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Abstract

Regression problems on massive data sets are ubiquitousiiy application domains including
the Internet, earth and space sciences, and finances. @alssicess regression is a popular technique
for modeling the input-output relations of a set of varigbleder the assumption that the weight vector
has a Gaussian prior. However, it is challenging to applysSiam Process regression to large data sets
since prediction based on the learned model requires iioveo$ an ordem kernel matrix. Approximate
solutions for sparse Gaussian Processes have been prdposgzirse problems. However, in almost
all cases, these solution techniques are agnostic to the dgmnain and do not preserve the similarity
structure in the data. As a result, although these solutsmmsetimes provide excellent accuracy, the
models do not have interpretability. Such interpretablarsipy patterns are very important for many
applications. We propose a new technique for sparse GauBsiacess regression that allows us to
compute a parsimonious model while preserving the intéapility of the sparsity structure in the
data. We discuss how the inverse kernel matrix used in Gaud3iocess prediction gives valuable
domain information and then adapt the inverse covarianttmatson from Gaussian graphical models to
estimate the Gaussian kernel. We solve the optimizatiohleno using the alternating direction method
of multipliers that is amenable to parallel computation. ¥@enpare the performance of this algorithm
to different existing methods for sparse covariance regpasn terms of both speed and accuracy. We
demonstrate the performance of our method in terms of acgusaalability and interpretability on two

different satellite data sets from the climate domain.

Keywords: sparse regression, Gaussian processes, Earth sciencADMM

. INTRODUCTION

In many application domains, it is important to predict theue of one feature based on
certain other measured features. For example, in the Eaim&s, predicting the precipitation
at one location given the humidity, sea surface temperatimad cover, and other related factors
is an important problem in climate modeling. For such protdesimple linear regression based
on minimization of the mean squared error between the trdepaedicted values can be used
for modeling the relationship between the input and theetafgatures. In decision support
systems which use these predictive algorithms, a predietith low confidence may be treated
differently than if the same prediction was given with higtnfidence. Thus, while the predicted
value from the regression function is clearly importang, tlonfidence in the prediction is equally
important. A simple model such as linear regression doepradide us with that information.

Also, models like linear regression, in spite of being easfittand being highly scalable, fail to



capture nonlinear relationships in the data. GaussianeBsoegression (GPR) is one regression
model that can capture nonlinear relationships and ougpdistribution of the prediction where
the variance of the predicted distribution acts as a measti@nfidence in the prediction.
Moreover, the inverse kernel (or covariance) matrix hasymateresting properties along the
gaussian graphical model perspective, that can be exglfutebetter understanding relationships
within the training examples. Depending on the nature ofihita, these relationships can indicate
dependencies (causalities) for certain models.

However, predictions based on GPR method, requires irwersi a kernel (or covariance)
matrix of sizen x n, wheren is the number of training instances. This kernel inversieadmes
a bottleneck for very large data sets. Most of the existinghoas for efficient computation in
GPR involve numerical approximation techniques that exgita sparsity. While this does speed
up GPR computations, one serious drawback of these appativms is that the resulting GPR
model loses interpretability. Even if we get reasonablyusate predictions, we fail to unearth
significant connections between the training points ortifiethe most influential training points
for a specific set of test points. Sometimes such relatigssteveal important information about
the application domain. For example, in studies of climaework, we can find which locations
on the Earth’s grid have significant impact on a specific grotipest locations. Depending on
whether the regression problem is time-delayed with resjoethe target variable, this method
can also reveal unknown teleconnection patterns which #erwise extremely difficult to find
based on existing climate indices.

In this paper we propose a sparse GPR algorithm which notswaies to very large data sets
but also allows us to construct a complete yet sparse ingersgiance matrix, thereby facilitating
interpretability. The method proposed in this paper indusgarsity by introducing a regularizer in
a pseudo negative log likelihood objective used for covegaselection. This forces the algorithm
to seek a parsimonious model for GPR prediction having éxaeinterpretability. One of the
highlights of the solution technique used in this paper i®apgletely parallelizable framework
for solving the inverse covariance estimation problem gigive alternating direction method of
multipliers (ADMM) that allows us to exploit modern pardlend multi-core architectures. This
also addresses the situation where the entire covariant@&mannot be loaded into memory
due to size limitations.

The rest of the paper is organized as follows. In the nexi@e¢Section II) we present some
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background material related to GPR and some existing msthbdolving the GPR problems.
In Section 1l we discuss the equivalence between inverseekend covariance matrices. Next
we present our new sparse inverse covariance matrix usinyiMDechnique (Section V).

Experimental results are discussed in Section V. We coeclbd paper in Section VI.

[I. BACKGROUND: GAUSSIAN PROCESSREGRESSION

Since this paper proposes a technique of model fitting usiags&an Process regression, we
start with a brief review of it here. Rasmussen and Williad®] provide an excellent introduction
on this subject. Gaussian Process regression is a geati@iiof standard linear regression. If
X is the training data set having multidimensional observations (rows), ..., x,, with each
x; € RP and the corresponding target is represented by>al vectory, then the standard

linear regression model is:

wherew is a D-dimensional weight vector of parameters and additive Gaussian noise such
thate ~ NV(0,0?%). Assuming that we choose the prior distribution of the weigh be Gaussian
with mean zero and covariangg,, the posterior distribution of the weights, following Bayen

inferencing techniques, can be written as:

pIX.y) A7 (A7 X Ty )
g

where A = 0?X"X + X!, Given the posterior and the likelihood, the predictivetritisition

of a test inputx* is obtained by averaging over all possible mode&¥3 {o obtain:
1
p(y*\x*,X,y) ~ _/\/' (_QX*A_IXTy,X*A_IX*T)
2

Using a kernel (covariance) functiot(x;,x;) in place of a mapping from input space to an
N-dimensional space, and applying some algebraic manipnfatwe can write the predictive

mean and variance of the posterior distribution as

y' = K'(0I+K)y (1)

C = K" —K*'(o’I+K)'K*T (2)
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where theij™" entry of K isk(x;, x;) and K* and K** are similarly the cross covariance matrices
involving the test point*. Equations 1 and 2 pose significant computational challehgeto
the requirement of inverting the covariance matkixof size n?. If the number of observations
n is large, theO(n?) operation can be a bottleneck in the process of using Gaussiacess
regression.

In the next section, we discuss several techniques that bese proposed in the literature

for approximating the inverse matrix for large datasets.

A. Existing methods for efficient GP computation

Approximations are introduced in the Gaussian Processaiitee for either finding closed-
form expressions for intractable posterior distributi@msfor gaining computational advantage
for large data sets. Here we are interested in the secondagdaltherefore, briefly discuss the
existing research in this area. Smola and Bartlett [19] iles@ sparse greedy method that does
not require evaluating the full covariance matfixand finds an approximation to the maximum
aposteriori estimate by selecting an ‘active’ subset otiewis of X' by solving an expensive
optimization problem. The running time of the numerical mpgmation is reduced fron®(n?)
to O(nm?) wherem (m < n) is the rank of the matrix approximation.

A related approach of low rank matrix approximation called subset of regressors method
[27] involves selecting the principal sub-matrix of the erpirbed covariance matriX by matrix
factorization. Though this method has been found to be nigalBr unstable, recent research
by Fosteret al. [9] has shown that if we use partial Cholesky decompositmifiattorize the
covariance matrix and perturb the low rank factor such thd¢pendent rows and columns form
the principal sub-matrix, then the approximation we getumarically stable. The authors report
excellent accuracy using their approximation calculatiarnen the rank of the reduced matrix
is a small factor (5) times the rank of the original data nxaf¥i.

The generalized Bayesian committee machine [24] is anaibygroach for reducing the compu-
tational complexity of any kernel-based regression teqmi by dividing the data arbitrarily into
M almost equal sized partitions, training a different estonan each partition, and combining
the estimates given by the different estimators using therge of the variance to ensure that least
certain predictions are given the smallest weights in thal fimediction. This method allows us

to choosel! to be equal td<a so that it becomes linear iR in computational complexity. The
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Bayesian Committee Machine weights the training data basethe test points using a block
diagonal approximation and, therefore, the model neede t@trained every time a new test set
comes in. A related method recently proposed by Das and ssaiva [3] works for multimodal
data. It partitions the input space into multiple clustevith each one corresponding to one
mode of the data distribution. Then, each cluster is modes#dg a normal distribution and all
points which are not modeled by any of the normal distrimgi@are grouped using a separate
cluster. Each cluster learns a separate GP model and a eeightn based prediction is used
for the gating.

A recent development is thg penalized GPR method (GPLasso) introduced by Yan and Qi
[29] in which the authors explore sparsity in the output eatinan the input. They propose a GPR
technique that minimizes the Kullback-Leibler divergemhetween the posterior distributions of
the exact and the sparse solutions usirfg penalty on the optimization. They pose this problem
as a LASSO optimization [23] and solve a rank reduced apprate version of this using the
Least Angle Regression (LARS) method [8]. The authors mteges work as a pseudo output
analogy of the work by Snelsoet al. [20]. Quifilonero-Candela and Rasmussen [17] provide
a unifying view of all sparse approximation techniques fcgiuGsian Process regression by
analyzing the posterior and reinterpreting each algorifsman exact inferencing method using
approximate priors.

All the methods discussed in this section apply some form wherical approximation
technique to reduce the rank of the kernel matrix for efficiatrix inversion. As a result, they
often lose model interpretability — a value at any positidrine reduced rank inverted matrix
cannot be traced back to any cell of the original kernel. Imyrdomains, however understanding
the sparsity structure is important. For example, in Eadler®es, it is not only important to
get good predictions from the GPR model, but it is also imgratrto understand how different
geographical regions are connected and how these locatitunsnce one another. Unfortunately,
none of the efficient GPR techniques allow this. Our propdsetnique in the next section not
only learns a sparse GP model but also allows domain sdieméidraw conclusions about the

sparsity structure by studying the inverse covarianceiriatr
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[1l. SPI-GP:3ARSE GAUSSIAN PROCESS USING INVERSE COVARIANCE ESTIMATION

Let x1,x5,...,x, be a set of multi-dimensional gaussian observations sweth th

wherep € R? andy € R**¢ are the mean and covariance matrices. While the meaeasures
the center of the distribution, the covariance makixeasures the pairwise (linear) relationship
between the variables. It is well known that a value of O at eely of X implies independence
of the observations:

Y, =0=P(xix;) =0

which meansk; andx; are independent. In many cases, we may be interested inisgudgw
two variables influence each other when the information atfwiother variables are taken into
consideration. One way of doing this is by studying the ieeecovariance matrix, also known
as the concentration matrix or precision matrix denoted:by. Unlike X, a value of 0 in any
cell of ¥~ implies conditional independence among those variablpsFdr examplex; and

x; are conditionally independent, given all the other vagabif ©~'=0. Mathematically,
22_7]1 =0= P(XZ’XJ“X_Z"_J'> =0

wherex_; _; denotes all the variables other thepnandx;. Note that independence of elements
implies conditional independence but not vice-varsaa value of 0 at any cell of: implies that
the corresponding location af~! is also O; but a non-zero value at any cellXfmatrix does
not imply that the corresponding cell a—! will also be non-zero. The reason for studying
»~! rather thany, is for many gaussian distributed variables, there is m@asity in the
inverse covariance matrix than in the covariance matrixtarglsparsity reveals interesting data
relationships. It has been shown in [10], that inverting gac@ance matrix (with the additional
assumption that the inverse is sparse) is equivalent toitegm graphical model, where each
node in the model corresponds to a feature and the absenoeedige between any two signifies
that those features are conditionally independent.

In the case of GPR, the kernel matrix between the obsensa{eee Eqn. 1 and 2) can be

viewed as a covariance matrix among the function outputsnélby, a gaussian process is defined
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as a collection of random variables, any finite number of Whscjointly gaussian. Hence, it is
a distribution over functions, completely specified by itsan function and covariance function
as,

f(xi) ~ GP(m(x;), k(x;,%;))

wherem(x;) = E[f(x;)] andk(x;,x;) = E[f(x;)—m(x;)][f(x,;) —m(x;)] are the mean function
and covariance function of some real proc¢és;). Note thatf(x;) are random variables and
GP fits a distribution over all possiblé(x;). In our case sincef(x;)’s are linear functions

f(x;) = x;w’, the mean and covariance of GP can be stated as,
m(x;) = B[f(x;)] = x:B[w"] =0
k(x;,%;) = E[f(x:)f(x;)] = x; E[w ' w]x] =x;5,x]

wherew ~ N(0,%,) denotes the prior distribution of the weights. The covaréfunctionk,

also known as the kernel function specifies the covarianbedam a pair of random variables

cov(f(x:), f(x;)) = E[f(x:) f(x;)] = k(xi, %)

Therefore, a kernel function computed over the pairwis@tipoints is equivalent to a covariance
between the outputs. There are several choices of the kiemetions available. In this paper

we have used the widely used gaussian radial basis funatidnkernel:

i — 11"
k(xi,x;) = exp (‘TQJ

whereo is known as the bandwidth parameter which is typically ledrfrom the data.

In many GPR applications, it is not only important to get gqguoddiction accuracy, but also
understand the model. For example, in Earth Sciences,otabections [12] reveal important
symmetric and sometimes causal relationships among éiff@vents observed in geographically
distant locations and can be studied by exploiting spaisitite inverse kernel in GPR. Another
possible application area is the study of climate netwo2l4[R6][22][25][6]. Fig. 1 (left) shows
the observed precipitation data of the world overlaid os6@ x 720 grid. Figs. 1 (center and
right) show a kernel or similarity matrix generated from theta and the corresponding inverse

covariance matrix. The highlighted row and column corresbto the location marked in white
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on the world map. Each cell in the kernel denotes the sinyléetween the precipitation values
of a pair of grid locations. If a cell has a value of O in the le@mmatrix, it implies independence of
those two points, whereas, a 0 value in the inverse kernebnmaiplies conditional independence
between the pair of points, given all the other observati@isce absolute independence is
a much more strict condition to satisfy for two random valesb compared to conditional
independence, the inverse kernel is a much sparser matrstutty than the kernel. This is
clearly observed in Figure 1. Therefore, in this paper weiaterested in studying the sparsity
pattern of the inverse covariance matrix, with the inforigrathat sparsity patterns in the inverse

covariance matrix leads to conditional independence antlbedocations of interest.

i "
o7 o7
os os
o4 o
o2 o2

Fig. 1. Precipitation data of the world map (top figure). Ntitat the data is only available for land (the ocean locatimesge
fill values of -9999). The figure in the center shows a kernelvitich similarity is computed between every pair of locasion
from the precipitation data. Note the location marked wittirale on the left figure corresponds to the row and columnlire b
on the center and right figure. The right figure shows the swdwernel matrix.

(L[

V. SPARSE COVARIANCE SELECTION

There exist several techniques in the literature for sgluime inverse covariance estimation
problem also known as the covariance selection problem.
Given a data set containingfeatures, Meinshausest al. [16] infers the graphical model (and

therefore the inverse covariance matrix) by taking onealdei at a time and then finding all the
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connections of that variable with all of the other ones. Fachevariabled; in the dataset, the
method constructs a lasso regression problem by takindnalbther variables as inputs argd
as the target with an additional sparsity constraint on theti®n weights. The non-zero entries
of the weight vector signifies a connection between thatufeaand the target;. To deal with
inconsistencies among the connections, the authors hapeged two schemes: (1) in tReND
technique, an edge is established in the graphical modeleleet any two featured;, andd; iff
both d; andd; have non-zero entries in the weight vector when they are aaet as target in
different lasso problems, and (2) in tR scheme, an edge is established if eittieor d; has
a non-zero weight when the other is taken as the target. Qrmusarawback of this method is
the number of independent lasso problems increases §neidh the size of the feature space.

Banerjeeet al. [1] propose a different solution to the inverse covarianelecion problem.
They show that based on Dempster’'s theory [5], estimatiggitirerse covariance matrix is
equivalent to minimizing the pseudo negative log likelidlod@he objective function takes the
form:

Tr(KS) — logdet(S5)

where K is the empirical covariance (or kernel) matrix afds the desired inverse ok i.e.
S = K1, Tr(-) is the trace of a matrix, andet(-) is the matrix determinant. Solution to the

above equation is stable when an additional sparsity ainstis imposed on the inversie.
Tr(KS) — logdet(S) + A||S||

where \ controls the degree of sparsity. This is a convex optimirapiroblem and in order to
solve this, the authors propose a block-wise interior paigorithm.

Friedmanet al. [10] generalizes both these papers and present a very effadgorithm based
on the lasso technique. Their objective function is the samesed by Banerjeet al. [1] i.e.
they try to maximize the log likelihood of the model with theéditional sparsity constraint. They
show that the solution proposed by Meinshausen [16] is anoappation of the log likelihood
estimate proposed by Banerjeg al. [1]. They propose a new algorithm based on coordinate
descent to solve the same trace minimization problem. Tlgisrithm is based on recursively
solving lasso subproblems for each variable until conuezge The authors note that this new

algorithm is at least 50 to 4000 times faster than existirgprigues and therefore scales to
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11

much larger data sets.

Very recently Hsieh et al. [13] proposed a new approach ftuirsgp the maximum likelihood
problem much faster than existing methods. Unlike existiaghniques that use first order
gradient descent for optimization, the authors resort toeavtin’'s method based quadratic
approximation that accounts for the structure of the MLEbpEm. This method can scale to
about 10,000 data points.

However, there is one drawback common to all these optiiizaechniques. All these tech-
niques assume that the data can be loaded in computer meorahefanalysis. Unfortunately,
in applications such as Earth Sciences, most datasets a®@vma— they contain millions of
observations (locations) and therefore constructing lactwtariance matrix in memory is itself
impossible, leaving aside the computational power necg$saun these optimization techniques
for inverse estimation. To solve the large scale inverseaicance estimation problems which
do not fit into the memory of one machine, in this paper we psepaur SPI-GP method which
works by distributing the workload among a network of maekinThe technique we follow
is based on the method of Alternating Direction Method of fifliers (ADMM) which is a
distributable algorithm for solving very large convex opization problems. We give a brief

overview of ADMM technique in the next section.

A. Alternating Direction Method of Multipliers for convexgblems

Alternating Direction Method of Multipliers (ADMM) [11][}{2] is a decomposition algorithm

for solving separable convex optimization problems of tivenf:
min  Gi(z) + Gy(y) subjectto Az —y=0, ze€R" yeR™

where A € R™*™ and G; and G, are convex functions. The algorithm derivation is as fokow

First, the augmented Lagrangian is formed:

Ly(2,y,2) = Gi(2) + Go(y) + 27 (Az — y) + p/2 || Az — y;
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12

wherep is a positive constant known as the penalty parameter. ADNdvhiions can then be

written as:
L = min{Gl(x)—l—thAerP/QHAx_ytHz} ®)
y o= myin{Gz(y) -2y +p/2 || Az" —sz} @
N (Axt—i-l _ yt—i-l) (5)

This is an iterative technique whetds the iteration counter, and the initial vectass and 2°
can be chosen arbitrarily. ADMM can be written in a differéoitm (known as the scaled form)

by combining the linear and quadratic terms of the Lagramgia

T(Az —y)+p/2|(Az —y)ll; = p/2(|(Ax —y) + (1/p)2ll5 — 1/(20) |23

Now scaling the dual variable = (1/p)z, the iterations of ADMM become:

gt = mxin{Gl(x)+p/2HAx—yt—|—ptH;} (6)
ytt = m;n{Gz(y)+p/2\\Axt+1 —y+ptH§} (7)
pt+1 — pt + 0 (Axt—i-l o yt—i-l) (8)

It has been argued [11] that ADMM is very slow to converge ey when high accuracy is
desired. However, ADMM converges within a few iterationsewhmoderate accuracy is desired.
This can be particularly useful for many large scale prolslemilar to the one we consider in
this paper.

Critical to the working and convergence of the ADMM methodhs termination criterion.

The primal and dual residuals are:

ritt = Az — ¢ (primal residual)

rit = pA(y"™ —y")  (dual residual)

A reasonable termination criterion is when either the plionahe dual residuals are below some
thresholds.e.

I, <& and [lrgt], < ea
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wheree, ande, are the primary and dual feasibility tolerances. Using asdined values fog,

and e, these tolerances can be stated as,

€p = €17/ M + €3 max (HAxt“‘

2 [y l,)

€q = €1\/N + € HATthrle.

Although we have used ADMM here for solving the inverse keastimation problem, it has
been used for many tasks such as text mining [15], classdic§B0], gene expression network
optimization, image reconstruction and de-blurring usuU [28] and many more.

In the next section we discuss the ADMM update rules for tharsp inverse covariance

estimation problem.

B. Alternating Direction Method for sparse inverse kernsiirmation

We start with the prior assumption that the inverse kernefrima<—! is sparse. This is a
reasonable assumption when studying climate data, becaese a location.e. any row of the
inverse kernel matrix, there are few major locations whidtuence this location.

With such an assumption, the ADMM algorithm is as followst k& be the observed kernel
matrix between the grid locations. For a moderate siggdone can search over all sparsity
patterns, since for a fixed sparsity pattern the log likedhestimate of< is a tractable problem.
However, this becomes very challenging for lafge One technique which has been used earlier
for sparse covariance selection problem [1] is to minimieertegative log likelihood of = K—*
with respect to the observed data with a penalty term addeddiace sparsity. This resulting

objective function can be written as
min  Tr(KS) — logdet(S) + A ||S]];

where||-||, is the/;-norm or the sum of the absolute values of the entries of aixnahd )\ is a
constant which determines the amount of sparsity. Largenvéiue of)\, sparser is the solution

S. The ADMM version of this problem can be written as follows:
min  Tr(KS) —logdet(S)+ A||Y]]; subjectto S—-Y =0
By constructing the augmented Lagrangian and using theatems given in Section IV-A for
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the scaled version of the problem, the ADMM updates for thevakestimation problem are:

Y = min (MY + /2| =Y+ PY,) (10)
Y
Pt+1 _ Pt + (St—i-l o Yt—i—l) (11)

with ||-||» denoting the Frobenius norm of a matrix. These updates casinglified further.
Taking the derivative of Eqn. 9 and setting it to O we get,
K—-S"'+p(S=Y'"+P)=0
= pS—-St1=pY'-P)-K
Now let QAQT be the eigen decomposition pfY* — P') — K. Therefore, continuing from the
previous step,
pS — St =p(Y' - P~ K
= pS—S'=QAQ"
= pQTSQ-Q"STIQ =QTQAQTQ
= pS—S5T'=A [sinceQ”Q =QQ" =1 (12)

where S = QT SQ. Solution to Egn. 12 can easily be found noting that the rlgmd side is a

diagonal matrix of the eigenvalues’s. For each diagonal entry of;, Vi = 1:n, we have

pSi — §Zl = Ai

7

which, using the formula of finding the roots of a quadraticaopn is

§-- . )\Z+\/)\Z2+4p
i 2p

Therefore,S = Q§QT is the optimal value of the& minimization step. In our studies we have
used the full eigen decompositidpAQ”. To reduce complexity, we can use power method to
extract the top few eigenvalue-eigenvector pairs (based ttmeshold of how much of variance

is captured) and set the other pairs to 0. This would set tigse 1//p, while keeping the
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others the same. We plan to study the effect of the accuragywming time of SPI-GP on the
percent of variance captured by the eigen decompositiohaden our future work.
Eqgn. 10 can also be simplified further and can be written aslémaent-wise soft thresholding
operation:
Vi =Sy, (S5 + 1Y)

Once the sparse inverse kernels are constructed, they calugpged back into Eqn. 1 and
2 to compute the final prediction mean and variance. Note thatother kernel matrice&™
and K** are computed among the test points and hence they are faidyl. Moreover, these
matrices do not require matrix inversion.

In the next section we describe the SPI-GP algorithm in Betai

C. SPI-GP: algorithm description
The SPI-GP algorithm is based on the ADMM technique desdribb¢he previous section. Alg.

1 presents the pseudo-code of the algorithm. The inputshar&drnel X', algorithm parameters
A and p, number of iterationsiumIter and the error tolerances ande,. The output of the
algorithm is the estimated inverse &f in S = K~!. The algorithm proceeds in an iterative

fashion. In every iteration, an eigen decomposition isqremed of the matrix
@ Al=pY"™' - P - K.

The eigenvalues\ and eigenvectors) are used to update the variable. TheY-update is a
soft thresholding operation @fS* + P'~!) with threshold)/p. Finally, the P-update is a linear
dual variable update. Also during each iteration, the priared dual residuals, andr, are
computed along with the corresponding error thresholdseWgtier the residuals become less
than the error thresholds, the algorithm stops. The resuitiurned in the matrix. In our

experiments we have chosen= 1
Computational complexity of ADMM: Since the algorithm requires eigen decomposition for

every S update, and th& and P updates are constant time operations, the runtime contylexi

is O(mn?), wherem is the number of iterations andis the size of the dataset (training points).
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Algorithm 1: SPI-GP: ADMM for Sparse Kernel Inversion
Input: K, p, A\, numlter, €, €
Output: S = K1
Initialization: Y! =0, P! =0
begin
for t=2 to numlterdo
[Q A]=evd[p(Y'"™! — P"1) — KJ;
for i=1 to n do

L g dti,
[ 1

2p

St =QSQT;
Yt = softThreshold[(S* + P'™1), \/p];
Pt — Pt—l + (St _ Yt);
rp = ||S* = Y|}
ra=|=p(S" =Yg
e = e1v/n + e max(|[S|p, [[Y']| p);
€a = e1v/n + el [pP||F;
if (r, <e,) AND (14 < ¢4) then

| break;

Convergence of ADMM: In order to ensure convergence of ADMM, two basic assumptere
necessary: (1) the functiods; and G, are closed, proper and convex, and (2) the unaugmented
Lagrangian has a saddle point. Based on these two condiitoren be shown that [2]:

« primal residual approaches 0 i2€.— 0 ast — oo

« the objective function approaches the optimal value

« dual variableP approaches feasibility
In practice however, ADMM may be slow to converge. This typelgorithms, are therefore,
more useful when moderate accuracy is necessary withimavally few iterations. Although this
algorithm is slow and sometimes has convergence issuestheionly method that is amenable
to parallel computing which is essential for many large dsgts that do not fit in the main

memory of a single machine.

D. SPI-GP: distributed implementation

As we have discussed earlier, ADMM is amenable to distridhidemputation in a network

of machines. This becomes particularly important when tae dloes not fit into the memory
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of one machine. This form of ADMM is known as consensus ogation. In this form, the

objective functionG; needs to be decomposable acréswdesi,. .., M, as follows:
min Zle G1(z;) + Go(y) subjectto Az; —y =0, x;€R" yeR™

wherez; is thei-th block of data and is stored at machihg. The solution to this optimization

is the same as given in Section IV-A. The update rules can li¢ewras,

it = miﬂ{G1($i)+thAxi+p/2HAx"_ytHz}

¢
Yyt = myin {G2(y) + ; (‘ZET?/ +p/2 || A - yH;) }

A S (Axt-ﬂ - yt+1)

2

Unfortunately, the above method cannot be applied for thenigation of the inverse covari-
ance matrix in our case. This is becausedet(S) is not a decomposable function.

Therefore, to solve this problem for large kernel matrizes,use the ScaLAPACK routine of
Matlab. It allows the kernel matrix to be distributed acrdgfferent machines, but still compute
the eigen decomposition correctly. For a Matlab implemtgona this is done using the co-
distributed array data structure and an overloadgdfunction. It should be noted here that
this methoddoes notattempt to speed up the GPR process. Instead, it makes GRblpder
extremely large data sets where the entire kernel matrinatabe loaded in the main memory

due to size limitations.

V. EXPERIMENTAL RESULTS

For the performance study of SPI-GP, the experimental tesuk reported on a synthetic
multivariate Gaussian distribution data set, two reldgiveanall benchmark data sets from the
GPR literature, and two different real life climate domaatalsets. For generating the multivari-
ate Gaussian, we fix the number of dimensions and sampleshé&kegenerate a sparse inverse
covariance matrix with all zeros and ones along the diagdialrandomly insert ones at certain
locations in our inverse covariance. We make this inverseixnsymmetric and positive definite
(by making the minimum eigenvalue positive). Finally wearivthis matrix and draw Gaussian
samples with zero mean which becomes the covariance mapix ito our algorithm. Using

this data set we demonstrate the scalability of the dideibSPI-GP method on a cluster of
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computing nodes. The benchmark data sets that we have usegsed in the Gaussian Process
Regression literature for performance validation [29]eTirst data set (Snelson) is a small
synthetic data set used by Snelsatral. [20] in the sparse GP paper and is being used only to
illustrate model quality of SPI-GP compared to other meghdthe other data set, pumadyne-
8nm, has approximately 7000 points and is a realistic sitimmiaf the dynamics of a Puma 560
robot arm. The regression task in this data set is to predestangular acceleration of one of
the robot arm’s links using angular positions, velocitied #orques of the robot’s arm as input.

The real world data sets used in this paper are both from thil Baience domain. The first
one is a historical data set consisting of NCEP/NCAR featasailable ahttp://www.cdc.
noaa.gov/data/gridded/data.ncep.reanalysis.html [14] and cross-matched nor-
malized difference vegetation index (NDVI) data (NDVI) finothe National Oceanic and At-
mospheric Administrations Advanced Very High Resoluticad®meter (NOAA/AVHRR). The
climate variables in this data set are include pressure,sadace temperature, temperature,
and precipitation from 1982 till 2002. Each variable is oled at a0.5° resolution over the
entire grid. The data used here are composites of obsemgativer a month. Thus there are
360x720=259200 values for each variable vectorized and stetd single row corresponding
to a time point (a month). Therefore, each variable Has 21 = 252 rows in the data set, each
having 259200 columns. Note that some variables are oldemy in land while others only
in ocean. For any variable, the locations which do not congiy meaningful data has a fill
value of -9999.0.

The second real world data set that we have used in our expetsms the MODerate-
resolution Imaging Spectroradiometer (MODIS) data primgd500-meter surface reflectance
data for the state of California adjusted using a bidirectlareflectance distribution function
(BRDF). The data is collected at intervals of every 8 days stnded asl203 x 738 image file.
Each image data is recorded for seven different wavelength®sponding to seven different
channels. Since these channels observe the same spadiabtoat the same time instances, there
is a high correlation among the different bandwidths. Tfoeee Gaussian Process regression can
be used to model the relationship between the channelsdatiogVirtual Sensors and detecting
changes in land cover. Based on careful exploratory arsagysil domain expert feedback, three
features (Bandl 620 - 670 nm, Band4 545 - 565 nm and Band5 12260 nm) have been
chosen to model the target (Band6 1628 - 1652 nm). The dataosg¢dains nine years worth
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of data (2001-2009) arranged at the top level by the numbgeafs where each year contains
forty six (collected every 8 days) images and has approxiyat5 million observations per
year.

Experimental setupThe algorithms have been run using a 64-bit 2.66 GHz IntebnXdual
quad core Dell Precision 690 desktop running Red Hat Engsrdrinux version 5.7 having
24 GB of physical memory. The SPI-GP algorithm is paraledie and has been executed on
a 64-bit Linux cluster consisting of 16 slave nodes whereheamde is a dual processor 1-U
server containing two quad-core Intel Xeon 2.66GHz pramess®taling 128 cores and 128GB
Ram (1Gb/Core). All centralized algorithms are implemdrdaad run in MATLAB R2010a. The
distributed SPI-GP code uses the Parallel Toolbox in MATLRB010a.

We report three different sets of experiments here to summdhe performance of our
algorithm in comparison to existing algorithms. We demmatstthe scalability of our algorithm
for both the distributed and centralized versions. For eamy we compare the performance of
our algorithm with an existing state-of-the-art sparseeige covariance computation technique.
Finally, for the climate data set we also look at interpréitgtof results in terms of the sparsity

structure obtained from the penalized maximum likelihoochputation.

A. Study 1: Scalability study on synthetic data

In this study we report the scalability of the distributed-&P algorithm with respect to two
different scenarios. In the first scenario, we keep the nurobelistributed computing nodes
constant and increase the size of the data set. This insrélaseortion size of the covariance
matrix per node and we study how our algorithm performs img&pof both running time and
convergence. In our first experiment we fix the number of cores/hich we run our experiment
and vary the size of the training data. Figure 2(a) repogsuhnning time for SPI-GP for different
sizes of the data set on 10 cores. We vary the size of the dabase1000 to 160000 samples,
each set having a dimension of 5000. The kernel matrix indeedase i26000 x 16000, which
when partitioned columnwise for 10 jobs makes the data zet fair each jobl600 x 16000.
Because of the eigen decomposition required in every iteraif the algorithm, the algorithm
is O(n?) per iteration, wherex is the number of data points. However, due to the distributed
computation, we see that the growth in the running time ishefarder ofO(nr?), wherer is

the rank of the kernel matrix partition available to eachrthsted job. It is evident from this
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Fig. 2. Scalability study of SPI-GP on synthetic data. Time &erations required for convergence are reported fdribiged
jobs on 10 cores with increasing data set size.

that since the computation is distributable, we can do tlaesspinverse estimation for Gaussian
Process regression for very large data sets, provided we hewess to cluster computation
environments. Figure 2(b) reports the number of iteratithed are required for each of the
problem sizes to converge with error tolerance of the ordiei0o®. We see that the number of
iterations vary from 16 in the worst case to 9 in the best cakas number is significantly low,
indicating that for reasonable tolerance ranges, the ADNHded algorithm can converge quite
fast.

In our second scalability experiment, we report the runningg of the SPI-GP algorithm as
we increase the number of processors keeping the pointsrpeegsor constant. We experiment
with two different sizes of the data set. For our first expemithe number of data points per
processor is 16384()(10°)) while for the second experiment the number of points perenod
is 262144 (O(10°)). The results are shown in Figure 3(a) and Figure 3(b) reéiede In each
case we vary the number of computing nodes from 4 to 128. Ih bases we see that there
is an almost quadratic increase in the running time for tistriduted SPI-GP implementation,
shown in blue lines in Figure 3. The red lines in Figure 3 iatkcthe running times for a
pseudo-distributed implementation of the SPI-GP algorjtivhere the parallel jobs within an
iteration are executed sequentially in a single proces&fer.see that the running time in this
case increases negligibly. This is understandable siresite of the problem remains the same
in each experiment, and the slight increase in running tisnduie to the increased number of
sequential operations for each iteration, as we increasentimber of partitions in the data

exponentially. This experiment is done to illustrate tlint parallel eigen decomposition method
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Fig. 3. Running time (in secs) for increasing number of cotimgucores, with data points per code being constant. Fig) 3(
reports running time for QQ°) points per core and 3(b) shows running time forl@( points per core.

in Matlab being a fully synchronized operation, the netwsgkchronization in a distributed
cluster computing environment takes up the bulk of the cdatmn time. The optimization
routine takes only a very small fraction of the time for exemu However, the advantage of
distributed implementation becomes evident when we neeldabwith data sets that cannot be

loaded on to the memory of a single workstation.

B. Study 2: Accuracy study on benchmark and real data

In this study, we report the accuracy of the SPI-GP methodvworbenchmark data sets used in
the literature, and two real-life application data setsartlescience. For the first experiment, we
compare the accuracy of SPI-GP to a state-of the-art spaagssian Process regression method
[29], using a couple of data sets that the authors have us#teinpaper. For this experiment
we also compare our results to the regular Gaussian Proegssssion without penalty. The
metric used for our accuracy study is the normalized meaarsguerror, defined as:

NMSE — 22;1@\; - yi)zl

Sk

n X var(y*)

wherey; is the observed value of the targgthaving variancevar(y*), v; is the prediction of
y; andn is the size of the test set.

Figure 4 shows the quality of prediction of SPI-GP compace&ull GP and GPLasso on the
two benchmark data seBnelson29] and pumadyne-8nin Figure 4(a) shows the plot of the

http://www.cs.toronto.edu/ ~delve/
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Fig. 4. Quality of prediction on benchmark data s8tselson(left) and pumadyne-8nm (right). For left figure, black line
represents predictions using Full GP (no approximatioti®),red and green lines are for GP-Lasso and SPI-GP resggctiv
Right figure shows the normalized mean squared error for ehtfhese three methods on the pumadyne-8nm data set

predicted values oEnelsonoverlayed on the training set (plotted in magenta dots). Glaek
line represents predictions using Full GP, the red and gliees are for GP Lasso and SPI-GP
respectively. It can be observed that prediction qualitySefi-GP is comparable to both Full
GP and GPLasso in this case. The black line (plotted firstclwinepresents the method with
no approximation is completely obscured by the green limeSBI-GP, whereas the red line
for GP-Lasso is partially obscured by the fit of SPI-GP. Thidicates that SPI-GP performs as
good as Full GP, whereas GP-Lasso does well in most placepeatpoints where the red line
is visible, where it deviates slightly from the true fit. Figu4d(b) shows the normalized mean
squared error for each of these three methods on the pumdtynelata set. It is a difficult data
set to model and all three methods have high errors. NMSEuUlbiGP is 1.086, while NMSE
for a 300-rank reduced GPLasso is 0.996 and SPI-GP \with0.01 is 0.983. This indicates that
SPI-GP performs exactly the same way as state-of-the-arsspsaussian Process regression in
terms of accuracy. The additional benefit is an interpretaibdel that explains relations among
the regressors and the target with respect to the sampleserliy the performance of the
ADMM-based optimization solution, we have also performegeziments where the ADMM-
based inversion in SPI-GP has been replaced by the graphssd [1] method. Since both
methods converge to the exact same optimum for both the @nalsd the pumadyne data sets,
their plots obscure each other in the figures and are therefot included in the graphs shown
in Figure 4.

We also report NMSE of SPI-GP on the two prediction problemghe two real world data

sets. For the first data set we predict precipitation on aoregf the Indian peninsula based on
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Test months

Training years March June September December
Full-GP | SPI-GP| Full-GP | SPI-GP| Full-GP | SPI-GP| Full-GP | SPI-GP
1982 0.237 | 0.283 | 0.454 | 0.439 | 0.426 | 0.426 | 0.371 | 0.361
1983 0.258 | 0.292 | 0.492 | 0.492 | 0.658 | 0.658 | 0.374 | 0.374
1984 0.261 | 0.273 | 0.451 | 0.451 | 0.818 | 0.819 | 0.374 | 0.368
1985 0.196 | 0.208 | 0.475 | 0.450 | 0.396 | 0.396 | 0.385 | 0.385
TABLE |

NMSE oF GPRFOR 1986FOR QUARTERLYGP MODELS BUILT FROM 1982-1985.

historical data from the entire grid. If a set of points areyvemilar to the points representing
rainfall in the Indian subcontinent, then it is intuitiveaththose points should be very good
predictor of precipitation in India. In this study we verifigis intuition by choosing the top
locations of the world that are most similar to the prectmiain the Indian subcontinent, based
on the sparse inverse covariance estimation, and then ayilicediction model based on only
those points. The value df is chosen to be:/2 wheren is kernel dimension. In most cases
we see that the smaller model is more accurate than the elaiseset.

For our study we choose a time scale of three months for thegatation prediction problem.
The data set we are considering has 20 years of precipitdéitan For any year in this data set,
we build models on the quarterly precipitation informatiemd test the model on a one-month
time delay. In our first experiment we test our quarterly niedi®m 1982 to 1985 on 1986 data
and the NMSE values are reported in Table I. We repeat theriexget for a training period
of 1982 to 1995 to test on 1996 and the results are shown ireTihbFor baseline, we use
results obtained by using the entire data set (Full-GP)eratiian the chosen subset. It should
be noted here that Full-GP refers to the standard Gaussizre$¥ regression method. Since
the data set contains approximately 250K points, it is na@spide to build a Gaussian Process
model on this entire data set and we instead sample 8000sp@indomly from this data set to
run the optimization for choosing the model parameters aed build the kernel on only those
sample points. The results reported for Full GP in the tabéethe best over 10 runs of this
experiment. However, the variance for the runs is high,catiing that such a uniform sampling

based approach may not always produce the desired model.
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Test months

Training years

March

June

September

December

Full-GP | SPI-GP

Full-GP | SPI-GP

Full-GP | SPI-GP

Full-GP | SPI-GP

1982 0.311 | 0.293 | 0.554 | 0.563 | 0.706 | 0.706 1.23 1.22

1986 0.325 | 0.295 | 0.587 | 0.595 0.81 0.809 | 1.301 1.3

1991 0.281 | 0.278 | 0.564 | 0.586 | 0.782 | 0.781 1.15 1.15
TABLE II

NMSE oF GPRFOR1996FOR QUARTERLYGP MODELS BUILT FROM 1982-1991.

Tables | and Il document the NMSE values for predicting goiéaiion in India for months
March, June, September and December for the years 1986 &&lr&Spectively. The exper-
imental setup is as follows: We build models on the first twonthe of each quarter for all
the training years combined and test it on the third monthhef $ame quarter. In our first
experiment, we study the prediction for the year 1986 baseith® models built on observations
from the years 1982 to 1985. In the second experiment, theeglyamodels are built on all
years from 1982 to 1991 combined. For the experiments repdrere, we look at a°Zesolution
of the observation grid, which makes the kernel sige00 x 16200. This is done to keep the
running time reasonable for the experiments, although @oty the method can handle larger
kernel sizes. NMSE values in the table range from as low aso®% high as 1.3 for different
prediction scenarios. For example year 1986 has reasogaolg predictability and has lower
variation in the NMSE values than year 1996.

Although March, June and September have reasonably low NX8Ees for 1996, the month
of December does not have that indicating that the modeligired is working as poorly as
random for the different training years. For this study, NMSE value for the GPR model of
top k& values from SPI-GP is better than the best Full-GP modeligtied. This happens because
the most similar points capture more information and lesaa$e as has been verified earlier
in [3]. It can be noted the improvement in NMSE observed issighificant. This is partly due
to the fact that the precipitation prediction problem tha are studying is a difficult problem
in climate science since the data lacks reasonable quality.linear correlations for different
data subsets and different test sets can vary from -0.2 (weoy) to 0.88 (high correlation)
accounting for the high variability in the NMSE values olv&et for the different test scenarios.
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The exceptionally poor performance of the prediction mddelthe last two quarters of 1996
could also be attributed to changing climate during thatiogeof the year as compared to
historical observations from more than a decade ago.

The last data set that we have experimented with is the MORtS. ' he regression problem
for the data set is to predict frequency band 6, given band$ and 5. Here we report the
prediction results for three different days for the year200e choose a location in the California
central valley region as our test point. We have divided tagsdof the observations into three
groups representing winter (from January to April), sumrffesm May to August) and fall
(September to December). The results shown here are posdidor one day each from the
three groups. Similar to the climate data set, here also wetls# using SPI-GP to create a
smaller and less noisy data set improves the predictioneoGussian Process regression model.
The variation in the absolute values of NMSE for the threéed#int days can be attributed to
data quality. Since this is satellite data, seasonal vanstin cloud cover, haze, etc. can affect
the quality of the data being collected. Gaussian Procaggssion can be used in such cases

to create a stable and less noisy data set for such obse&rvatio

NMSE

Season

Full-GP

SPI-GP

Winter

0.018699

0.017698

Summer

0.541981

0.423473

Fall

0.425959

0.395641

TABLE 11l
NMSE FORBAND 6 PREDICTION INMODIS DATA SET FOR2001.

C. Interpretability of results on real-world data sets

In many real-life applications, we are often not only insteel in the accuracy of the prediction
model, but we also want to understand the model in order teebekplain the underlying
physical phenomenon driving the model predictability. he tcase of climate studies, model
interpretability can provide much coveted understandiingtich geographical regions are most

similar to other regions of interest, even when the relevagions are located far apart on the
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(@) Network representing a sub-matrix of the inve(bg® Network representing a sub-matrix of the sparse in-
covariance matrix verse covariance matrix estimated using SPI-GP

Fig. 5. Interpretability of the model is much higher in theseaf a parsimonious model.

earth’s grid. In this section, we discuss how the SPI-GP nsodan be interpreted to uncover
geographical relationships among different regions.

To illustrate how the SPI-GP method can be used for studyiimgate networks, we take a
small number of locations on the grid and compute the invessariance matrix for the climate
variable precipitation. We represent each point on thehsagrid as a node in a network and
the edges represent non-zero entries in the inverse coeari@atrix. We want to identify the
most similar nodes, given a reference node, highlightecethin Figure 5. As can be seen in
Figure 5(a), the true inverse covariance is difficult to usthnd or interpret, given the huge
amount of network connections for any particular node in gingph. It is important to note
that a large number of these connections are very small aomazalues, indicating almost no
connection between the corresponding pair of nodes. Figiimeis a sparse variant of the same
graph and shows only the important connections to the retewade. Thus SPI-GP increases
the interpretability of a Gaussian Process model.

For the NCEP/NCAAR data set, we study precipitation in théidn peninsula. We want to
identify points that have similar pattern as our test set stoudly how, if at all, these points
change over a course of 20 years. Since all climatic cormesithange very slowly with time,
we construct the relevant network connections for Indiaatipitation every 5 years. Fig. 6 shows
the results. Each plot in Fig. 6 is for the average of one gedata. The variable shown in the
figures is precipitation. The black markers are the locatiarindia. The yellow markers indicate
the top 10 areas which influence India. These are the pointhvitave the highest values in the

estimated inverse kernel matrix corresponding to testtpdor India. As Figure 6 shows, there
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are certain regions which remain similar to our test set lier éntire period of 20 years, while
others appear and disappear over time. Some locations whiml consistent influence pattern
include the west coast of South America, west coast of Aframad east coast of Australia.
This shows that there is a clear climatic connection betwberprecipitation patterns of these
regions. Some less consistent locations include areas imaGvhich are evolving connections
which might become consistent over time.

For the MODIS data set, we look for vegetation patterns thatraost similar to a chosen
area of the California Central valley. In this study we look §easonal variation in similarity of
vegetation. We coarsen the MODIS data of 1 km resolution ton5akd study this variation for
the year 2001. Fig. 7 shows the results. The area of the temaltay that we are interested in,
is highlighted using a black square marker on the map of @aii&. The color map shows the
observed values of vegetation index for a particular con@as 2001. The red circled markers
indicate 5 locations in California whose vegetation indsxsimilar to our region of interest.
We notice that there is some overlap between these similatspm winter and summer and
overlap between a different set of locations for the summelr fall. This indicates changes in
the vegetation pattern in the state of California acrostemiht seasons and such observation

may be very significant in decision support systems in withicatjure and planning.

VI. CONCLUSION

In this paper we discuss a method for sparse inverse Gau®siaass regression that allows us
to compute a parsimonious model while preserving the ing¢apility of the sparsity structure
in the data. We discuss how the inverse kernel matrix usedans8an Process prediction
gives valuable information about the regression model &meth adapt the inverse covariance
estimation from Gaussian graphical models to estimate thas&an kernel. We solve the
optimization problem using the alternating direction neetlof multipliers that is amenable to
parallel computation. This sparsity exploiting GPR tecjuai achieves two goals: (i)it provides
valuable insight into the regression model and (ii)it akofer parallelization so that the entire
kernel matrix need not be loaded into one memory, therebyverg size related constraints
plaguing large scale analysis. We perform extensive expmaris on both synthetic and real-
world data sets and report various computational aspecteeoflgorithm, namely scalability

and accuracy. We also illustrate how this method producest@npretable model thats aids
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(a) Most influential points affecting precipitation in lrdbased on observations recorded in the year
1982

(b) Most influential points affecting precipitation in Iredbased on observations recorded in the year
1986

(c) Most influential points affecting precipitation in Iedbased on observations recorded in the year
1991

(d) Most influential points affecting precipitation in Iredbased on observations recorded in the year
1996

(e) Most influential points affecting precipitation in llrdbased on observations recorded in the year
2001

Fig. 6. Evolution of the precipitation network over 20 yeéss the Indian peninsula
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(a) Vegetation index similarity for California cerfb) Vegetation index similarity for California cen-
tral valley region for winter tral valley region for summer

(c) Vegetation index similarity for California cen-
tral valley region for fall

Fig. 7. Seasonal variation of the vegetation index sintifaior California central valley region
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understanding the underlying physical phenomenon redpentor model predictability. For

future work, we want to explore these models in details wighphfrom domain scientists to

discover new relationships and explain current obsematio climate. In terms of the algorithm,

we want to develop an approximate version of the optimimapmblem that is decomposable

and, therefore, amenable to distributed computing in a Hoargely coupled computing scenario.

ACKNOWLEDGEMENTS

This work was supported by the Systemwide Safety and Assardechnologies project of

Aviation Safety Program under the NASA Aeronautics Missizirectorate.

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]
9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

O. Banerjee, L. Ghaoui, A. d’Aspremont, and G. Natsaul@onvex optimization techniques for fitting sparse Gaussia
graphical models. IfProceedings ICML-06pages 89-96, 2006.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Ecksteistribiuted Optimization and Statistical Learning via théefthating
Direction Method of Multipliers.Foundations and Trends in Machine Learnjrizp11.

K. Das and A. Srivastava. Block-GP: Scalable Gaussiancéss Regression for Multimodal Data. Tie 10th IEEE
International Conference on Data Mining, ICDM 2Q01fages 791-796, 2010.

K. Das and A. Srivastava. Sparse inverse gaussian maeggsession with application to climate network discovdry
Proceedings of 2011 Conference on Intelligent Data Una@&iding pages 233-247, 2011.

A. P. Dempster. Covariance SelectidBiometrics 28:157-175, 1972.

J. Donges, Y. Zou, N. Marwan, and J. Kurths. Complex nekson climate dynamicsEPJ Special Topigsl74:157-179,
2009.

J. Eckstein and D. Bertsekas. An alternating directicethad for linear programming. Technical Report LIDS-P ; 1,96
MIT, 1990.

B. Efron, T. Hastie, |. Johnstone, and R. Tibshirani. $teangle regressiorAnnals of Statistics32(2):407—-499, 2004.

L. Foster, A. Waagen, N. Aijaz, M. Hurley, A. Luis, J. Rk C. Satyavolu, M. Way, P. Gazis, and A. Srivastava. Stable
and Efficient Gaussian Process CalculatiodiglLR 10:857—-882, 2009.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse swerovariance estimation with the graphical las&iostatistics
Journal 9(3):432-441, 2008.

M. Fukushima. Application of the alternating directimethod of multipliers to separable convex programmindiems.
Computational Optimization and Applicatign&:93-111, 1992.

M. H. Glantz, R. W. Katz, and N. NichollsTeleconnections linking worldwide climate anomalies estific basis and
societal impact Cambridge University Press, 1991.

C. Hsieh, M. Sustik, I. Dhillon, and P. Ravikumar. Sparsverse covariance matrix estimation using quadratic
approximation. InAdvances in Neural Information Processing Systems2241.

E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deay, L. Candin, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chaélli

W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mot, C. Ropelkiw#\. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph.
The NCEP/NCAR 40-Year Reanalysis ProjeBt. Am Metrolo. So¢.77(3):437—-471, 1996.

January 31, 2013 DRAFT



[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]

[26]

[27]
(28]

[29]

[30]

31

S. Kasiviswanathan, P. Melville, A. Banerjee, and Vi@iwani. Emerging topic detection using dictionary leagniIn
Proceedings of CIKM 2011pages 745-754, 2011.

N. Meinshausen, P. Bhimann, and E. Zrich. High DimenaldcGraphs and Variable Selection with the LasSonals of
Statistics 34:1436-1462, 2006.

J. Quifionero-Candela and C. E. Rasmussen. A Unifyiilegy\6f Sparse Approximate Gaussian Process RegresHidinR
6:1939-1959, 2005.

C. E. RasmusserGaussian Processes for Machine LearnifdIT Press, 2006.

A. J. Smola and P. Bartlett. Sparse Greedy GaussiareBsdRegression. IRroc. of NIPS 13 pages 619-625, 2000.
E. Snelson and Z. Ghahramani. Sparse gaussian precesisgy pseudo-inputs. IRroceedings of NIPS 1&8005.

K. Steinhaeuser, N. Chawla, and A. Ganguly. An exploratof climate data using complex networksSIGKDD
Explorations Newsletterl2:25-32, November 2010.

K. Steinhaeuser, N. Chawla, and A. Ganguly. Complexwosgts as a unified framework for descriptive analysis and
predictive modeling in climate scienc€ADM J, 4(5):497-511, 2011.

R. Tibshirani. Regression Shrinkage and Selection tffia Lasso. Journal of the Royal Statistical Society, Series B
58:267-288, 1994.

V. Tresp. The generalized bayesian committee macHméroc. of KDD, pages 130-139, 2000.

A. Tsonis, K. Swanson, and P. Roebber. What do netwosak® tio do with climate BAMS 87:585-595, 2006.

A. A. Tsonis, K. L. Swanson, and P. J. Roebber. What dovasts have to do with climateBulletin of the American
Meteorological Society87(5):585-595, 2006.

G. Wahba.Spline Models for Observational Dat&1AM, 1990.

P. Weiss, V. Lobojois, and D. Kouame. Alternating difea method of multipliers applied to 3d light sheet fluorsce
microscopy image deblurring using gpu hardware Ploceedings of IEEE EMBC 201pages 4872—4875, 2011.

F. Yan and Y. Qi. Sparse Gaussian Process Regressigh Wanalization. IrfProceedings of ICML-10pages 1183-1190,
2010.

G. Ye, Y. Chen, and X. Xie. Efficient variable selectiansupport vector machines via the alternating directionhioet

of multipliers. Journal of Machine Learning Research - Proceedings Trd&k832-840, 2011.

January 31, 2013 DRAFT



