
following manner. We use ACT to determine which of the
transitions are anomalous. For each such anomalous transi-
tion, we declare the top 5 nodes with the highest, non-zero
anomaly scores |at+1(i) − rt(i)| to be anomalous. This is
identical to the presentation of results in [1] (Figure 7).

4.2.1 Enron email network data

The Enron email network data is a sparse graph con-
structed based on emails exchanged among the 151 employ-
ees of Enron Corporation between the months of Decem-
ber 1998 and November 2002. This graph data set contain-
ing 151 nodes and approximately 300 edges for the most
dense graph instances, has been used in the past for evalu-
ating anomaly detection algorithms [22]. We aggregate the
data on a monthly basis leading to 48 monthly graph in-
stances represented as 151 × 151 symmetric adjacency ma-
trices, where the edge weights in each matrix indicate the
number of times emails are exchanged between any two em-
ployees in the corresponding month. We run CAD and ACT
on this data, with threshold δ corresponding to l = 5 for
CAD and w = 3 for ACT. For ACT, we report the top 5
anomalies. Since the Enron data set only has 151 nodes,
we did not need the approximation in commute distance
calculation. The algorithm finished processing each graph
instance in a few seconds even using the exact calculation
given by (3) for commute distance. With the hypothesis
that emailing pattern within the organization was influenced
by the scandal, we verify whether the anomalous edges and
nodes detected during the different times overlap with the
list of key players and correspond to the scandal timeline.

Figure 7 shows a timeline of the Enron scandal and the
anomalous graph transitions found by CAD (in blue) and
ACT(in green) as a stacked bar plot. Presence of bars indi-
cate that those graph transitions have been marked anoma-
lous by the respective algorithms due to the presence of
anomalous relationship changes. The length of the bars in-
dicate the number of identified anomalous nodes, dependent
on the choice of δ. It can be seen that both ACT and CAD

find graph transitions corresponding to important scandal
events to be anomalous. The first 23 months in the data
set from Dec 1998 to Sept 2000, is a period of calm in the
organizational email network, with ACT reporting 4 and
CAD reporting 1 graph transition as anomalous. The com-
mon anomalous graph transition (transition number 12, Oct
1999 - Nov 1999) is when one of the traders, Chris Ger-
many4 starts interacting with a lot of other traders within
the company, probably indicating a sudden increase in trad-
ing activity within the organization. The portion of data
corresponding to Mar 2002 to Nov 2002 is also a calm pe-
riod corresponding to the end of the scandal. The period
of turmoil for Enron was from Feb 2001 to Feb 2002 (graph
instances 27-39), with Jeff Skilling being hired as CEO in
Feb 2001, followed by questionable reporting of earnings in
the next quarter, leading to unstable stock prices. CAD
has identified 10 transitions to be anomalous during the 12
month of the scandal, whereas ACT has identified 6, all of
which overlap with CAD.

We found that Kenneth Lay is involved in the highest
number of anomalous edges in the anomalous edge set E32,
which corresponds to the transition from Jul to Aug 2001
(transition between graph instances 32 and 33). This co-
incides with the time when Kenneth Lay was reappointed
as CEO of Enron and the scandal was starting to get press
attention. Figure 8a shows the histogram of email commu-
nication to and from Kenneth Lay over the entire 44 month
period. The histogram shows a huge spike in his volume of
emails in the 33rd month. Figure 8b is the subgraph for Ken-
neth Lay (the red node in the center) for months 32 and 33.
It is observed that he started interacting with many people
belonging to different job roles within the company during
graph instance 33. Therefore, it is justifiable that Kenneth
Lay is picked up as an anomaly during that transition. For
the top 5 anomalies we have reported for ACT, Kenneth Lay
has never been identified as an anomaly in any transition.
During the same transition (32 - 33), the top anomaly found
by ACT is James Steffes, VP of government affairs. How-
ever, on careful examination of his connections during this
transition, it is observed that there is more than 50% over-
lap in his connections. Also, the new connections are similar
to the existing ones in terms of job roles. Steffes was send-
ing few emails to these people in July 2001, whereas in Aug
the volume of emails multiplied by many folds. The biggest
change in his network is therefore in terms of volume. This
change is therefore not as important in terms of anomalous
behavior causing structural change in the network, as the
Kenneth Lay example.

Additionally, CAD has successfully found Rosalie Fleming
(assistant to Kenneth Lay) as an anomaly just before Jeff
Skilling took over as CEO from Kenneth Lay during Dec
2000. David Delainey, CEO of Enron Energy, has also been
tagged as an anomaly by CAD during the Oct 2001-Nov 2001
transition. On further investigation, we found that this was
due to his involvement in the Dynergy acquisition that was
being planned in Oct 2001. During the period of Nov 2001 to
Feb 2002, most anomalous edges found in Et belong to En-
ron employees having job roles of legal specialists, president
and vice presidents, and traders. This is expected, since it
was during this time that the acquisition failed and Enron
declared bankruptcy. In summary, CAD not only identifies

4http://www.ids.cs.columbia.edu/sites/default/
files/hierarchyv3.pdf

the transition periods that are most tumultuous in the En-
ron scandal timeline, but, unlike ACT, also localizes the key
players of the scandal with high level of accuracy.

the anomalies identified by CAD, unlike ACT, correlate
strongly with the timeline of the Enron scandal and the key
players involved in it.

(a) Histogram of emails sent/received by Kenneth Lay during
the 44 months.

(b) Subgraph showing K. Lay during July and Aug 2001.

Figure 8: Email pattern of ex-CEO Kenneth Lay of Enron.

4.2.2 DBLP data

The DBLP data set is a collaboration network from the
scientific community in which each node represents an au-
thor and the edge weight between two authors indicates how
many papers they have coauthored every year. We filter the
data to consider 6574 authors who published at least two pa-
pers every year from 2005 to 2010. The sparse graphs con-
structed for each of the time instances had approximately
30K edges. We ran CAD on this data set (with threshold δ
corresponding to l = 20) in order to discover authors who
established collaborations in new research areas. On aver-
age, CAD processed each graph instance in 40 seconds for
k = 50. We uncovered several interesting anomalies, but for
sake of brevity, we report three specific examples:

(i) During the 2005-06 transition, author Atanas Rountev
was involved in the most number of anomalous edges re-
turned in Et. Among these, the edge with the largest score
∆Et(.) was between Atanas Rountev and P. Sadayappan.
On further investigation it turns out that Atanas Rountev’s
research focus till 2005 was software engineering, but in 2006
he started collaborating with P. Sadayappan, whose focus is
high performance computing, and published multiple papers
in several high performance computing conferences.

(ii) During the same 2005-06 transition, the anomalous
edge set Et returned edges connecting Salvatore Orlando
with the authors Francesco Bonchi and Fosca Giannotti. On
further examination, we found that prior to 2006, Salvatore
Orlando researched performance aspects of databases. In

2006, he started collaborating with Francesco Bonchi and
Fosca Giannotti, and started publishing in core database
conferences. We note that anomaly scores ∆Et(.) in this
case are lower compared to the scores for Atanas Rountev,
which agrees with the fact that the switch from performance
aspects of databases to core databases is less severe com-
pared to the switch from software engineering to high per-
formance computing.

83-84 85-86 87-88 89-90 91-92 93-94 95-96 97-98 99-00 01-02
-400

200

0

200

Yearly graph transitions

D
iff

. i
n

ra
in

fa
ll

in
 c

on
se

cu
tiv

e
yr

s

Peru
Australia
Brazil
Africa

Figure 10: Difference in consecutive years’ rainfall in Jan-
uary from 1982-02.

(iii) The third example concerns the severed relationship
between Oliver Brdiczka and Max Mühlhäuser during the
transition 2008-09. It can be explained by the fact that
Oliver and Max published several papers in 2008 as col-
leagues at Technische Universität Darmstadt. However, in
2009, Oliver switched to publishing in human computer in-
teraction conferences which coincided with his move to the
Palo Alto Research Center.

4.2.3 World-wide precipitation data

The world-wide precipitation (rainfall) data consists of
monthly averages of observations between 1982 and 2002
recorded at 0.5◦ resolution on the entire earth’s grid. Pre-
cipitation recordings are only available on land surface and
there are 67,420 such data locations for every month. Pre-
cipitation has a seasonal and spatial variation that is rea-
sonably stable over time. Abnormal weather patterns can
therefore be uncovered by detecting abnormal variations in
precipitation data. In order to determine such abnormal
variations, we construct 10-nearest neighbor graphs for each
month over the 67,420 locations, where the edge strength
between a node i and one of its 10 neighbors j is given by
exp

(

−‖pi − pj‖
2/2σ2

)

with pi and pj corresponding to pre-
cipitation levels recorded at i and j for that month and σ
is the kernel bandwidth. In order to account for seasonal
trends, we at a time restrict our attention to the 21 graphs
corresponding to one particular month of the year, and ap-
ply CAD to each of the 12 sequences of 21 graphs each. To
run CAD with k = 50 on each graph instance (with thresh-
old δ corresponding to l = 30), the average running time
was bounded by 2 minutes.

We discovered several interesting anomalies upon running
CAD on this data set. In the interest of space, we present
one set of interesting anomalies discovered by CAD for the
month of January during the transition from 1994 to 1995.
The top anomalous edges reported by CAD during the tran-
sition from January, 1994 to January, 1995 were those be-
tween southern Africa and eastern equatorial Africa, Brazil
and eastern equatorial Africa, Peru and the Amazon basin,

Peru and the southeast Asian island of Malaysia, and be-
tween Australian inland and equatorial Africa. Figure 9
shows these location pairs connected by these anomalous
edges (in blue) using red squares and yellow circles. Analyz-
ing the data it can be observed that locations in southern
Africa and Brazil received much higher rainfall during that
year compared to the past year, whereas Peru and Aus-
tralia received less rain than the year before. During the
same transition, rainfall in equatorial Africa as well as the
Amazon basin did not change. Therefore, the edge strength
(similarity value computed using the exponential function
described above) between these location pairs changed com-
pared to the previous year. On verification using external
evidence, we found that the La Niña5 weather pattern oc-
curred in 1995, which is characterized by wetter winters in
southern Africa and Brazil, very high rainfall in southeast
Asian islands, and drought-like conditions in Peru, Chile,
and eastern equatorial Africa. Therefore, we can easily ver-
ify that the top anomalies found by CAD except Australia
can be explained by the La Niña phenomenon. During the
same time, the Australian plains suffered one of the worst
droughts since 19006 and therefore, experienced much lower
rainfall than normal, which is why it became closer to drier
regions like the African plains. These evidences corroborate
the fact that the anomalous relationships identified by CAD
are indeed valid anomalies.

The difference in average precipitation experienced by
southern Africa, Brazil, Peru and Australia between succes-
sive years from 1981 to 2012 during the month of January is
shown in Figure 10. From this figure, we note that locations
in southern Africa and Brazil were found to have received
higher rainfall during 1995 as compared to 1994, whereas
Peru and Australia received less rain than usual. However,
observe that increase and decrease in rainfall in these loca-
tions, as shown in Figure 10, is very subtle relative to some
of the other variations seen in the figure. It is therefore un-
likely that these anomalies would have been detected using
time series analysis on the average precipitation data. The
reason CAD was able to detect this anomalous weather pat-
tern was because it resulted in simultaneous, albeit subtle
changes in precipitation across several locations, which in
turn resulted in significant changes in the structure of the
nearest neighbor graphs. This ability of CAD in picking
up subtle but simultaneous changes in precipitation across
several locations therefore makes CAD useful for identify-
ing teleconnections7, i.e. climate anomalies related to each
other at long distances.

5. CONCLUSION
A novel method called CAD is proposed for localizing

abnormal changes in nodes relationships (edges) that are
responsible for anomalous change in structure in weighted
dynamic graphs. Existing anomaly detection methods for
dynamic graphs such as ACT are primarily designed only
to detect whether a graph structure change is anomalous
or not, and are not well suited for identifying the responsi-
ble edges and nodes. This makes CAD, to the best of our
knowledge, the first of its kind for localizing anomalies in

5https://en.wikipedia.org/wiki/El_Nino
6http://en.wikipedia.org/wiki/2000s_Australian_
drought
7http://en.wikipedia.org/wiki/Teleconnection

Figure 9: Heat map of rainfall for January 1995. Red squares and yellow circles are nodes associated with anomalous edges
(indicated by blue dotted lines) found by CAD.

time-evolving graphs. CAD tracks changes in edge strength
and structure (via commute time distance) in order to de-
termine these anomalies. CAD has an O(n log n) run-time
complexity per graph instance for large, sparse graphs, mak-
ing it scalable. Our experimental studies on synthetic and
large real world datasets showed that CAD consistently and
efficiently localizes anomalous edges and associated nodes
responsible for anomalous changes in graph structure.

6. ACKNOWLEDGEMENT
This research has been funded by the DARPA/ADAMS

program under contract W911NF-11-C-0216. The authors
would like to thank Prof. Stephen Boyd at Stanford Uni-
versity for initial discussions on this work and Prof. Sanjay
Chawla and Nguyen Lu Dang Khoa at University of Syd-
ney for providing code for the spielman-teng solver. Finally,
the authors would like to thank the reviewers for their very
detailed reviews and comments.

7. REFERENCES
[1] L. Akoglu and C. Faloutsos. Event detection in time

series of mobile communication graphs. In Army
Science Conference, 2010.

[2] L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball:
Spotting anomalies in weighted graphs. Adv. in Know.
Discovery and Data Mining, pages 410–421, 2010.

[3] J. Batson, D. Spielman, N. Srivastava, and S. Teng.
Spectral sparsification of graphs: theory and
algorithms. Comm. of the ACM, 56(8):87–94, 2013.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps and
spectral techniques for embedding and clustering.
Advances in NIPS, 14:585–591, 2001.

[5] S. P. Borgatti. Centrality and network flow. Social
Networks, 27(1):55–71, 2005.

[6] H. Bunke, P. Dickinson, A. Humm, C. Irniger, and
M. Kraetzl. Computer network monitoring and
abnormal event detection using graph matching and
multidimensional scaling. In Adv. in Data Mining
Applns in Medicine, Web Mining, Marketing, Image
and Signal Mining, pages 576–590. 2006.

[7] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys,
41(3):1–58, 2009.

[8] P. Chebotarev and E. Shamis. On proximity measures
for graph vertices. arXiv preprint math/0602073, 2006.

[9] J. Chen and I. Safro. A measure of the local
connectivity between graph vertices. In Proc. of Int.
Conf. on Computational Science, pages 196–205, 2011.

[10] W. Eberle and L. Holder. Discovering structural
anomalies in graph-based data. In ICDM Workshops,
pages 393–398, 2007.

[11] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph
edit distance. Pattern Analysis and Applications.,
13(1):113–129, 2010.

[12] T. Ide and H. Kashima. Eigenspace-based anomaly
detection in computer systems. In ACM SIGKDD,
pages 440–449, 2004.

[13] I. Jovanović and Z. Stanić. Spectral distances of
graphs. Linear Algebra and its Applications,
436(5):1425–1435, 2012.

[14] N. Khoa and S. Chawla. Robust outlier detection
using commute time and eigenspace embedding. In
Adv. in Knowledge Discovery and Data Mining, pages
422–434. 2010.

[15] N. Khoa and S. Chawla. Large scale spectral
clustering using resistance distance and spielman-teng
solvers. In Discovery Science, pages 7–21, 2012.

[16] M. Maybury, P. Chase, B. Cheikes, D. Brackney,
S. Matzner, B. Wood, T. Longstaff, T. Hetherington,
C. Sibley, J. Marin, L. Spitzner, J. Copeland,
S. Lewandowski, and J. Haile. Analysis and detection
of malicious insiders. In Conf. on Intell. Anal., 2005.

[17] C. Noble and D. Cook. Graph-based anomaly
detection. In ACM SIGKDD, pages 631–636, 2003.

[18] B. Pincombe. Anomaly detection in time series of
graphs using arma processes. ASOR Bulletin, 24, 2005.

[19] P. Shoubridge, M. Kraetzl, W. Wallis, and H. Bunke.
Detection of abnormal change in a time series of
graphs. Journal of Interconnection Networks,
3:85–101, 2002.

[20] J. Sun, C. Faloutsos, S. Papadimitriou, and P. Yu.
Graphscope: parameter-free mining of large
time-evolving graphs. In ACM SIGKDD, pages
687–696, 2007.

[21] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is
more: Compact matrix decomposition for large sparse
graphs. Technical report, CS Dept., CMU, 2007.

[22] B. Thompson and T. Eliassi-rad. Dapa-v10: Discovery
and analysis of patterns and anomalies in volatile
time-evolving networks. In Workshop on Information
in Networks, 2009.

[23] L. Yen, D. Vanvyve, F. Wouters, F. Fouss,
M. Verleysen, and M. Saerens. Clustering using a
random walk based distance measure. In Proc. of
ESANN, pages 317–324, 2005.

