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Abstract

Regression problems on massive data sets are ubiquitous in many application domains including

the Internet, earth and space sciences, and finances. Gaussian Process regression is a popular technique

for modeling the input-output relations of a set of variables under the assumption that the weight vector

has a Gaussian prior. However, it is challenging to apply Gaussian Process regression to large data sets

since prediction based on the learned model requires inversion of an ordern kernel matrix. Approximate

solutions for sparse Gaussian Processes have been proposedfor sparse problems. However, in almost

all cases, these solution techniques are agnostic to the input domain and do not preserve the similarity

structure in the data. As a result, although these solutionssometimes provide excellent accuracy, the

models do not have interpretability. Such interpretable sparsity patterns are very important for many

applications. We propose a new technique for sparse Gaussian Process regression that allows us to

compute a parsimonious model while preserving the interpretability of the sparsity structure in the

data. We discuss how the inverse kernel matrix used in Gaussian Process prediction gives valuable

domain information and then adapt the inverse covariance estimation from Gaussian graphical models to

estimate the Gaussian kernel. We solve the optimization problem using the alternating direction method

of multipliers that is amenable to parallel computation. Wecompare the performance of this algorithm

to different existing methods for sparse covariance regression in terms of both speed and accuracy. We

demonstrate the performance of our method in terms of accuracy, scalability and interpretability on two

different satellite data sets from the climate domain.

Keywords: sparse regression, Gaussian processes, Earth science data, ADMM

I. INTRODUCTION

In many application domains, it is important to predict the value of one feature based on

certain other measured features. For example, in the Earth Sciences, predicting the precipitation

at one location given the humidity, sea surface temperature, cloud cover, and other related factors

is an important problem in climate modeling. For such problems, simple linear regression based

on minimization of the mean squared error between the true and predicted values can be used

for modeling the relationship between the input and the target features. In decision support

systems which use these predictive algorithms, a prediction with low confidence may be treated

differently than if the same prediction was given with high-confidence. Thus, while the predicted

value from the regression function is clearly important, the confidence in the prediction is equally

important. A simple model such as linear regression does notprovide us with that information.

Also, models like linear regression, in spite of being easy to fit and being highly scalable, fail to
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capture nonlinear relationships in the data. Gaussian Process regression (GPR) is one regression

model that can capture nonlinear relationships and outputsa distribution of the prediction where

the variance of the predicted distribution acts as a measureof confidence in the prediction.

Moreover, the inverse kernel (or covariance) matrix has many interesting properties along the

gaussian graphical model perspective, that can be exploited for better understanding relationships

within the training examples. Depending on the nature of thedata, these relationships can indicate

dependencies (causalities) for certain models.

However, predictions based on GPR method, requires inversion of a kernel (or covariance)

matrix of sizen×n, wheren is the number of training instances. This kernel inversion becomes

a bottleneck for very large data sets. Most of the existing methods for efficient computation in

GPR involve numerical approximation techniques that exploit data sparsity. While this does speed

up GPR computations, one serious drawback of these approximations is that the resulting GPR

model loses interpretability. Even if we get reasonably accurate predictions, we fail to unearth

significant connections between the training points or identify the most influential training points

for a specific set of test points. Sometimes such relationships reveal important information about

the application domain. For example, in studies of climate network, we can find which locations

on the Earth’s grid have significant impact on a specific groupof test locations. Depending on

whether the regression problem is time-delayed with respect to the target variable, this method

can also reveal unknown teleconnection patterns which are otherwise extremely difficult to find

based on existing climate indices.

In this paper we propose a sparse GPR algorithm which not onlyscales to very large data sets

but also allows us to construct a complete yet sparse inversecovariance matrix, thereby facilitating

interpretability. The method proposed in this paper induces sparsity by introducing a regularizer in

a pseudo negative log likelihood objective used for covariance selection. This forces the algorithm

to seek a parsimonious model for GPR prediction having excellent interpretability. One of the

highlights of the solution technique used in this paper is a completely parallelizable framework

for solving the inverse covariance estimation problem using the alternating direction method of

multipliers (ADMM) that allows us to exploit modern parallel and multi-core architectures. This

also addresses the situation where the entire covariance matrix cannot be loaded into memory

due to size limitations.

The rest of the paper is organized as follows. In the next section (Section II) we present some
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background material related to GPR and some existing methods of solving the GPR problems.

In Section III we discuss the equivalence between inverse kernel and covariance matrices. Next

we present our new sparse inverse covariance matrix using ADMM technique (Section IV).

Experimental results are discussed in Section V. We conclude the paper in Section VI.

II. BACKGROUND: GAUSSIAN PROCESSREGRESSION

Since this paper proposes a technique of model fitting using Gaussian Process regression, we

start with a brief review of it here. Rasmussen and Williams [18] provide an excellent introduction

on this subject. Gaussian Process regression is a generalization of standard linear regression. If

X is the training data set havingn multidimensional observations (rows)x1, . . . ,xn, with each

xi ∈ R
D and the corresponding target is represented by an × 1 vector y, then the standard

linear regression model is:

f(x) = xwT , y = f(x) + ǫ

wherew is aD-dimensional weight vector of parameters andǫ is additive Gaussian noise such

that ǫ ∼ N (0, σ2). Assuming that we choose the prior distribution of the weights to be Gaussian

with mean zero and covarianceΣp, the posterior distribution of the weights, following Bayesian

inferencing techniques, can be written as:

p(w|X,y) ∼ N
(

1

σ2
A−1XTy, A−1

)

whereA = σ−2XTX + Σ−1
p . Given the posterior and the likelihood, the predictive distribution

of a test inputx∗ is obtained by averaging over all possible models (w) to obtain:

p(y∗|x∗,X,y) ∼ N
(

1

σ2
x∗A−1XTy,x∗A−1x∗T

)

Using a kernel (covariance) functionk(xi,xj) in place of a mapping from input space to an

N-dimensional space, and applying some algebraic manipulations, we can write the predictive

mean and variance of the posterior distribution as

ŷ∗ = K∗(σ2I +K)−1y (1)

C = K∗∗ −K∗(σ2I +K)−1K∗T (2)
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where theijth entry of K isk(xi,xj) andK∗ andK∗∗ are similarly the cross covariance matrices

involving the test pointx∗. Equations 1 and 2 pose significant computational challengedue to

the requirement of inverting the covariance matrixK of sizen2. If the number of observations

n is large, theO(n3) operation can be a bottleneck in the process of using Gaussian Process

regression.

In the next section, we discuss several techniques that havebeen proposed in the literature

for approximating the inverse matrix for large datasets.

A. Existing methods for efficient GP computation

Approximations are introduced in the Gaussian Process literature for either finding closed-

form expressions for intractable posterior distributionsor for gaining computational advantage

for large data sets. Here we are interested in the second goaland, therefore, briefly discuss the

existing research in this area. Smola and Bartlett [19] describe a sparse greedy method that does

not require evaluating the full covariance matrixK and finds an approximation to the maximum

aposteriori estimate by selecting an ‘active’ subset of columns ofK by solving an expensive

optimization problem. The running time of the numerical approximation is reduced fromO(n3)

to O(nm2) wherem (m ≪ n) is the rank of the matrix approximation.

A related approach of low rank matrix approximation called the subset of regressors method

[27] involves selecting the principal sub-matrix of the unperturbed covariance matrixK by matrix

factorization. Though this method has been found to be numerically unstable, recent research

by Fosteret al. [9] has shown that if we use partial Cholesky decomposition to factorize the

covariance matrix and perturb the low rank factor such that independent rows and columns form

the principal sub-matrix, then the approximation we get is numerically stable. The authors report

excellent accuracy using their approximation calculations when the rank of the reduced matrix

is a small factor (5) times the rank of the original data matrix X.

The generalized Bayesian committee machine [24] is anotherapproach for reducing the compu-

tational complexity of any kernel-based regression technique, by dividing the data arbitrarily into

M almost equal sized partitions, training a different estimator on each partition, and combining

the estimates given by the different estimators using the inverse of the variance to ensure that least

certain predictions are given the smallest weights in the final prediction. This method allows us

to chooseM to be equal toKα so that it becomes linear inK in computational complexity. The
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Bayesian Committee Machine weights the training data basedon the test points using a block

diagonal approximation and, therefore, the model needs to be retrained every time a new test set

comes in. A related method recently proposed by Das and Srivastava [3] works for multimodal

data. It partitions the input space into multiple clusters,with each one corresponding to one

mode of the data distribution. Then, each cluster is modeledusing a normal distribution and all

points which are not modeled by any of the normal distributions are grouped using a separate

cluster. Each cluster learns a separate GP model and a weighted sum based prediction is used

for the gating.

A recent development is theℓ1 penalized GPR method (GPLasso) introduced by Yan and Qi

[29] in which the authors explore sparsity in the output rather than the input. They propose a GPR

technique that minimizes the Kullback-Leibler divergencebetween the posterior distributions of

the exact and the sparse solutions using aℓ1 penalty on the optimization. They pose this problem

as a LASSO optimization [23] and solve a rank reduced approximate version of this using the

Least Angle Regression (LARS) method [8]. The authors present this work as a pseudo output

analogy of the work by Snelsonet al. [20]. Quiñonero-Candela and Rasmussen [17] provide

a unifying view of all sparse approximation techniques for Gaussian Process regression by

analyzing the posterior and reinterpreting each algorithmas an exact inferencing method using

approximate priors.

All the methods discussed in this section apply some form of numerical approximation

technique to reduce the rank of the kernel matrix for efficient matrix inversion. As a result, they

often lose model interpretability — a value at any position of the reduced rank inverted matrix

cannot be traced back to any cell of the original kernel. In many domains, however understanding

the sparsity structure is important. For example, in Earth Sciences, it is not only important to

get good predictions from the GPR model, but it is also important to understand how different

geographical regions are connected and how these locationsinfluence one another. Unfortunately,

none of the efficient GPR techniques allow this. Our proposedtechnique in the next section not

only learns a sparse GP model but also allows domain scientists to draw conclusions about the

sparsity structure by studying the inverse covariance matrix.
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III. SPI-GP:SPARSE GAUSSIAN PROCESS USING INVERSE COVARIANCE ESTIMATION

Let x1,x2, . . . ,xn be a set of multi-dimensional gaussian observations such that

xi ∼ N (µ,Σ) ∈ R
d

whereµ ∈ R
d andΣ ∈ R

d×d are the mean and covariance matrices. While the meanµ measures

the center of the distribution, the covariance matrixΣ measures the pairwise (linear) relationship

between the variables. It is well known that a value of 0 at anycell of Σ implies independence

of the observations:

Σi,j = 0 ⇒ P (xixj) = 0

which meansxi andxj are independent. In many cases, we may be interested in studying how

two variables influence each other when the information about the other variables are taken into

consideration. One way of doing this is by studying the inverse covariance matrix, also known

as the concentration matrix or precision matrix denoted byΣ−1. Unlike Σ, a value of 0 in any

cell of Σ−1 implies conditional independence among those variables [1]. For example,xi and

xj are conditionally independent, given all the other variables, if Σ−1=0. Mathematically,

Σ−1

i,j = 0 ⇒ P (xixj|x−i,−j) = 0

wherex−i,−j denotes all the variables other thanxi andxj . Note that independence of elements

implies conditional independence but not vice-versai.e. a value of 0 at any cell ofΣ implies that

the corresponding location ofΣ−1 is also 0; but a non-zero value at any cell ofΣ matrix does

not imply that the corresponding cell ofΣ−1 will also be non-zero. The reason for studying

Σ−1 rather thanΣ, is for many gaussian distributed variables, there is more sparsity in the

inverse covariance matrix than in the covariance matrix andthis sparsity reveals interesting data

relationships. It has been shown in [10], that inverting a covariance matrix (with the additional

assumption that the inverse is sparse) is equivalent to learning a graphical model, where each

node in the model corresponds to a feature and the absence of an edge between any two signifies

that those features are conditionally independent.

In the case of GPR, the kernel matrix between the observations (see Eqn. 1 and 2) can be

viewed as a covariance matrix among the function outputs. Formally, a gaussian process is defined
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as a collection of random variables, any finite number of which is jointly gaussian. Hence, it is

a distribution over functions, completely specified by its mean function and covariance function

as,

f(xi) ∼ GP (m(xi), k(xi,xj))

wherem(xi) = E[f(xi)] andk(xi,xj) = E[f(xi)−m(xi)][f(xj)−m(xj)] are the mean function

and covariance function of some real processf(xi). Note thatf(xi) are random variables and

GP fits a distribution over all possiblef(xi). In our case sincef(xi)’s are linear functions

f(xi) = xiw
T , the mean and covariance of GP can be stated as,

m(xi) = E[f(xi)] = xiE[wT ] = 0

k(xi,xj) = E[f(xi)f(xj)] = xiE[wTw]xT
i = xiΣpx

T
i

wherew ∼ N(0,Σp) denotes the prior distribution of the weights. The covariance functionk,

also known as the kernel function specifies the covariance between a pair of random variables

cov(f(xi), f(xj)) = E[f(xi)f(xj)] = k(xi,xj)

Therefore, a kernel function computed over the pairwise input points is equivalent to a covariance

between the outputs. There are several choices of the kernelfunctions available. In this paper

we have used the widely used gaussian radial basis function (rbf) kernel:

k(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)

whereσ is known as the bandwidth parameter which is typically learned from the data.

In many GPR applications, it is not only important to get goodprediction accuracy, but also

understand the model. For example, in Earth Sciences, teleconnections [12] reveal important

symmetric and sometimes causal relationships among different events observed in geographically

distant locations and can be studied by exploiting sparsityin the inverse kernel in GPR. Another

possible application area is the study of climate networks [21][26][22][25][6]. Fig. 1 (left) shows

the observed precipitation data of the world overlaid on a360 × 720 grid. Figs. 1 (center and

right) show a kernel or similarity matrix generated from thedata and the corresponding inverse

covariance matrix. The highlighted row and column correspond to the location marked in white
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on the world map. Each cell in the kernel denotes the similarity between the precipitation values

of a pair of grid locations. If a cell has a value of 0 in the kernel matrix, it implies independence of

those two points, whereas, a 0 value in the inverse kernel matrix implies conditional independence

between the pair of points, given all the other observations. Since absolute independence is

a much more strict condition to satisfy for two random variables, compared to conditional

independence, the inverse kernel is a much sparser matrix tostudy than the kernel. This is

clearly observed in Figure 1. Therefore, in this paper we areinterested in studying the sparsity

pattern of the inverse covariance matrix, with the information that sparsity patterns in the inverse

covariance matrix leads to conditional independence amongthe locations of interest.
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Fig. 1. Precipitation data of the world map (top figure). Notethat the data is only available for land (the ocean locationshave
fill values of -9999). The figure in the center shows a kernel inwhich similarity is computed between every pair of locations
from the precipitation data. Note the location marked with acircle on the left figure corresponds to the row and column in blue
on the center and right figure. The right figure shows the inverse kernel matrix.

IV. SPARSE COVARIANCE SELECTION

There exist several techniques in the literature for solving the inverse covariance estimation

problem also known as the covariance selection problem.

Given a data set containingd features, Meinshausenet al. [16] infers the graphical model (and

therefore the inverse covariance matrix) by taking one variable at a time and then finding all the
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connections of that variable with all of the other ones. For each variabledi in the dataset, the

method constructs a lasso regression problem by taking all the other variables as inputs anddi

as the target with an additional sparsity constraint on the solution weights. The non-zero entries

of the weight vector signifies a connection between that feature and the targetdi. To deal with

inconsistencies among the connections, the authors have proposed two schemes: (1) in theAND

technique, an edge is established in the graphical model between any two featuresdi anddj iff

both di anddj have non-zero entries in the weight vector when they are eachused as target in

different lasso problems, and (2) in theOR scheme, an edge is established if eitherdi or dj has

a non-zero weight when the other is taken as the target. One serious drawback of this method is

the number of independent lasso problems increases linearly with the size of the feature space.

Banerjeeet al. [1] propose a different solution to the inverse covariance selection problem.

They show that based on Dempster’s theory [5], estimating the inverse covariance matrix is

equivalent to minimizing the pseudo negative log likelihood. The objective function takes the

form:

Tr(KS)− log det(S)

whereK is the empirical covariance (or kernel) matrix andS is the desired inverse ofK i.e.

S = K−1, Tr(·) is the trace of a matrix, anddet(·) is the matrix determinant. Solution to the

above equation is stable when an additional sparsity constraint is imposed on the inverse,i.e.

Tr(KS)− log det(S) + λ ‖S‖

whereλ controls the degree of sparsity. This is a convex optimization problem and in order to

solve this, the authors propose a block-wise interior pointalgorithm.

Friedmanet al. [10] generalizes both these papers and present a very efficient algorithm based

on the lasso technique. Their objective function is the sameas used by Banerjeeet al. [1] i.e.

they try to maximize the log likelihood of the model with the additional sparsity constraint. They

show that the solution proposed by Meinshausen [16] is an approximation of the log likelihood

estimate proposed by Banerjeeet al. [1]. They propose a new algorithm based on coordinate

descent to solve the same trace minimization problem. This algorithm is based on recursively

solving lasso subproblems for each variable until convergence. The authors note that this new

algorithm is at least 50 to 4000 times faster than existing techniques and therefore scales to
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much larger data sets.

Very recently Hsieh et al. [13] proposed a new approach for solving the maximum likelihood

problem much faster than existing methods. Unlike existingtechniques that use first order

gradient descent for optimization, the authors resort to a Newton’s method based quadratic

approximation that accounts for the structure of the MLE problem. This method can scale to

about 10,000 data points.

However, there is one drawback common to all these optimization techniques. All these tech-

niques assume that the data can be loaded in computer memory for the analysis. Unfortunately,

in applications such as Earth Sciences, most datasets are massive — they contain millions of

observations (locations) and therefore constructing a full covariance matrix in memory is itself

impossible, leaving aside the computational power necessary to run these optimization techniques

for inverse estimation. To solve the large scale inverse covariance estimation problems which

do not fit into the memory of one machine, in this paper we propose our SPI-GP method which

works by distributing the workload among a network of machines. The technique we follow

is based on the method of Alternating Direction Method of Multipliers (ADMM) which is a

distributable algorithm for solving very large convex optimization problems. We give a brief

overview of ADMM technique in the next section.

A. Alternating Direction Method of Multipliers for convex problems

Alternating Direction Method of Multipliers (ADMM) [11][7][2] is a decomposition algorithm

for solving separable convex optimization problems of the form:

min G1(x) +G2(y) subject to Ax− y = 0, x ∈ R
n, y ∈ R

m

whereA ∈ R
m×n andG1 andG2 are convex functions. The algorithm derivation is as follows.

First, the augmented Lagrangian is formed:

Lρ(x, y, z) = G1(x) +G2(y) + zT (Ax− y) + ρ/2 ‖Ax− y‖2
2
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whereρ is a positive constant known as the penalty parameter. ADMM iterations can then be

written as:

xt+1 = min
x

{
G1(x) + ztTAx+ ρ/2

∥∥Ax− yt
∥∥2
2

}
(3)

yt+1 = min
y

{
G2(y)− ztT y + ρ/2

∥∥Axt+1 − y
∥∥2
2

}
(4)

zt+1 = zt + ρ
(
Axt+1 − yt+1

)
(5)

This is an iterative technique wheret is the iteration counter, and the initial vectorsy0 and z0

can be chosen arbitrarily. ADMM can be written in a differentform (known as the scaled form)

by combining the linear and quadratic terms of the Lagrangian:

zT (Ax− y) + ρ/2 ‖(Ax− y)‖2
2

= ρ/2 ‖(Ax− y) + (1/ρ)z‖2
2
− 1/(2ρ) ‖z‖2

2

Now scaling the dual variablep = (1/ρ)z, the iterations of ADMM become:

xt+1 = min
x

{
G1(x) + ρ/2

∥∥Ax− yt + pt
∥∥2
2

}
(6)

yt+1 = min
y

{
G2(y) + ρ/2

∥∥Axt+1 − y + pt
∥∥2
2

}
(7)

pt+1 = pt + ρ
(
Axt+1 − yt+1

)
(8)

It has been argued [11] that ADMM is very slow to converge especially when high accuracy is

desired. However, ADMM converges within a few iterations when moderate accuracy is desired.

This can be particularly useful for many large scale problems similar to the one we consider in

this paper.

Critical to the working and convergence of the ADMM method isthe termination criterion.

The primal and dual residuals are:

rt+1

p = Axt+1 − yt+1 (primal residual)

rt+1

d = ρA(yt+1 − yt) (dual residual)

A reasonable termination criterion is when either the primal or the dual residuals are below some

thresholdsi.e.
∥∥rt+1

p

∥∥
2
≤ ǫp and

∥∥rt+1

d

∥∥
2
≤ ǫd.
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whereǫp andǫd are the primary and dual feasibility tolerances. Using user-defined values forǫ1

and ǫ2, these tolerances can be stated as,

ǫp = ǫ1
√
m+ ǫ2 max

(∥∥Axt+1
∥∥
2
,
∥∥yt+1

∥∥
2

)

ǫd = ǫ1
√
n + ǫ2

∥∥ATpt+1
∥∥
2
.

Although we have used ADMM here for solving the inverse kernel estimation problem, it has

been used for many tasks such as text mining [15], classification [30], gene expression network

optimization, image reconstruction and de-blurring usingGPU [28] and many more.

In the next section we discuss the ADMM update rules for the sparse inverse covariance

estimation problem.

B. Alternating Direction Method for sparse inverse kernel estimation

We start with the prior assumption that the inverse kernel matrix K−1 is sparse. This is a

reasonable assumption when studying climate data, becausegiven a locationi.e. any row of the

inverse kernel matrix, there are few major locations which influence this location.

With such an assumption, the ADMM algorithm is as follows. Let K be the observed kernel

matrix between the grid locations. For a moderate sizedK, one can search over all sparsity

patterns, since for a fixed sparsity pattern the log likelihood estimate ofK is a tractable problem.

However, this becomes very challenging for largeK. One technique which has been used earlier

for sparse covariance selection problem [1] is to minimize the negative log likelihood ofS = K−1

with respect to the observed data with a penalty term added toinduce sparsity. This resulting

objective function can be written as

min Tr(KS)− log det(S) + λ ‖S‖
1

where‖·‖
1

is theℓ1-norm or the sum of the absolute values of the entries of a matrix andλ is a

constant which determines the amount of sparsity. Larger the value ofλ, sparser is the solution

S. The ADMM version of this problem can be written as follows:

min Tr(KS)− log det(S) + λ ‖Y ‖
1

subject to S − Y = 0

By constructing the augmented Lagrangian and using the derivations given in Section IV-A for
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the scaled version of the problem, the ADMM updates for the above estimation problem are:

St+1 = min
x

(Tr(KS)− log det(S) + ρ/2
∥∥S − Y t + P t

∥∥
F
) (9)

Y t+1 = min
y

(
λ ‖Y ‖

1
+ ρ/2

∥∥St+1 − Y + P t
∥∥
F

)
(10)

P t+1 = P t +
(
St+1 − Y t+1

)
(11)

with ‖·‖F denoting the Frobenius norm of a matrix. These updates can besimplified further.

Taking the derivative of Eqn. 9 and setting it to 0 we get,

K − S−1 + ρ(S − Y t + P t) = 0

⇒ ρS − S−1 = ρ(Y t − P t)−K

Now let QΛQT be the eigen decomposition ofρ(Y t −P t)−K. Therefore, continuing from the

previous step,

ρS − S−1 = ρ(Y t − P t)−K

⇒ ρS − S−1 = QΛQT

⇒ ρQTSQ−QTS−1Q = QTQΛQTQ

⇒ ρŜ − Ŝ−1 = Λ [sinceQTQ = QQT = I] (12)

whereŜ = QTSQ. Solution to Eqn. 12 can easily be found noting that the righthand side is a

diagonal matrix of the eigenvaluesλi’s. For each diagonal entry of̂Sii, ∀i = 1 : n, we have

ρŜii − Ŝ−1

ii = λi

which, using the formula of finding the roots of a quadratic equation is

Ŝii =
λi +

√
λ2
i + 4ρ

2ρ

Therefore,S = QŜQT is the optimal value of theS minimization step. In our studies we have

used the full eigen decompositionQΛQT . To reduce complexity, we can use power method to

extract the top few eigenvalue-eigenvector pairs (based ona threshold of how much of variance

is captured) and set the other pairs to 0. This would set thoseŜii = 1/
√
ρ, while keeping the
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others the same. We plan to study the effect of the accuracy and running time of SPI-GP on the

percent of variance captured by the eigen decomposition method in our future work.

Eqn. 10 can also be simplified further and can be written as theelement-wise soft thresholding

operation:

Y t+1

ij = ℑλ/ρ

(
St+1

ij + P t
ij

)

Once the sparse inverse kernels are constructed, they can beplugged back into Eqn. 1 and

2 to compute the final prediction mean and variance. Note that, the other kernel matricesK∗

andK∗∗ are computed among the test points and hence they are fairly small. Moreover, these

matrices do not require matrix inversion.

In the next section we describe the SPI-GP algorithm in details.

C. SPI-GP: algorithm description

The SPI-GP algorithm is based on the ADMM technique described in the previous section. Alg.

1 presents the pseudo-code of the algorithm. The inputs are the kernelK, algorithm parameters

λ and ρ, number of iterationsnumIter and the error tolerancesǫ1 and ǫ2. The output of the

algorithm is the estimated inverse ofK in S = K−1. The algorithm proceeds in an iterative

fashion. In every iteration, an eigen decomposition is performed of the matrix

[Q Λ] = ρ(Y t−1 − P t−1)−K.

The eigenvaluesΛ and eigenvectorsQ are used to update theS variable. TheY -update is a

soft thresholding operation of(St + P t−1) with thresholdλ/ρ. Finally, theP -update is a linear

dual variable update. Also during each iteration, the primal and dual residualsrp and rd are

computed along with the corresponding error thresholds. Whenever the residuals become less

than the error thresholds, the algorithm stops. The result is returned in the matrixS. In our

experiments we have chosenρ = 1

Computational complexity of ADMM: Since the algorithm requires eigen decomposition for

everyS update, and theY andP updates are constant time operations, the runtime complexity

is O(mn3), wherem is the number of iterations andn is the size of the dataset (training points).
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Algorithm 1: SPI-GP: ADMM for Sparse Kernel Inversion
Input: K, ρ, λ, numIter, ǫ1, ǫ2
Output: S = K−1

Initialization: Y 1 = 0, P 1 = 0
begin

for t=2 to numIterdo
[Q Λ] = evd[ρ(Y t−1 − P t−1)−K];
for i=1 to n do

Ŝii =
λi+

√
λ2

i
+4ρ

2ρ
;

St = QŜQT ;
Y t = softThreshold[(St + P t−1) , λ/ρ];
P t = P t−1 + (St − Y t);
rp = ‖St − Y t‖F ;
rd = ‖−ρ(St − Y t−1)‖F ;
ǫp = ǫ1

√
n + ǫ2max(||St||F , ||Y t||F );

ǫd = ǫ1
√
n+ ǫ2||ρP t||F ;

if (rp < ǫp) AND (rd < ǫd) then
break;

Convergence of ADMM: In order to ensure convergence of ADMM, two basic assumptions are

necessary: (1) the functionsG1 andG2 are closed, proper and convex, and (2) the unaugmented

Lagrangian has a saddle point. Based on these two conditions, it can be shown that [2]:

• primal residual approaches 0 i.e.rt → 0 as t → ∞
• the objective function approaches the optimal value

• dual variableP approaches feasibility

In practice however, ADMM may be slow to converge. This type of algorithms, are therefore,

more useful when moderate accuracy is necessary within a relatively few iterations. Although this

algorithm is slow and sometimes has convergence issues, it is the only method that is amenable

to parallel computing which is essential for many large datasets that do not fit in the main

memory of a single machine.

D. SPI-GP: distributed implementation

As we have discussed earlier, ADMM is amenable to distributed computation in a network

of machines. This becomes particularly important when the data does not fit into the memory
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of one machine. This form of ADMM is known as consensus optimization. In this form, the

objective functionG1 needs to be decomposable acrossℓ nodesM1, . . . ,Mℓ as follows:

min
∑ℓ

i=1
G1(xi) +G2(y) subject to Axi − y = 0, xi ∈ R

n, y ∈ R
m

wherexi is thei-th block of data and is stored at machineMi. The solution to this optimization

is the same as given in Section IV-A. The update rules can be written as,

xt+1

i = min
xi

{
G1(xi) + ztTAxi + ρ/2

∥∥Axi − yt
∥∥2
2

}

yt+1 = min
y

{
G2(y) +

ℓ∑

i=1

(
−ztTi y + ρ/2

∥∥Axt+1

i − y
∥∥2
2

)}

zt+1

i = zti + ρ
(
Axt+1

i − yt+1
)

Unfortunately, the above method cannot be applied for the optimization of the inverse covari-

ance matrix in our case. This is becauselog det(S) is not a decomposable function.

Therefore, to solve this problem for large kernel matrices,we use the ScaLAPACK routine of

Matlab. It allows the kernel matrix to be distributed acrossdifferent machines, but still compute

the eigen decomposition correctly. For a Matlab implementation, this is done using the co-

distributed array data structure and an overloadedeig function. It should be noted here that

this methoddoes notattempt to speed up the GPR process. Instead, it makes GPR possible for

extremely large data sets where the entire kernel matrix cannot be loaded in the main memory

due to size limitations.

V. EXPERIMENTAL RESULTS

For the performance study of SPI-GP, the experimental results are reported on a synthetic

multivariate Gaussian distribution data set, two relatively small benchmark data sets from the

GPR literature, and two different real life climate domain data sets. For generating the multivari-

ate Gaussian, we fix the number of dimensions and samples. We then generate a sparse inverse

covariance matrix with all zeros and ones along the diagonal. We randomly insert ones at certain

locations in our inverse covariance. We make this inverse matrix symmetric and positive definite

(by making the minimum eigenvalue positive). Finally we invert this matrix and draw Gaussian

samples with zero mean which becomes the covariance matrix input to our algorithm. Using

this data set we demonstrate the scalability of the distributed SPI-GP method on a cluster of
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computing nodes. The benchmark data sets that we have used, are used in the Gaussian Process

Regression literature for performance validation [29]. The first data set (Snelson) is a small

synthetic data set used by Snelsonet al. [20] in the sparse GP paper and is being used only to

illustrate model quality of SPI-GP compared to other methods. The other data set, pumadyne-

8nm, has approximately 7000 points and is a realistic simulation of the dynamics of a Puma 560

robot arm. The regression task in this data set is to predict the angular acceleration of one of

the robot arm’s links using angular positions, velocities and torques of the robot’s arm as input.

The real world data sets used in this paper are both from the Earth Science domain. The first

one is a historical data set consisting of NCEP/NCAR features available athttp://www.cdc.

noaa.gov/data/gridded/data.ncep.reanalysis.html [14] and cross-matched nor-

malized difference vegetation index (NDVI) data (NDVI) from the National Oceanic and At-

mospheric Administrations Advanced Very High Resolution Radiometer (NOAA/AVHRR). The

climate variables in this data set are include pressure, seasurface temperature, temperature,

and precipitation from 1982 till 2002. Each variable is observed at a0.5◦ resolution over the

entire grid. The data used here are composites of observations over a month. Thus there are

360×720=259200 values for each variable vectorized and stored as a single row corresponding

to a time point (a month). Therefore, each variable has12× 21 = 252 rows in the data set, each

having 259200 columns. Note that some variables are observed only in land while others only

in ocean. For any variable, the locations which do not contain any meaningful data has a fill

value of -9999.0.

The second real world data set that we have used in our experiments is the MODerate-

resolution Imaging Spectroradiometer (MODIS) data providing 500-meter surface reflectance

data for the state of California adjusted using a bidirectional reflectance distribution function

(BRDF). The data is collected at intervals of every 8 days andstored as1203× 738 image file.

Each image data is recorded for seven different wavelengthscorresponding to seven different

channels. Since these channels observe the same spatial location at the same time instances, there

is a high correlation among the different bandwidths. Therefore, Gaussian Process regression can

be used to model the relationship between the channels for creatingVirtual Sensors and detecting

changes in land cover. Based on careful exploratory analysis and domain expert feedback, three

features (Band1 620 - 670 nm, Band4 545 - 565 nm and Band5 1230 -1250 nm) have been

chosen to model the target (Band6 1628 - 1652 nm). The data setcontains nine years worth
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of data (2001-2009) arranged at the top level by the number ofyears where each year contains

forty six (collected every 8 days) images and has approximately 15 million observations per

year.

Experimental setup: The algorithms have been run using a 64-bit 2.66 GHz Intel Xeon dual

quad core Dell Precision 690 desktop running Red Hat Enterprise Linux version 5.7 having

24 GB of physical memory. The SPI-GP algorithm is parallelizable and has been executed on

a 64-bit Linux cluster consisting of 16 slave nodes where each node is a dual processor 1-U

server containing two quad-core Intel Xeon 2.66GHz processors totaling 128 cores and 128GB

Ram (1Gb/Core). All centralized algorithms are implemented and run in MATLAB R2010a. The

distributed SPI-GP code uses the Parallel Toolbox in MATLABR2010a.

We report three different sets of experiments here to summarize the performance of our

algorithm in comparison to existing algorithms. We demonstrate the scalability of our algorithm

for both the distributed and centralized versions. For accuracy, we compare the performance of

our algorithm with an existing state-of-the-art sparse inverse covariance computation technique.

Finally, for the climate data set we also look at interpretability of results in terms of the sparsity

structure obtained from the penalized maximum likelihood computation.

A. Study 1: Scalability study on synthetic data

In this study we report the scalability of the distributed SPI-GP algorithm with respect to two

different scenarios. In the first scenario, we keep the number of distributed computing nodes

constant and increase the size of the data set. This increases the portion size of the covariance

matrix per node and we study how our algorithm performs in terms of both running time and

convergence. In our first experiment we fix the number of coreson which we run our experiment

and vary the size of the training data. Figure 2(a) reports the running time for SPI-GP for different

sizes of the data set on 10 cores. We vary the size of the data set from 1000 to 160000 samples,

each set having a dimension of 5000. The kernel matrix in the last case is16000×16000, which

when partitioned columnwise for 10 jobs makes the data set size for each job1600 × 16000.

Because of the eigen decomposition required in every iteration of the algorithm, the algorithm

is O(n3) per iteration, wheren is the number of data points. However, due to the distributed

computation, we see that the growth in the running time is of the order ofO(nr2), wherer is

the rank of the kernel matrix partition available to each distributed job. It is evident from this

January 31, 2013 DRAFT



20

1000 2000 4000 8000 16000
0

2

4

6

8x 10
4

Number of data points

T
im

e

(a) Running time (in secs) for different dataset sizes
on 10 cores.

1000 2000 4000 8000 16000
0

5

10

15

20

25

30

Number of data points

Ite
ra

tio
ns

(b) Iterations needed for distributed SPI-GP to con-
verge

Fig. 2. Scalability study of SPI-GP on synthetic data. Time and iterations required for convergence are reported for distributed
jobs on 10 cores with increasing data set size.

that since the computation is distributable, we can do the sparse inverse estimation for Gaussian

Process regression for very large data sets, provided we have access to cluster computation

environments. Figure 2(b) reports the number of iterationsthat are required for each of the

problem sizes to converge with error tolerance of the order of 10−3. We see that the number of

iterations vary from 16 in the worst case to 9 in the best case.This number is significantly low,

indicating that for reasonable tolerance ranges, the ADMM-based algorithm can converge quite

fast.

In our second scalability experiment, we report the runningtime of the SPI-GP algorithm as

we increase the number of processors keeping the points per processor constant. We experiment

with two different sizes of the data set. For our first experiment the number of data points per

processor is 16384 (O(105)) while for the second experiment the number of points per node

is 262144 (O(106)). The results are shown in Figure 3(a) and Figure 3(b) respectively. In each

case we vary the number of computing nodes from 4 to 128. In both cases we see that there

is an almost quadratic increase in the running time for the distributed SPI-GP implementation,

shown in blue lines in Figure 3. The red lines in Figure 3 indicate the running times for a

pseudo-distributed implementation of the SPI-GP algorithm, where the parallel jobs within an

iteration are executed sequentially in a single processor.We see that the running time in this

case increases negligibly. This is understandable since the size of the problem remains the same

in each experiment, and the slight increase in running time is due to the increased number of

sequential operations for each iteration, as we increase the number of partitions in the data

exponentially. This experiment is done to illustrate that the parallel eigen decomposition method
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Fig. 3. Running time (in secs) for increasing number of computing cores, with data points per code being constant. Fig. 3(a)
reports running time for O(105) points per core and 3(b) shows running time for O(10

6) points per core.

in Matlab being a fully synchronized operation, the networksynchronization in a distributed

cluster computing environment takes up the bulk of the computation time. The optimization

routine takes only a very small fraction of the time for execution. However, the advantage of

distributed implementation becomes evident when we need todeal with data sets that cannot be

loaded on to the memory of a single workstation.

B. Study 2: Accuracy study on benchmark and real data

In this study, we report the accuracy of the SPI-GP method on two benchmark data sets used in

the literature, and two real-life application data sets in earth science. For the first experiment, we

compare the accuracy of SPI-GP to a state-of the-art sparse Gaussian Process regression method

[29], using a couple of data sets that the authors have used intheir paper. For this experiment

we also compare our results to the regular Gaussian Process regression without penalty. The

metric used for our accuracy study is the normalized mean squared error, defined as:

NMSE =

∑n
i=1

(ŷ∗i − yi)
2

n× var(ŷ∗)
.

whereyi is the observed value of the targetyi having variancevar(ŷ∗), ŷi is the prediction of

yi andn is the size of the test set.

Figure 4 shows the quality of prediction of SPI-GP compared to Full GP and GPLasso on the

two benchmark data setsSnelson[29] and pumadyne-8nm1. Figure 4(a) shows the plot of the

1http://www.cs.toronto.edu/ ˜ delve/
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Fig. 4. Quality of prediction on benchmark data setsSnelson(left) and pumadyne-8nm (right). For left figure, black line
represents predictions using Full GP (no approximations),the red and green lines are for GP-Lasso and SPI-GP respectively.
Right figure shows the normalized mean squared error for eachof these three methods on the pumadyne-8nm data set

predicted values ofSnelsonoverlayed on the training set (plotted in magenta dots). Theblack

line represents predictions using Full GP, the red and greenlines are for GP Lasso and SPI-GP

respectively. It can be observed that prediction quality ofSPI-GP is comparable to both Full

GP and GPLasso in this case. The black line (plotted first) which represents the method with

no approximation is completely obscured by the green line for SPI-GP, whereas the red line

for GP-Lasso is partially obscured by the fit of SPI-GP. This indicates that SPI-GP performs as

good as Full GP, whereas GP-Lasso does well in most places except at points where the red line

is visible, where it deviates slightly from the true fit. Figure 4(b) shows the normalized mean

squared error for each of these three methods on the pumadyne-8nm data set. It is a difficult data

set to model and all three methods have high errors. NMSE for full GP is 1.086, while NMSE

for a 300-rank reduced GPLasso is 0.996 and SPI-GP withλ = 0.01 is 0.983. This indicates that

SPI-GP performs exactly the same way as state-of-the-art sparse Gaussian Process regression in

terms of accuracy. The additional benefit is an interpretable model that explains relations among

the regressors and the target with respect to the samples. Toverify the performance of the

ADMM-based optimization solution, we have also performed experiments where the ADMM-

based inversion in SPI-GP has been replaced by the graphicallasso [1] method. Since both

methods converge to the exact same optimum for both the Snelson and the pumadyne data sets,

their plots obscure each other in the figures and are therefore not included in the graphs shown

in Figure 4.

We also report NMSE of SPI-GP on the two prediction problems on the two real world data

sets. For the first data set we predict precipitation on a region of the Indian peninsula based on
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Test months
Training years March June September December

Full-GP SPI-GP Full-GP SPI-GP Full-GP SPI-GP Full-GP SPI-GP
1982 0.237 0.283 0.454 0.439 0.426 0.426 0.371 0.361
1983 0.258 0.292 0.492 0.492 0.658 0.658 0.374 0.374
1984 0.261 0.273 0.451 0.451 0.818 0.819 0.374 0.368
1985 0.196 0.208 0.475 0.450 0.396 0.396 0.385 0.385

TABLE I

NMSE OF GPRFOR 1986FOR QUARTERLYGPMODELS BUILT FROM 1982-1985.

historical data from the entire grid. If a set of points are very similar to the points representing

rainfall in the Indian subcontinent, then it is intuitive that those points should be very good

predictor of precipitation in India. In this study we verifythis intuition by choosing the topk

locations of the world that are most similar to the precipitation in the Indian subcontinent, based

on the sparse inverse covariance estimation, and then builda prediction model based on only

those points. The value ofk is chosen to ben/2 wheren is kernel dimension. In most cases

we see that the smaller model is more accurate than the entiredata set.

For our study we choose a time scale of three months for the precipitation prediction problem.

The data set we are considering has 20 years of precipitationdata. For any year in this data set,

we build models on the quarterly precipitation informationand test the model on a one-month

time delay. In our first experiment we test our quarterly models from 1982 to 1985 on 1986 data

and the NMSE values are reported in Table I. We repeat the experiment for a training period

of 1982 to 1995 to test on 1996 and the results are shown in Table II. For baseline, we use

results obtained by using the entire data set (Full-GP) rather than the chosen subset. It should

be noted here that Full-GP refers to the standard Gaussian Process regression method. Since

the data set contains approximately 250K points, it is not possible to build a Gaussian Process

model on this entire data set and we instead sample 8000 points randomly from this data set to

run the optimization for choosing the model parameters and then build the kernel on only those

sample points. The results reported for Full GP in the table are the best over 10 runs of this

experiment. However, the variance for the runs is high, indicating that such a uniform sampling

based approach may not always produce the desired model.

January 31, 2013 DRAFT



24

Test months
Training years March June September December

Full-GP SPI-GP Full-GP SPI-GP Full-GP SPI-GP Full-GP SPI-GP
1982 0.311 0.293 0.554 0.563 0.706 0.706 1.23 1.22
1986 0.325 0.295 0.587 0.595 0.81 0.809 1.301 1.3
1991 0.281 0.278 0.564 0.586 0.782 0.781 1.15 1.15

TABLE II

NMSE OF GPRFOR 1996FOR QUARTERLYGPMODELS BUILT FROM 1982-1991.

Tables I and II document the NMSE values for predicting precipitation in India for months

March, June, September and December for the years 1986 and 1996 respectively. The exper-

imental setup is as follows: We build models on the first two months of each quarter for all

the training years combined and test it on the third month of the same quarter. In our first

experiment, we study the prediction for the year 1986 based on the models built on observations

from the years 1982 to 1985. In the second experiment, the quarterly models are built on all

years from 1982 to 1991 combined. For the experiments reported here, we look at a 2◦ resolution

of the observation grid, which makes the kernel size16200 × 16200. This is done to keep the

running time reasonable for the experiments, although in theory the method can handle larger

kernel sizes. NMSE values in the table range from as low as .19to as high as 1.3 for different

prediction scenarios. For example year 1986 has reasonablygood predictability and has lower

variation in the NMSE values than year 1996.

Although March, June and September have reasonably low NMSEvalues for 1996, the month

of December does not have that indicating that the model prediction is working as poorly as

random for the different training years. For this study, theNMSE value for the GPR model of

topk values from SPI-GP is better than the best Full-GP model prediction. This happens because

the most similar points capture more information and less ofnoise as has been verified earlier

in [3]. It can be noted the improvement in NMSE observed is notsignificant. This is partly due

to the fact that the precipitation prediction problem that we are studying is a difficult problem

in climate science since the data lacks reasonable quality.The linear correlations for different

data subsets and different test sets can vary from -0.2 (verypoor) to 0.88 (high correlation)

accounting for the high variability in the NMSE values observed for the different test scenarios.
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The exceptionally poor performance of the prediction modelfor the last two quarters of 1996

could also be attributed to changing climate during that period of the year as compared to

historical observations from more than a decade ago.

The last data set that we have experimented with is the MODIS data. The regression problem

for the data set is to predict frequency band 6, given bands 1,4, and 5. Here we report the

prediction results for three different days for the year 2001. We choose a location in the California

central valley region as our test point. We have divided the days of the observations into three

groups representing winter (from January to April), summer(from May to August) and fall

(September to December). The results shown here are predictions for one day each from the

three groups. Similar to the climate data set, here also we see that using SPI-GP to create a

smaller and less noisy data set improves the prediction of the Gaussian Process regression model.

The variation in the absolute values of NMSE for the three different days can be attributed to

data quality. Since this is satellite data, seasonal variations in cloud cover, haze, etc. can affect

the quality of the data being collected. Gaussian Process regression can be used in such cases

to create a stable and less noisy data set for such observations.

NMSE
Season

Full-GP SPI-GP
Winter 0.018699 0.017698

Summer 0.541981 0.423473
Fall 0.425959 0.395641

TABLE III

NMSE FOR BAND 6 PREDICTION IN MODIS DATA SET FOR2001.

C. Interpretability of results on real-world data sets

In many real-life applications, we are often not only interested in the accuracy of the prediction

model, but we also want to understand the model in order to better explain the underlying

physical phenomenon driving the model predictability. In the case of climate studies, model

interpretability can provide much coveted understanding of which geographical regions are most

similar to other regions of interest, even when the relevantregions are located far apart on the
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(a) Network representing a sub-matrix of the inverse
covariance matrix

 

 

  

 

 

  

 

(b) Network representing a sub-matrix of the sparse in-
verse covariance matrix estimated using SPI-GP

Fig. 5. Interpretability of the model is much higher in the case of a parsimonious model.

earth’s grid. In this section, we discuss how the SPI-GP models can be interpreted to uncover

geographical relationships among different regions.

To illustrate how the SPI-GP method can be used for studying climate networks, we take a

small number of locations on the grid and compute the inversecovariance matrix for the climate

variable precipitation. We represent each point on the earth’s grid as a node in a network and

the edges represent non-zero entries in the inverse covariance matrix. We want to identify the

most similar nodes, given a reference node, highlighted in red in Figure 5. As can be seen in

Figure 5(a), the true inverse covariance is difficult to understand or interpret, given the huge

amount of network connections for any particular node in thegraph. It is important to note

that a large number of these connections are very small non-zero values, indicating almost no

connection between the corresponding pair of nodes. Figure5(b) is a sparse variant of the same

graph and shows only the important connections to the relevant node. Thus SPI-GP increases

the interpretability of a Gaussian Process model.

For the NCEP/NCAAR data set, we study precipitation in the Indian peninsula. We want to

identify points that have similar pattern as our test set andstudy how, if at all, these points

change over a course of 20 years. Since all climatic connections change very slowly with time,

we construct the relevant network connections for Indian precipitation every 5 years. Fig. 6 shows

the results. Each plot in Fig. 6 is for the average of one year’s data. The variable shown in the

figures is precipitation. The black markers are the locations in India. The yellow markers indicate

the top 10 areas which influence India. These are the points which have the highest values in the

estimated inverse kernel matrix corresponding to test points for India. As Figure 6 shows, there
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are certain regions which remain similar to our test set for the entire period of 20 years, while

others appear and disappear over time. Some locations whichshow consistent influence pattern

include the west coast of South America, west coast of Africa, and east coast of Australia.

This shows that there is a clear climatic connection betweenthe precipitation patterns of these

regions. Some less consistent locations include areas in China which are evolving connections

which might become consistent over time.

For the MODIS data set, we look for vegetation patterns that are most similar to a chosen

area of the California Central valley. In this study we look for seasonal variation in similarity of

vegetation. We coarsen the MODIS data of 1 km resolution to 5 km and study this variation for

the year 2001. Fig. 7 shows the results. The area of the central valley that we are interested in,

is highlighted using a black square marker on the map of California. The color map shows the

observed values of vegetation index for a particular composite in 2001. The red circled markers

indicate 5 locations in California whose vegetation index is similar to our region of interest.

We notice that there is some overlap between these similar points in winter and summer and

overlap between a different set of locations for the summer and fall. This indicates changes in

the vegetation pattern in the state of California across different seasons and such observation

may be very significant in decision support systems in with agriculture and planning.

VI. CONCLUSION

In this paper we discuss a method for sparse inverse GaussianProcess regression that allows us

to compute a parsimonious model while preserving the interpretability of the sparsity structure

in the data. We discuss how the inverse kernel matrix used in Gaussian Process prediction

gives valuable information about the regression model and then adapt the inverse covariance

estimation from Gaussian graphical models to estimate the Gaussian kernel. We solve the

optimization problem using the alternating direction method of multipliers that is amenable to

parallel computation. This sparsity exploiting GPR technique achieves two goals: (i)it provides

valuable insight into the regression model and (ii)it allows for parallelization so that the entire

kernel matrix need not be loaded into one memory, thereby removing size related constraints

plaguing large scale analysis. We perform extensive experiments on both synthetic and real-

world data sets and report various computational aspects ofthe algorithm, namely scalability

and accuracy. We also illustrate how this method produces aninterpretable model thats aids
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(a) Most influential points affecting precipitation in India based on observations recorded in the year
1982
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(b) Most influential points affecting precipitation in India based on observations recorded in the year
1986
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(c) Most influential points affecting precipitation in India based on observations recorded in the year
1991
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(d) Most influential points affecting precipitation in India based on observations recorded in the year
1996
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(e) Most influential points affecting precipitation in India based on observations recorded in the year
2001

Fig. 6. Evolution of the precipitation network over 20 yearsfor the Indian peninsula
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(a) Vegetation index similarity for California cen-
tral valley region for winter
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(b) Vegetation index similarity for California cen-
tral valley region for summer
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(c) Vegetation index similarity for California cen-
tral valley region for fall

Fig. 7. Seasonal variation of the vegetation index similarity for California central valley region
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understanding the underlying physical phenomenon responsible for model predictability. For

future work, we want to explore these models in details with help from domain scientists to

discover new relationships and explain current observations in climate. In terms of the algorithm,

we want to develop an approximate version of the optimization problem that is decomposable

and, therefore, amenable to distributed computing in a moreloosely coupled computing scenario.
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[17] J. Quiñonero-Candela and C. E. Rasmussen. A Unifying View of Sparse Approximate Gaussian Process Regression.JMLR,

6:1939–1959, 2005.

[18] C. E. Rasmussen.Gaussian Processes for Machine Learning. MIT Press, 2006.

[19] A. J. Smola and P. Bartlett. Sparse Greedy Gaussian Process Regression. InProc. of NIPS 13, pages 619–625, 2000.

[20] E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs. InProceedings of NIPS 18, 2005.

[21] K. Steinhaeuser, N. Chawla, and A. Ganguly. An exploration of climate data using complex networks.SIGKDD

Explorations Newsletter, 12:25–32, November 2010.

[22] K. Steinhaeuser, N. Chawla, and A. Ganguly. Complex networks as a unified framework for descriptive analysis and

predictive modeling in climate science.SADM J., 4(5):497–511, 2011.

[23] R. Tibshirani. Regression Shrinkage and Selection Viathe Lasso. Journal of the Royal Statistical Society, Series B,

58:267–288, 1994.

[24] V. Tresp. The generalized bayesian committee machine.In Proc. of KDD, pages 130–139, 2000.

[25] A. Tsonis, K. Swanson, and P. Roebber. What do networks have to do with climate?BAMS, 87:585–595, 2006.

[26] A. A. Tsonis, K. L. Swanson, and P. J. Roebber. What do networks have to do with climate?Bulletin of the American

Meteorological Society, 87(5):585–595, 2006.

[27] G. Wahba.Spline Models for Observational Data. SIAM, 1990.

[28] P. Weiss, V. Lobojois, and D. Kouame. Alternating direction method of multipliers applied to 3d light sheet fluorescence

microscopy image deblurring using gpu hardware. InProceedings of IEEE EMBC 2011, pages 4872–4875, 2011.

[29] F. Yan and Y. Qi. Sparse Gaussian Process Regression viaℓ1 Penalization. InProceedings of ICML-10, pages 1183–1190,

2010.

[30] G. Ye, Y. Chen, and X. Xie. Efficient variable selection in support vector machines via the alternating direction method

of multipliers. Journal of Machine Learning Research - Proceedings Track, 15:832–840, 2011.

January 31, 2013 DRAFT


