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Abstract. In this paper we develop a local distributed privacy preserving algorithm for
feature selection in a large peer-to-peer environment. Feature selection is often used in
machine learning for data compaction and efficient learning by eliminating the curse of
dimensionality. There exist many solutions for feature selection when the data is located
at a central location. However, it becomes extremely challenging to perform the same
when the data is distributed across a large number of peers or machines. Centralizing
the entire dataset or portions of it can be very costly and impractical because of the
large number of data sources, the asynchronous nature of the peer-to-peer networks,
dynamic nature of the data/network and privacy concerns. The solution proposed in
this paper allows us to perform feature selection in an asynchronous fashion with a low
communication overhead where each peer can specify its own privacy constraints. The
algorithm works based on local interactions among participating nodes. We present
results on real-world datasets in order to performance of the proposed algorithm.

Keywords: privacy preserving; data mining; feature selection; distributed computa-
tion

1. Introduction

Feature selection, as the name suggests, is a popular machine learning/data
mining tool often used for identifying subsets of features from a dataset for the
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purpose of building robust statistical models. From a theoretical perspective,
optimal feature selection requires exhaustive search of all the possible subsets i.e.
requires one to compute the power set of the features. This becomes impractical
for a large number of features. Much research has therefore focussed on finding
heuristic search techniques such as genetic algorithms, simulated annealing, hill
climbing and more. Optimality conditions such as Akaike information criterion
(AIC) and Bayesian information criterion (BIC) have also been developed to
prune the search space efficiently. Finally, researchers have come up with certain
feature selection measurements such as gini index, misclassification gain, entropy,
�2 which are all based on certain heuristics.

Feature selection, when all the data is located at a central database, is a fairly
well understood problem. Direct application of one of these techniques may pro-
vide a satisfactory result. However, there exist emerging technologies where the
data is not located at a central repository, rather distributed across a large num-
ber of nodes in a network. The next generation of Peer-to-Peer (P2P) networks
provides an example. P2P systems such as Gnutella, BitTorrents, e-Mule, Kazaa,
and Freenet are increasingly becoming popular for many applications that go be-
yond downloading music without paying for it. Users and researches are no longer
interested in only using P2P networks as a data repository; they may be inter-
ested in extracting the knowledge locked in the data. To harness the power of
P2P computing, emerging applications such as bioinformatics1 and client-side
web mining (Liu, Bhaduri, Das, Nguyen and Kargupta, 2006)(Das, Bhaduri, Liu
and Kargupta, 2008) have been suggested which would need the support of ad-
vanced data analysis techniques. Centralized algorithms cannot be executed in
these scenarios due to (1) massive scale of such networks, (2) high cost of central-
ization, (3) dynamic nature of the data, and (4) privacy constraints. Therefore
analysis of data in such networks will require us to develop distributed data
mining algorithms capable of working in such large-scale environments.

In this paper we have addressed the problem of feature selection in a large
P2P network. The proposed P2P feature selection algorithm (PAFS ) incorpo-
rates three popular feature selection criteria: misclassification gain, gini index
and entropy measurement. As a first step we have shown how these measure-
ments can be evaluated in a P2P network without any data centralization. Our
algorithm is provably correct in the sense that it converges to the correct result
compared to centralization. We have shown that the proposed algorithm has
bounded communication and is therefore local. Moreover, each peer can specify
its own privacy constraint and the algorithm uses a multi-objective optimization
criteria to satisfy the privacy constraints of each peer. The proposed algorithm is
likely to contribute in distributed search, information retrieval, and link analysis
in P2P networks.

The rest of this paper is organized as follows. Section 2, discusses the mo-
tivation behind this work. Section 3 briefly presents some existing research in
this area. Section 4 presents the problem definition and show how distributed
versions of the three feature selection criteria can be developed. It presents the
building blocks of the algorithm in Section 5. The paper offers the details of the
algorithm in Section 6. In Section 7 we theoretically analyze the algorithm. It
demonstrates the performance of the algorithm in Section 8. Finally, the paper

1 http://www.bcgsc.ca/chinook

http://www.bcgsc.ca/chinook
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ends with a conclusion section (Section 9) where we summarize this work and
discuss some future directions of research.

2. Motivation

Consider a company X that wants to sell products Y and Z in a consumer mar-
ket. It wants to start a marketing campaign in order to attract the potential
customers from a large population. With the current technology, X can achieve
this in several ways: (1) by broadcasting (for example, spamming) its advertise-
ment to a large number of people with the hope that some of it will fall in the
hands of interested people, (2) using the social networking sites for advertise-
ments, (3) sending to only those whose address X knows. Broadcasting can be
costly from the service provider’s perspective and it is certainly quite inefficient.
This is a fairly primitive concept and unlikely to scale to produce a large number
of interested clients. If everyone starts spamming the network then it may not
take a whole lot of time before the system is brought down to its knees. Also,
most individuals view spams as an unwelcome mode of communication. On the
other hand, the social networking sites have business interests that are driven by
the economics of profit-making. That means if a match-making or a social com-
munication creates value for the business then eventually those are the ones that
will be promoted by the site. Option number (3) may work only when company
X knows about the targeted customer addresses ahead of time possibly through
extensive market research.

Scalable match-making between the source and the consumer of some infor-
mation or a service in a large distributed population connected over a network
like the Internet would require developing technology for at least the following
two key problems:

1. Finding a balance between our reliance upon single-entity owned centralized
client-server model of computation and decentralized emergence of global be-
havior through local interactions.

2. Privacy-sensitive content analysis and match-making between the source and
the interested parties in a distributed decentralized environment.

Although we have a long way to go in solving these problems, we are starting
to see some possible directions. The methodology for achieving global data anal-
ysis through efficient but strictly local interactions is drawing attention in many
domains. For example, peer-to-peer (P2P) networks have been gaining popularity
in many domains. P2P systems work by using the computing power, storage, and
bandwidth of the participants of a network. Unlike client-server systems, P2P
systems do not rely upon the servers to carry out most of the computation and
storage-intensive tasks. P2P systems such as Gnutella, Napster, e-Mule, Kazaa,
and Freenet are increasingly becoming popular for many applications that go
beyond downloading music without paying for it.

Match-making between the source and the consumers of some information
in such P2P environments would require distributed data clustering, feature se-
lection, similarity search and classification algorithms that work in a decentral-
ized communication efficient manner. P2P distributed data mining algorithms
(Kargupta and Sivakumar, 2004)(Datta, Bhaduri, Giannella, Wolff and Kar-
gupta, 2006) offer many interesting applications such as P2P search, interest-
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based community formation, and P2P electronic commerce. Clearly, maintain-
ing users’ privacy will be an important issue to address before making P2P
algorithms our modus operandi.

P2P data mining may offer some pieces of the solution to many problems
that require such match-making. Usually, product placement in a wide market
requires extensive market research in order to identify the appropriate consumer-
base. Consumer segmentation plays an important role in that and various data
mining techniques such as feature selection, clustering, and classification are often
very useful for that. In order to do that we need consumer behavior data. There
are several ways one can collect such data and there exist several techniques
that can be used for Internet-marketing. P2P consumer networks may provide
one possible way to get access to such data. Recommender systems based on
P2P file sharing system activities are already gaining popularity. Similar P2P
environments connecting the web-browsers of multiple users (Liu et al., 2006)
may provide wealth of information as long as we pay due attention to privacy
issues.

In this paper we illustrate the possibilities by considering the well-known fea-
ture selection problem in a distributed P2P environment. It proposes a technique
for selecting important features from the dataset by using a communication effi-
cient privacy preserving distributed algorithm. This algorithm is provably correct
and uses only local interactions among peers for a scalable solution, ideal for P2P
data mining. In our model, each peer has the flexibility to define its own privacy
requirements.

3. Related Work

Related work is presented in the following three subsections.

3.1. Peer-to-Peer Data Mining

Distributed data mining (DDM) deals with the problem of data analysis in envi-
ronments with distributed data, computing nodes, and users. Kargupta (Kargupta
and Sivakumar, 2004) presents a detailed overview of this topic. P2P data mining
has emerged as an active area of research under DDM for which the proposed
algorithms are asynchronous, communication-efficient and scalable. Examples in-
clude the association rule mining algorithm (Wolff and Schuster, 2004), k-Means
clustering (Datta, Giannella and Kargupta, 2006), top-l inner product identifi-
cation (Das et al., 2008), decision tree induction (Bhaduri, Wolff, Giannella and
Kargupta, 2008) and more.

3.2. Privacy in P2P Network

P2P networks have recently emerged as huge information systems for collabora-
tive computation such as file sharing, distributed computing, real-time telephone
and tv, and academic applications. However, free flow of information is frequently
prohibited by legal obligations or by commercial and personal concerns. Privacy
preserving data mining in P2P networks aims to solve this problem by allow-
ing users to share their data without revealing the sensitive information. In a
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large scale cooperative computation environment, each node has a private input
xi. They wish to jointly compute the output f(x1, x2, . . . , xn) of some common
function f . At the end of the data mining process, nothing but the output should
be revealed. PPDM solves this problem by allowing useful data patterns to be
extracted without revealing sensitive data (Clifton, Kantarcioglu, Vaidya, Lin
and Zhu, 2003). Gilburd et al. presents a privacy model called k-TTP for large-
scale distributed environment (Gilburd, Schuster and Wolff, 2004). Kargupta et
al. (Kargupta, Das and Liu, 2007) presents a game theoretic solution for deal-
ing with the collusion problem in secure sum computation in a large distributed
environment. Teng and Du (Teng and Du, 2009) present a hybrid technique
for PPDM. They combine randomization and SMC protocols to achieve better
accuracy and lower running times than these algorithms acting independently.

3.3. Distributed Feature Selection

Maulik et al. (Maulik, Bandyopadhyay and Trinder, 2001) considered the prob-
lem of semi-automatic feature extraction from remotely sensed images. Their
proposed solution uses a stochastic optimization technique viz. simulated an-
nealing for minimizing the energy of an active contour within a specified image
region. Energy of a pixel value is computed based on its distance to the image
edges. The feature extraction process starts with a user description of the possi-
ble features of interest. The optimization technique then improves this search in
a very localized fashion. The authors have compared their technique to existing
techniques and shown the superiority of their approach.

Dimensionality Reduction in multidimensional time series for efficient index-
ing and searching was studied by Keogh et al. (Keogh, Chakrabarti, Pazzani
and Mehrotra, 2001). Traditionally PCA, SVD, fourier transform, random pro-
jection, wavelet transform etc. have been extensively used for dimensionality
reduction. All these techniques suffer from one major drawback — one loses
comprehensibility of the data in the reduced space. The technique proposed in
(Keogh et al., 2001) Piecewise Aggregate Approximation (or PAA) overcomes
this drawback while bearing same or better time complexity compared to ex-
isting methods. The major idea is to discretize the time series by considering a
set of non-overlapping equi-width bins and replacing the amplitude of the time
series across each bin by the average amplitude across that bin. Experimental
results reported in the paper prove the feasibility of the approach.

An algorithm for distributed document clustering of server web logs have been
developed by Sayal and Scheuermann (Sayal and Scheuermann, 2001). In their
algorithm first the web logs are distributed across multiple machines. Local mod-
els are build at each machine using traditional document clustering algorithms.
Finally, these clusterings are then merged using a meta-learning approach.

Das et al. (Das et al., 2008) presents an algorithm for identifying significant
inner product entries from data horizontally distributed in a P2P network. The
proposed algorithm blends the concept of ordinal and cardinal sampling in or-
der to fix the number of samples that needs to be drawn to estimate the top p
percentile of the population. This work differs from the work presented in this
paper in two important aspects: (1) the algorithm proposed here is eventually
correct in the sense that it converges to the correct result when the computation
terminates, and (2) unlike (Das et al., 2008), the current work pays careful atten-
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tion to user privacy based on a recently proposed multi-objective optimization
framework (Das, Bhaduri and Kargupta, 2009).

Several algorithms have been proposed in the literature for knowledge ex-
traction from distributed databases. Clustering using PCA (Kargupta, Huang,
Sivakumar and Johnson, 2001), bayesian network learning (Chen, Sivakumar and
Kargupta, 2004), classification (Cho and Wüthrich, 2002), association rule min-
ing (Schuster, Wolff and Trock, 2005) are some examples. Information retrieval
from distributed data sources have been explored by Jung (Jung, 2009). The
author formulates a technique for computing precision and recall for distributed
datasets.

4. Distributed Feature Selection Problem Definition

Efficient match-making in a distributed environment requires proper representa-
tion construction and scalable similarity search. Feature selection plays an im-
portant role in both of these steps. Feature selection has been an active research
area in pattern recognition, statistics, and data mining communities. In induc-
tive function learning, the central idea of feature selection is to choose a subset of
features which can correctly predict the output (the target function) and thereby
remove the features with lesser predictive capability. Overall, feature selection
techniques usually make data mining techniques (e.g. clustering, classification)
stronger by constructing an appropriate representation that considers only the
relevant features. In the past, several techniques have been developed for feature
selection from high dimensional data. These include information gain, mutual
information, Gini index, �2 statistic, correlation coefficient, PCA analysis and
more. While each of these techniques have their own merits and demerits, we
focus on some of the information theoretic techniques in this paper and show
how distributed versions of these problems can be developed. Interested readers
are referred to Yang and Pederson (Yang and Pedersen, 1997), Liu and Motoda
(Liu and Motoda, 1998) for detailed analysis.

4.1. Problem Definition

Consider a P2P network where each node represents a user. Each node has a
web-based recommender system (e.g. a web-browser plug-in that allows rating
music CDs or books). Each user does its own share of rating and that creates a
locally labeled data set. In absence of a centralized server that would collect this
information (note that we dealing with a P2P application), we need a distributed
approach to exploit this information. If an aspiring musician now wants to reach
out and inform the targeted audience for his or her kind of music then one
could use this distributed rating-data for designing a well directed marketing
campaign. One could learn a classifiers from this distributed data and use that
classifier to label new users. However, we first need to figure out which features
are more relevant to this classification problem. This is essentially a feature
selection problem. Rest of this section formally describes this problem.

Let D denote a collection of data tuples with class labels where each tuple
is a p + 1 dimensional vector {A1,A2, . . . ,Ap, C}, the first p dimensions cor-
responding to the features and the last corresponding to the class label. We
assume that each feature is categorical, i.e., Ai takes a value from the finite set
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Feature value (Ai) Class=0 Class=1 (Class=0)+(Class=1)

0 xi,00 xi,01 xi,0⋅

1 xi,10 xi,11 xi,1⋅

...
...

...
...

mi − 1 xi,(mi−1)0 xi,(mi−1)1 xi,(mi−1)⋅

Table 1. Number of entries of feature Ai and the class.

{0, . . . ,mi− 1} (∀i = 1 to p) and the class is binary, i.e. C ∈ {0, 1} where mi− 1
is the highest value of feature Ai. Let xi,a0 denote the number of examples in the
set D for which Ai = a and C = 0 where a ∈ [0 . . . (mi − 1)]. Also xi,a⋅ denotes
the number of tuples with Ai = a, computed over all classes. Table 1 shows the
different possible combinations of values for a feature Ai.

In our scenario, we do not assume the data to be at a central location, rather
distributed over a set of peers P1, P2, . . . , Pd connected to each other by an
underlying communication infrastructure. More specifically,D is partitioned into
d sets D1 through Dd such that each peer has the same set of features, but

different tuples i.e. D =
∪d

i=1 Di. In the distributed data mining literature, this

is referred to as horizontal data partition. x
(ℓ)
i,a0 denotes the number of examples

in the set Dℓ for which Ai = a and C = 0 where a ∈ [0 . . . (mi − 1)]. Hence

xi,a0 =
∑

ℓ=1...d

x
(ℓ)
i,a0, xi,a1 =

∑

ℓ=1...d

x
(ℓ)
i,a1 and xi,a⋅ =

∑

ℓ=1...d

x
(ℓ)
i,a⋅.

Misclassification gain, gini index and entropy are three popular metrics for
information theoretic feature selection. While Gini index and entropy have been
used in the past for feature selection, the choice of misclassification gain is not
ad-hoc; it has been argued by Tan et al. (Tan, Steinbach and Kumar, 2006) that
the choice of impurity functions has little effect on selecting the ‘best’ feature (see
(Tan et al., 2006) page 158 for details). More empirical comparisons can be found
in (Bhaduri et al., 2008). In the next three sections we develop distributed, locally
computable and privacy preserving variants for each of these feature selection
metrics.

4.2. Misclassification Gain

For a categorical feature Ai, the misclassification impurity measure (Tan et al.,
2006) for a particular value Ai = a is

MIa(Ai) = 1−
max (xi,a0, xi,a1)

xi,a⋅

(where xi,a⋅ is the number of tuples with Ai = a).

Theorem 1. Let {A1,A2, . . . ,Ap, C} be the set of features and class label where
Ai ∈ {0, . . . ,mi − 1} and C ∈ {0, 1} respectively. The feature with the highest
misclassification gain Abest is the following:

Abest = argmax
i∈[1...p]

[
mi−1∑

a=0

∣xi,a0 − xi,a1∣

]



8 K. Das et al.

Proof. The misclassification gain difference between Ai and Aj , denoted by
MG(Ai,Aj), is

MG(Ai,Aj) =

mi−1∑

a=0

(
xi,a⋅

∣D∣

)

× [MIa(Ai)]−

mj−1
∑

b=0

(
xj,b⋅

∣D∣

)

× [MIb(Aj)]

=

mi−1∑

a=0

(
xi,a⋅

∣D∣

)

−
mi−1∑

a=0

max (xi,a0, xi,a1)

∣D∣

−

mj−1
∑

b=0

(
xj,b⋅

∣D∣

)

+

mj−1
∑

b=0

max (xj,b0, xi,b1)

∣D∣

= (1− 1) +

mj−1
∑

b=0

max (xj,b0, xi,b1)

∣D∣
−

mi−1∑

a=0

max (xi,a0, xi,a1)

∣D∣

Since the maximum is the average plus half the absolute difference, this is
equal to

MG(Ai,Aj) =

mj−1
∑

b=0

(xj,b0 + xj,b1)

2∣D∣
+

mj−1
∑

b=0

∣xj,b0 − xj,b1∣

2∣D∣

−
mi−1∑

a=0

(xi,a0 + xi,a1)

2∣D∣
−

mi−1∑

a=0

∣xi,a0 − xi,a1∣

2∣D∣

=

mj−1
∑

b=0

(xj,b0 + xj,b1)

2∣D∣
−

mi−1∑

a=0

(xi,a0 + xi,a1)

2∣D∣

+

mj−1
∑

b=0

∣xj,b0 − xj,b1∣

2∣D∣
−

mi−1∑

a=0

∣xi,a0 − xi,a1∣

2∣D∣

=
1

2
−

1

2
+

mj−1
∑

b=0

∣xj,b0 − xj,b1∣

2∣D∣
−

mi−1∑

a=0

∣xi,a0 − xi,a1∣

2∣D∣

Therefore, choosing the feature with the highest misclassification gain is equiva-
lent to maximizing the quantity

∑mi−1
a=0 ∣xi,a0 − xi,a1∣ for any feature Ai. Thus,

according to the misclassification gain function, the best feature is the following:

Abest = argmax
i∈[1...p]

[
mi−1∑

a=0

∣xi,a0 − xi,a1∣

]

Note that, for a distributed setup, selecting the best feature according to the
misclassification gain is equivalent to distributed computation of the following
sum:
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mi−1∑

a=0

∣
∣
∣
∣
∣

d∑

ℓ=1

x
(ℓ)
i,a0 −

d∑

ℓ=1

x
(ℓ)
i,a1

∣
∣
∣
∣
∣
⇒

mi−1∑

a=0

∣
∣
∣
∣
∣

d∑

ℓ=1

{

x
(ℓ)
i,a0 − x

(ℓ)
i,a1

}
∣
∣
∣
∣
∣

(1)

for each feature Ai.

4.3. Gini Index

For a categorical feature Ai, the Gini measure (Tan et al., 2006) for a particular
value Ai = a is

Ginia(Ai) = 1−

(
xi,a0

xi,a⋅

)2

−

(
xi,a1

xi,a⋅

)2

(where xi,a⋅ is the number of tuples with Ai = a).

Theorem 2. Let {A1,A2, . . . ,Ap, C} be the set of features and class as defined
in the notations section where Ai and C takes the values between {0, . . . ,mi−1}
and {0, 1} respectively. The feature with the highest Gini index Abest is the
following:

Abest = argmax
i∈[1...p]

[
mi−1∑

a=0

{

(xi,a0)
2
+ (xi,a1)

2

xi,a⋅

}]

Proof.

Gini(Ai,Aj) =

mi−1∑

a=0

(
xi,a⋅

∣D∣

)

× [Ginia(Ai)]−

mj−1
∑

b=0

(
xj,b⋅

∣D∣

)

× [Ginib(Aj)]

=

mi−1∑

a=0

(
xi,a⋅

∣D∣

)

−
mi−1∑

a=0

(
xi,a⋅

∣D∣

)(
xi,a0

xi,a⋅

)2

−
mi−1∑

a=0

(
xi,a⋅

∣D∣

)(
xi,a1

xi,a⋅

)2

−

mj−1
∑

b=0

(
xj,b⋅

∣D∣

)

+

mj−1
∑

b=0

(
xj,b⋅

∣D∣

)(
xj,b0

xj,b⋅

)2

+

mj−1
∑

b=0

(
xj,b⋅

∣D∣

)(
xj,b1

xj,b⋅

)2

=

mj−1
∑

b=0

(
xj,b⋅

∣D∣

)(
xj,b0

xj,b⋅

)2

+

mj−1
∑

b=0

(
xj,b⋅

∣D∣

)(
xj,b1

xj,b⋅

)2

−
mi−1∑

a=0

(
xi,a⋅

∣D∣

)(
xi,a0

xi,a⋅

)2

−
mi−1∑

a=0

(
xi,a⋅

∣D∣

)(
xi,a1

xi,a⋅

)2

=
1

∣D∣

[mj−1
∑

b=0

{

(xj,b0)
2
+ (xj,b1)

2

xj,b⋅

}

−
mi−1∑

a=0

{

(xi,a0)
2
+ (xi,a1)

2

xi,a⋅

}]

Therefore, the best feature is the one which maximizes the following quantity:

Abest = argmax
i∈[1...p]

[
mi−1∑

a=0

{

(xi,a0)
2
+ (xi,a1)

2

xi,a⋅

}]
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As before, for the distributed setup, the following quantity needs to be evaluated
across all the peers for every feature Ai:

mi−1∑

a=0

⎧

⎨

⎩

(
∑d

ℓ=1 x
(ℓ)
i,a0

)2

+
(
∑d

ℓ=1 x
(ℓ)
i,a1

)2

∑d
ℓ=1 x

(ℓ)
i,a⋅

⎫

⎬

⎭

(2)

Therefore, two separate distributed sum computation instances need to be in-

voked: (1)
∑d

ℓ=1 x
(ℓ)
i,a0 and (2)

∑d
ℓ=1 x

(ℓ)
i,a1.

4.4. Entropy

For a categorical feature Ai, the entropy measure (Tan et al., 2006) for a partic-
ular value Ai = a is

Entropya(Ai) = −

[(
xi,a0

xi,a⋅

)

log

(
xi,a0

xi,a⋅

)

+

(
xi,a1

xi,a⋅

)

log

(
xi,a1

xi,a⋅

)]

(where xi,a⋅ is the number of tuples with Ai = a) and all logarithm is taken with
base 2.

Theorem 3. Let {A1,A2, . . . ,Ap, C} be the set of features and class as defined
in the notations section where Ai and C takes the values between {0, . . . ,mi −
1} and {0, 1} respectively. The feature with the highest entropy Abest is the
following:

Abest = argmax
i∈[1...p]

[
mi−1∑

a=0

{

(xi,a0) log

(
xi,a0

xi,a⋅

)

+ (xi,a1) log

(
xi,a1

xi,a⋅

)}]

Proof.

Entropy(Ai,Aj) =

mi−1∑

a=0

(
xi,a⋅

∣D∣

)

× [Entropya(Ai)]−

mj−1
∑

b=0

(
xj,b⋅

∣D∣

)

× [Entropyb(Aj)]

= −
mi−1∑

a=0

(
xi,a0

∣D∣

)

log

(
xi,a0

xi,a⋅

)

−
mi−1∑

a=0

(
xi,a1

∣D∣

)

log

(
xi,a1

xi,a⋅

)

+

mj−1
∑

b=0

(
xj,b0

∣D∣

)

log

(
xj,b0

xj,b⋅

)

+

mj−1
∑

b=0

(
xj,b1

∣D∣

)

log

(
xj,b1

xj,b⋅

)

=
1

∣D∣

[
mj−1
∑

b=0

(xj,b0) log

(
xj,b0

xj,b⋅

)

+

mj−1
∑

b=0

(xj,b1) log

(
xj,b1

xj,b⋅

)]

−
1

∣D∣

[
mi−1∑

a=0

(xi,a0) log

(
xi,a0

xi,a⋅

)

+

mi−1∑

a=0

(xi,a1) log

(
xi,a1

xi,a⋅

)]
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Fig. 1. Plot of Gini index and Misclassification gain for binary class distribution.

Therefore, the best feature is the one which maximizes the following quantity:

Abest = argmax
i∈[1...p]

[
mi−1∑

a=0

{

(xi,a0) log

(
xi,a0

xi,a⋅

)

+ (xi,a1) log

(
xi,a1

xi,a⋅

)}]

Therefore, the quantity that needs to be evaluated across all the peers for
every feature Ai is:

mi−1∑

a=0

{(
d∑

ℓ=1

x
(ℓ)
i,a0

)

log

(∑d
ℓ=1 x

(ℓ)
i,a0

∑d
ℓ=1 x

(ℓ)
i,a⋅

)

+

(
d∑

ℓ=1

x
(ℓ)
i,a1

)

log

(∑d
ℓ=1 x

(ℓ)
i,a1

∑d
ℓ=1 x

(ℓ)
i,a⋅

)}

(3)

Two separate distributed sum computation instances need to be invoked:

(1)
∑d

ℓ=1 x
(ℓ)
i,a0 and (2)

∑d
ℓ=1 x

(ℓ)
i,a1. The following figure (Figure 1) shows both

the Gini index and misclassification gain function for a binary class distribution
problem.

5. Setup for Distributed Privacy Preserving Feature

Selection

In a horizontally partitioned distributed data mining scenario, the data is dis-
tributed across all the peers in such a way that each peer observes different
instances of the entire data for all features.

As mentioned before, P1, P2, . . . , Pd denotes the set of peers connected to
each other by an underlying communication infrastructure. The network can be
viewed as a graph G = (V , ℰ), where V = {P1, P2, . . . , Pd} denotes the set of
vertices and ℰ denotes the set of edges. Let Γi,� denote the set of neighbors of
Pi at a hop-distance of � from Pi and ∣Γi,�∣ denote the size of this set, i.e., the
number of neighbors in the �-neighborhood. � = 1 refers to the set of immediate
neighbors. Further, let Φd×d denote the connectivity matrix or topology matrix
of G representing the network where
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�ij =

{
1 if i, j ∈ ℰ , i ∕= j
− ∣Γi,1∣ if i, j ∈ ℰ , i = j
0 otherwise

Each of the misclassification gain, gini index and entropy based feature selec-
tion techniques require independent computation of one (misclassification gain)
or two (Gini index, entropy) sums on the count of the class labels for each of
the p features of the data. Thus, the distributed p2p feature selection algorithm
should be able to compute distributed summations on the partial data in an asyn-
chronous privacy preserving fashion and reach a globally correct result. In this
section, we present the three important building blocks that we use for develop-
ing our distributed privacy preserving feature selection algorithm. We combine
an asynchronous distributed averaging technique with secure sum protocol to
form our privacy preserving sum computation technique, in the context of the
Bayes optimal model of privacy.

5.1. Distributed Averaging

Average (and hence sum computation) is one of the most fundamental primitives
useful for many advanced data mining tasks. In distributed averaging, each peer

Pi has a real-valued number xi and the task is to compute Δ = 1
d

∑d
i=1 xi

without centralizing all the data. Researchers have proposed several solutions
to this problem. In this paper, we explore the one proposed by Scherber and
Papadopoulos (Scherber and Papadopoulos, 2005). The basic idea is as follows.

Each peer maintains z
(t)
i , which is the current estimate of Δ at time t. z

(0)
i is

initialized to xi. Each peer asynchronously updates z
(t)
i based on the updates it

receives from other neighbors. For any time t, the update rule can be written as
(Scherber and Papadopoulos, 2005):

z
(t)
i = z

(t−1)
i + �

∑

j∈Γi

[

z
(t−1)
j − z

(t−1)
i

]

It has been shown that as t → ∞, the estimate of each peer converges to the
average i.e. zti → Δ.

The distributed averaging problem, as proposed in the literature, is not pri-
vacy preserving. Moreover it works only for symmetric network topologies, i.e. if
peer Pi is a neighbor of Pj , then the reverse is true. However, our multi-objective
optimization based privacy framework (which we discuss in details in Section 6)
requires an asymmetric network topology. Therefore, the update rule for dis-
tributed averaging needs to be adapted for asymmetric topologies by generating
a symmetric topology Φ

′′

= Φ + ΦT using the asymmetric topology Φ. Using
this, the update rule for any peer Pi can be written as:

z
(t)
i = {1− 2� ∣Γi,1∣ − �(n∗

i − ∣Γi,1∣)} z
(t−1)
i + 2�

∑

q∈Γi,1

z(t−1)
q + �

n∗

i−∣Γi,1∣∑

q=1

z(t−1)
q (4)

Such an average computation algorithm can easily be adopted for computing
the sum by pre-multiplying each xi by d i.e. the input to the algorithm should
now be xi × d.
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5.2. Secure Sum Computation

Secure sum protocol (Clifton et al., 2003) computes the sum of a collection of
numbers without revealing anything but the sum. It can be shown that the
distribution of the output of the protocol is uniform and hence no hacker can
obtain any more information from the sum other than what is implied by the
sum itself. This protocol naturally lends itself to multi-party computation since
the data resides at different nodes. However, execution of this protocol requires
the existence of a ring topology over all the nodes. In the protocol assuming that

the sum S =
∑d

i=1 xi is in the range [0, N − 1], the initiator of the protocol
generates a random number R in the same range. It then does the following
computation and sends the data to the next node in the ring:

(R+ x1) mod N

Any node 2 through d, gets the data of the previous node and performs the
following computation:

yi = (yi−1 + xi) mod N = (R+
∑i

q=1 xq) mod N,

where yi is the perturbed version of local value xi to be sent to the next peer i+1.
The last peer sends the result to peer 1 which knows R, and hence can subtract
R from yd to obtain the actual sum. This sum is finally broadcast to all other
users. This protocol assumes that the participants do not collude. However, it has
been shown in the literature (Kargupta et al., 2007) that such an assumption is
suboptimal and that rational parties would always try to collude. The analysis of
privacy in the presence of colluding parties in the context of our feature selection
algorithm is discussed in the next section.

The secure sum protocol is highly synchronous and is therefore unlikely to
scale for large networks. However, combining the secure sum protocol with dis-
tributed averaging gives us a privacy preserving algorithm for feature selection
under the Bayes optimal model of privacy.

5.3. Bayes Optimal Privacy Model

Bayes optimal privacy model (Machanavajjhala, Gehrke, Kifer and Venkitasub-
ramaniam, 2006) quantifies or bounds the difference in information that any
participant has before and after the data mining protocol is executed. This quan-
tification can be presented in terms of prior and posterior distribution. Let X be
a random variable which denotes the data value at each node. The value at node
Pi is denoted by xi. The prior probability distribution is prior = P (X = xi).
Once the data mining process is executed, the participants can have some ex-
tra information. Given this, we define the posterior probability distribution as
posterior = P (X = xi∣ℬ), where ℬ models the extra information. Evfimievski
et al. present a way of quantifying the Bayes optimal privacy breach.

Definition 1 (�1 − to− �2-privacy breach). (Evfimevski, Gehrke and Srikant,
2003). Let fprior and fposterior denote the prior and posterior probability distri-
butions of X . The �1−to−�2 privacy breach is mathematically stated as follows:
fprior ≤ �1 and fposterior ≥ �2, where 0 < �1 < �2 < 1.

This definition is only suitable for a system in which all the nodes follow
the same privacy model. However, in a large P2P network, such an assumption
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is difficult to impose. Therefore, we extend this definition to a distributed data
mining scenario in which each node defines its own privacy model.

Definition 2. [Multi-party �1 − to − �2 privacy breach] For the i-th peer Pi,
privacy breach occurs if f i

prior ≤ �1i and f i
posterior ≥ �2i. Multi-party �1− to−�2

privacy breach occurs when the constraints are violated for any peer in the
network i.e. ∀i, f i

prior ≤ �1i and f i
posterior ≥ �2i, where 0 < �1i < �2i < 1.

In the definition, the posterior probabilities of each peer can either be de-
pendent or independent of each other. If the peers share the extra information
(ℬ), their posterior distributions are also related. As discussed later, in our al-
gorithm the dependence or the independence of the posterior probabilities does
not change the privacy requirements.

6. Privacy Preserving Asynchronous Feature Selection

As noted in Section 4, distributed feature selection requires the peers to compute
the sums of certain metrics defined over the partial feature vectors Ais (equa-
tions 1, 2, and 3) and comparing the sums across all the features for finding the
best features from the information theoretic perspective. For distributed feature
selection, each peer starts these sum computations. Since distributed sum com-
puting is nothing but distributed averaging of scaled data, our algorithm uses
a distributed averaging technique for the sum computation. However, since the
existing distributed averaging techniques are not privacy preserving, we use a
secure sum based averaging technique for privacy. Secure sum requires a ring
topology. Therefore, depending on their privacy requirements, every ring forms
a local ring by inviting other peers to join its computation ring and does a dis-
tributed averaging within its ring using the modified update rule described in
equation 4.

Privacy is a social concept. In a distributed data mining environment, dif-
ferent peers have different notions and requirements of privacy. Due to sharing
of private information in the process of computation, privacy of the users’ data
is threatened. If other users participating in the computation cheat, then the
privacy of someone’s data can be compromised. Every user in the network has a
belief about the threat to its data privacy. The threat that a peer’s data is ex-
posed to can be considered as a measure of the lack of privacy of its data. Again,
the amount of resources available to a peer varies across the network and hence,
the cost (of computation and communication) a peer can bear to ensure its data
privacy also varies. Therefore, every user in the network solves an optimization
problem locally based on its cost and threat threshold, i.e. how much threat the
user is willing to bear and how much resources it is willing to spend for ensuring
that. For illustration purposes, we use a linear model for the objective function:

f
obj
i = wti × tℎreat− wci × cost

where the cost is the total cost of communication of peer Pi within a neigh-
borhood of size n∗

i and tℎreat is the privacy breach that peer Pi assumes to
be exposed to due to its participation in the data mining task. wti and wci are
the weights (importance) associated with the tℎreat and cost. These parameter
values are local to each peer and are independent of the values chosen by any
other peer in the network. In the next section we derive an expression for threat
for secure sum in the presence of colluders.
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Threat measure for secure sum with collusion (Kargupta and Sivakumar,
2004): Each peer forms a ring of size n∗

i (referred to as n in this section for sake
of simplicity) in our algorithm. Let us assume that there are k (k ≥ 2) nodes
acting together secretly to achieve a fraudulent purpose. Let Pi be an honest
node who is worried about its privacy. Let Pi−1 be the immediate predecessor
of Pi and Pi+1 be the immediate successor of Pi. We will only consider the case
when n − 1 > k ≥ 2 and the colluding nodes contain neither Pi−1 nor Pi+1, or
only one of them, then Pi is disguised by n−k−1 other nodes’ values. The other
cases are trivial. This can be represented as

n−k−1∑

q=1

xq

︸ ︷︷ ︸

denoted by Y

+ xi
︸︷︷︸

denoted by X

= S −
i+k∑

q=i+1

xq

︸ ︷︷ ︸

denoted by W

,

where W is a constant and known to all the colluding nodes and S is the global
sum. It can be shown that the posterior probability of xi is:

fposterior(xi) =
1

(m+ 1)(n−k−1)

r∑

q=0

(−1)q
(
n− k − 1

q

)

×

(
n− k − 1 + (r − q)(m+ 1) + t− 1

(r − q)(m+ 1) + t

)

where z = W − xi and z ∈ {0, 1, . . . ,m(n − k − 1)}. r = ⌊ z
m+1⌋, and t =

z−⌊ z
m+1⌋(m+1). Note that here we assume xi ≤W , otherwise fposterior(xi) = 0.

This posterior probability can be used to measure the threat faced by a peer while
participating in the secure sum computation protocol, if there is collusion:

tℎreat = Posterior − Prior = fposterior(xi)−
1

m+ 1
(5)

It can be observed from this threat measure that (1) as k increases, the posterior
probability increases, and (2) as n increases, the posterior probability decreases.
Hence, assuming a fixed percentage of bad nodes in the network, each peer would
like to increase the size of its ring thereby reducing the threat. However, this
has an adverse effect on the cost. Including more peers means more cost both in
terms of communication and synchronization. It seems that there exist a tradeoff
and an optimal choice of this n∗

i is guided by the solution to the optimization
problem, assuming a linear cost with respect to the size of the ring:

max
n

[wti × tℎreat(n)− wci × cost(n)]

subject to the following constraints: cost < ci and tℎreat < ti where tℎreat(n)
is given by Equation 5 and cost(n) = wc × g × n. g is the proportionality con-
stant and ci and ti are constants for every peer and denote the cost threshold
and privacy threshold that each peer is willing to withstand. Solution to this
optimization problem gives us a range of values of n∗

i :

1 + k +
log(wti)− log(ti)

log(m+ 1)
≤ n∗

i ≤
ci

wci × g
. (6)
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Thus each peer chooses its own set of neighbors depending on the value of n∗
i .

This naturally gives rise to asymmetric network topologies because two neighbor-
ing peers Pi and Pj may have different values of n∗

i and n∗
j . This naturally calls

for a modification of the traditional secure sum protocol. The modified update
rule is given by Equation 4.

Each node executes this privacy preserving sum computation only in its local
neighborhood. For finding the distributed sum, whenever peer Pi wants to update

its state (based on Equation 4 or 4), it does not get the raw z
(t−1)
j ’s from all its

neighbors, rather Pi forms an implicit ring among them. So every peer in the
network has to execute two protocols: (i) protocol for it own ring formation and
(ii) distributed averaging protocol in its own ring till asymptotic convergence
of the sums. This approach has two advantages over existing algorithms: (i) it
allows a peer to preserve the privacy while still correctly executing the distributed
sum protocol and (ii) the ring being formed only in its local neighborhood, it
does not suffer from the typical synchronization requirements. As a result, this
distributed sum computation technique scales well to large networks.

6.1. Local Ring Formation Algorithm (L-Ring)

For distributed averaging, peer Pi updates its current state based on the infor-
mation it gets from its n∗

i neighbors. In order to preserve privacy, Pi does not
get the raw data from its neighbors; rather a ring is formed among n∗

i neighbors
and sum computation is performed in that ring.

The ring formation algorithm works as follows. When initialized, each node
solves the optimization problem and finds the value of n∗

i . It then launches n∗
i

random walks in order to select n∗
i nodes uniformly from the network to par-

ticipate in Pi’s ring. The random walk we have used is the Metropolis-Hastings
random walk which gives uniform samples even for skewed networks. We do not
present the details here, interested readers are referred to (Das et al., 2008).
Whenever one random walk ends at Pj , it first checks if n

∗
i < n∗

j . If this is true,
it poses a potential privacy breach for Pj . Hence Pj may choose not to partic-
ipate in Pi’s call by sending a NAC message along with its n∗

j . Otherwise Pj

sends an ACK message to Pi. If Pi has received any NAC message, it computes
max(n∗

j ) and checks if it violates its cost constraint. If the constraint is violated,
Pi chooses a different peer Pq by launching a different random walk. Otherwise,
it then sends out all of the max(n∗

j ) invitations again which satisfies the privacy
constraints of all the participants. The pseudocode is presented in Algorithm 6.1.

Algorithm 6.1. Ring Formation for Privacy Preserving Sum Computation (L-
Ring).

Input of peer Pi:
Threat ti and cost ci that peer Pi is willing to tolerate

Initialization:
Find the optimal value of n∗

i using ti and ci.
If Pi initializes a ring:
Contact the neighbors as dictated by n∗

i by launching n∗
i parallel random

walks
When a random walk ends in node Pj:
Fetch the value of n∗

i as sent by Pi
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IF (n∗
i <= n∗

j ) Send (NAC,n∗
j ) to Pi

ELSE Send ACK to Pi

ENDIF
On receiving NAC, n∗

j from Pj:
IF replies received from everyone
IF n∗

j violates cost constraint
Contact different neighbor Pq

ELSE max = argmaxj{n∗
j}; Set n

∗
i = max

Send invitation I(n∗
i ) to Pj with n∗

i value
ENDIF

ENDIF

6.2. Privacy Preserving Algorithm for Feature Selection
(PAFS)

The PAFS algorithm using misclassification gain metric works by invoking m1+
⋅ ⋅ ⋅ + mp different privacy preserving distributed sum protocols for p features.

For feature Aℓ, peer Pi initializes mℓ estimates at time 0: z
(0)
i,ℓ0 =

(

x
(i)
ℓ,00 − x

(i)
ℓ,01

)

,

. . . , z
(0)
i,ℓ(mℓ−1) =

(

x
(i)
ℓ,(mℓ−1)0 − x

(i)
ℓ,(mℓ−1)1

)

, where z
(t)
i,ℓa denotes the estimate of

peer Pi at time t when feature Aℓ takes on a value of a. This is done for all the
features A1, . . . ,Ap. Now each peer launches m1 + ⋅ ⋅ ⋅+mp different distributed
averaging computations in their local rings. Other than the initiator, whenever
a peer gets data from its neighbor, it adds its data and sends it to the next one
in the ring following the secure sum protocol. When the entire sum (masked by
the random number) comes back to the initiator, the latter updates its estimate
using Equation 4. It then sends the data again to the first member of the ring
and the process continues. Once the sums converge (say at time t), each peer
does the following computation with the local z’s (following Equation 1):

s1 =

m1−1∑

a=0

∣
∣
∣z

(t)
i,1a

∣
∣
∣ , . . . , sp =

mp−1
∑

a=0

∣
∣
∣z

(t)
i,pa

∣
∣
∣

The best features are the ones with the highest si’s. Algorithm 6.2 presents the
pseudo code.

In order to use gini index and entropy the following modifications are made:

– Instead of invokingmℓ number of distributed sum for each feature Aℓ, we need
to invoke 2 ×mℓ number of private averaging computations. For any peer Pi

and featureAℓ = a, initialize z
(0)
i,ℓa,0 =

(

x
(i)
ℓ,a0

)

, z
(0)
i,ℓa,1 =

(

x
(i)
ℓ,a1

)

. The third sum

is simply the sum of the first two computations, i.e. z
(0)
i,ℓa,2 =

(

x
(i)
ℓ,a0 + x

(i)
ℓ,a1

)

.

– Once the sums converge at time t each peer computes the following quantities
with its local estimates only,

⋅ Gini Index: s1 =
∑m1−1

a=0

{
(z

(t)
i,1a,0)

2+(z
(t)
i,1a,1)

2

z
(t)
i,1a,2

}

,. . . ,

sp =
∑mp−1

a=0

{
(z

(t)
i,pa,0)

2+(z
(t)
i,pa,1)

2

z
(t)
i,pa,2

}
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⋅ Entropy: s1 =
∑m1−1

a=0

{

z
(t)
i,1a,0log

z
(t)
i,1a,0

z
(t)
i,1a,2

+ z
(t)
i,1a,1log

z
(t)
i,1a,1

z
(t)
i,1a,2

}

,. . . ,

sp =
∑mp−1

a=0

{

z
(t)
i,pa,0log

z
(t)
i,pa,0

z
(t)
i,pa,2

+ z
(t)
i,pa,1log

z
(t)
i,pa,1

z
(t)
i,pa,2

}

– As before, the best features are the ones with the highest values of s1, . . . sp.

We avoid presenting the pseudo-code for Gini and entropy based techniques
here due to their similarity with the misclassification gain based algorithm.

Algorithm 6.2. Privacy Preserving Algorithm for Feature Selection (PAFS).

Input of peer Pi:
Convergence rate �, local data Di, round, and set of n∗

i -local neighbors
arranged in a ring or {ringi,n∗}
Initialization:
Initialize {ringi,n∗}, �
Set round← 1
Set j ← first entry of {ringi,n∗}
Compute:

–For feature A1: z
(0)
i,10 =

(

x
(i)
1,00 − x

(i)
1,01

)

, . . . ,

z
(0)
i,1(m1−1) =

(

x
(i)
1,(m1−1)0 − x

(i)
1,(m1−1)1

)

,

–For feature A2: z
(0)
i,20 =

(

x
(i)
2,00 − x

(i)
2,01

)

, . . . ,

z
(0)
i,2(m2−1) =

(

x
(i)
2,(m2−1)0 − x

(i)
2,(m2−1)1

)

,

...
–

–For feature Ap: z
(0)
i,p0 =

(

x
(i)
p,00 − x

(i)
p,01

)

, . . . ,

z
(0)
i,p(mp−1) =

(

x
(i)
p,(mp−1)0 − x

(i)
p,(mp−1)1

)

,

{ringi,n∗} ← {ringi,n∗} ∖ j

Send
({

z
(0)
i,10, . . . , z

(0)
i,p(mp−1)

}

, {ringi,n∗} , round
)

to j

On receiving a message ({y1, . . . , ym1+m2+⋅⋅⋅+mp
}, {ring}, rnd) from Pj:

IF {ring} = ∅

Update {z
(round)
i,10 , . . . , z

(round)
i,p(mp−1)}

round← round+ 1
Set j ← first entry of {ringi,n∗}
{ringi,n∗} ← {ringi,n∗} ∖ j

Send
(

{z
(round)
i,10 , . . . , z

(round)
i,p(mp−1)}, {ringi,n∗} round

)

to j

Check if any node is waiting on this peer
Send data to all such nodes

ELSE
IF round < rnd
Wait

ELSE
Set ret1 = y1 + z

(rnd)
i,10 , . . . , retm1+⋅⋅⋅+mp

= ym1+⋅⋅⋅+mp
+ z

(rnd)
i,p(mp−1)
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Set j ← first entry of {ring}
{ring} ← {ring} ∖ j
Send

(
{ret1, . . . , retm1+⋅⋅⋅+mp

}, ring, rnd
)
to Pj

END
END

7. Analysis

In this section we analyze the performance of L-Ring and PAFS algorithms.

7.1. L-Ring Running Time Analysis

Lemma 1. For any peer Pi, and all neighbors Pj ∈ Γi,1, the L-Ring algorithm
has a running time of O(max(n∗

i , n
∗
j )), where n∗

i is the optimal value for node
Pi and n∗

j is the value required by node Pj where Pi and Pj belong to the same
ring for the sum computation.

Proof. Pi’s ring formation can have the following two cases:

1. For all Pj ∈ Γi,1, if n
∗
i > n∗

j , then the running time is upper bounded by the
maximum time required by Pi to contact all its neighbors i.e. O(n∗

i ).

2. Without loss of generality, assume that

Ξ = {P1, . . . , PSi
} ⊆ Γi,1

be the set of nodes whose n∗
j , for all Pj ∈ Ξ is greater than n∗

i i.e. ∀Pj ∈
Ξ, n∗

j ≥ n∗
i . These are the number of NAC messages received by Pi from all

Pj ∈ Γi,1. Computing the maximum of all entries in Ξ takes O(∣Ξ∣). In order
to accommodate all the nodes in its neighborhood, Pi increases its ring size to
maxPj∈Ξ{n∗

j}. In this case, computation on this ring takes time O(n∗
j ).

Therefore the overall running time is O(max(n∗
i , n

∗
j )).

In the L-Ring algorithm, each node contacts other nodes to form rings. For
every such ring, there is one ring leader. Every such ring leader is also contacted
by other nodes in the network to participate in their rings. Below we first state
what is meant by deadlock in this system and then prove that our algorithm is
deadlock-free.

Definition 7.1 (Deadlock). A deadlock is a situation wherein two or more
competing actions are waiting for the other to finish, and thus neither ever does.

In our context, a deadlock can occur, for example if a node Pi has sent
invitations to other nodes Pj to join its ring. These Pj ’s may themselves be
waiting on others to send them response to their requests for forming rings. This
process may be translated to all the nodes in the system and therefore, the entire
system may become unresponsive. Below we prove that such a situation never
arises in this context.

Lemma 2. The ring formation algorithm is deadlock-free.

Proof. Consider a node Pi whose n∗
i is the maximum of all the nodes in the

network. Let us also assume that n∗
i < d, where d is the total number of nodes in
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the network. In other words, the maximum n∗
i is such that a ring of size n∗

i can be
formed in a network of size d. Consider any node Pj who sends a ring formation
request message to Pi. Now by assumption, n∗

j < n∗
i , for all Pj ∕= Pi. Also since,

n∗
i < d, n∗

j < d as well for all Pj . Thus it is evident that if Pi converges for
ring formation so would all Pj ’s. Hence there can be no deadlock. In the worst
case, multiple large rings will be formed which will include all the nodes in the
network. Since there is no deadlock for Pi, there can be no deadlock for any of
the neighbors of Pi. Thus, by simple induction on the entire network, L-Ring is
deadlock free.

7.2. PAFS Correctness Analysis

Our next lemma states that PAFS algorithm asymptotically converges to the
correct ordering of the features.

Lemma 3. PAFS converges to the correct ordering of the feature for any im-
purity metric chosen above.

The proof is based on the convergence of the original distributed averaging
algorithm proposed in (Scherber and Papadopoulos, 2005). In the modified ver-
sion catered for asymmetric topologies, the only modification we have made is a
change in the topology matrix Φ. It can be shown that this does not change the
correctness or convergence criterion. We have omitted this due to similarity of
proofs presented in (Scherber and Papadopoulos, 2005). It has been shown that
the modified sum computation algorithm converges exponentially fast to the cor-
rect result. At each step in the computation, the error (difference between the
local peer’s estimate and the global sum) deceases exponentially. Since the last
step in PAFS is ordering the features locally at each peer, it does not require
any distributed computation and hence can be ignored for the convergence time
analysis.

7.3. PAFS Locality Analysis

In this section we prove that PAFS is local. Intuitively, locality of an algorithm
ensures bounded message complexity in each peer’s neighborhood and hence is
crucial for the algorithm’s scalability. This has also been shown elsewhere (Datta,
Bhaduri, Giannella, Wolff and Kargupta, 2006)(Das et al., 2008).

There are several definitions of locality proposed in the literature. The lo-
cality concept proposed by Das et al. (Das et al., 2008) is characterized by two
quantities — (1) � – which is the number of neighbors a peer contacts in order
to find answer to a query and (2)  – which is the total size of the response which
a peer receives as the answer to all the queries executed throughout the lifetime
of the algorithm. The PAFS algorithm exhibit (�, )-locality in the following
sense. For any given peer, the choice of � is guided by the optimal solution of
the objective function defined earlier. In the worst case, a peer may choose � to
be equal to the size of the entire network. Therefore, � = O(d) in the worst case.
The bound on  is specified by the following lemmas.

Lemma 4. Let � be the error between the true sum (Δ) and the node estimates
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(z
(t)
j ) as induced by PAFS algorithm after t rounds of computation. Then t ≥

log(�)−log(d)
log(�2

max)
, where �i’s are the eigenvalues of the topology matrix Φ

′′

.

Proof. From (Scherber and Papadopoulos, 2005), we know that the error at the
t-th step is bounded by d�2t

max i.e.

∣
∣
∣

∣
∣
∣z

(t)
j − 1Δj

∣
∣
∣

∣
∣
∣

2

=
∑d

j=2 �
2t
i

∣
∣
∣z

(0)
j

∣
∣
∣

2

(assuming
∣
∣
∣z

(0)
j

∣
∣
∣

2

= 1)

Now let the error be bounded by �. Thus,

d�2t
max < �⇒ t ≥

log(�)− log(d)

log(�2
max)

Theorem 4. The total size of the messages exchanged () by any peer is upper
bounded by

log(�)− log(d)

log(�2
max)

[

log(z(t)max) + n∗
i

]

,

where z
(t)
max is the maximum of data values at any peer in a ring at round t.

Proof. At round t, the number of bits necessary to store the maximum of all

the z
(t)
i -s is log(z

(t)
max). While performing the secure sum at any round ℓ, peer Pi

with Γi,1 = {Pi−1, Pi+1} does the following computation: (z
(ℓ)
i−1 + z

(ℓ)
i ) mod N ,

where N is the parameter of the sum computation protocol. Hence for every
peer, the number of bits required to represent the new sum will increase by 1
at most. Therefore, the total number of bits required for each message is upper

bounded by
[

log(z
(ℓ)
max) + n∗

i

]

. In each round of the sum computation, a peer

exchanges only one message (due to ring topology). Hence, for t rounds, we get

the total number of bits exchanged as t
[

log(z
(t)
max) + n∗

i

]

. Using Lemma 4,

 ≤
log(�)− log(d)

log(�2
max)

[

log(z(t)max) + n∗
i

]

.

Lemma 5. PAFS algorithm is
(

O(d), log(�)−log(d)
log(�2

max)

[

log(z
(t)
max) + n∗

i

])

-local.

Proof. As stated, for any node Pi the maximum size of ring is equal to the size of
the network. So according to the definition of locality, � = O(d). Also as shown
in Theorem 4,

 ≤
log(�)− log(d)

log(�2
max)

[

log(z(t)max) + n∗
i

]

. Therefore, PAFS algorithm is
(

O(d), log(�)−log(d)
log(�2

max)

[

log(z
(t)
max) + n∗

i

])

-local.
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7.4. PAFS Privacy Analysis

Finally we prove that the PAFS algorithm is distributed �1-to-�2 privacy pre-
serving.

Lemma 6. PAFS protocol is distributed �1-to-�2 privacy preserving.

Proof. First note that, for any node Pi there are two rings in which it partici-
pates. The ring for which Pi is the initiator satisfies the privacy model since the
solution is found by solving the optimization problem. For any ring to which Pi

is invited to, it only participates if n∗
j > n∗

i which also guarantees conformity to
the �1i-to-�2i model for Pi. Therefore, using the privacy model defined in 2, the
PAFS protocol is distributed �1-to-�2 privacy preserving.

7.5. PAFS Scalability Analysis

Next we analyze the scalability of the PAFS algorithm both with respect to
quality of results and communication cost. PAFS asymptotically converges to
the correct sum independent of the number of tuples or features. This because
first local sums are computed based on a peer’s data and then the averaging
proceeds. So quality is not affected by either the number of features or tuples.
For the communication cost, consider the following:

Variation with # features For p features, where feature Ai ∈ {0, . . . ,mi},
total number of distributed averaging computations initialized are �

∑p
i=1 mi

where � = 1 for misclassification gain and � = 2 for gini and entropy. Thus the
communication complexity of PAFS is (

∑p
i=1 mi× the time required for each

distributed averaging to converge). As shown earlier, the time required for the
distributed averaging to converge is bounded by logarithm of the number of
nodes in the network.

Variation with # tuples There is no effect of the communication complexity
on the number of tuples since each peer locally computes the counts based on
all its local tuples and then uses these counts in the distributed averaging.

In contrast, it is worthwhile to mention that the naive solution of centralizing all
the data for performing the same computation has a communication complexity
of O(

∑p
i=1 mi)×d. This is because

∑p
i=1 mi local averages need to be centralized

for all nodes d. However, the communication complexity of the centralized tech-
nique can be reduced assuming a tree overlay on the network and performing a
convergecast-style computation. However, both these techniques have one major
drawback — they require synchronization of the entire network.

There does not exist a lot of literature on distributed feature selection. Das
et al. (Das et al., 2008) developed an algorithm for identifying the top features
using a probabilistic random walk based algorithm. The communication cost of
the probabilistic algorithm is expected to be lower than the algorithm proposed
in this paper. However, the distributed algorithm developed in this paper is (1)
eventually correct i.e. converges to the same result compared to a centralized
algorithm, and (2) provides a guaranteed privacy protection.
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8. Experimental Results

To validate the performance of the PAFS algorithm, we conducted experiments
on a simulated network of peers. Our implementation of the algorithm was done
in Java using the DDMT2 toolkit developed at UMBC. For the topology, we
used the BRITE topology generator3. We experimented with the Waxman model
(Waxman, 1991) which first distributes a set of nodes uniformly in the plane,
and then connects any two nodes (Pi and Pj) with a probability

Prob(i, j) = �e−d(Pi,Pj)/�L,

where 0 < �, � < 1, d(Pi, Pj) is the euclidean distance from node Pi to node Pj ,
and L is the maximum distance between any two nodes. As evident, the proba-
bility of connecting two nodes in inversely proportional to the distance between
them and so nodes in the vicinity are heavily connected, thereby generating
power-law topologies. Power-law random graph is often used in the literature to
model large non-uniform network topologies. It is believed that P2P networks
conform to such power law topologies (Saroiu, Gummadi and Gribble, 2002).
� and � are constants which control the degree of connectivity for a fixed dis-
tance between nodes. For example, larger values of both � and � increase the
interconnection probability, and therefore, tend produce fully connected graphs.
Internet topologies generally exhibit heavily connected cluster of nodes instead.
Hence, we have used small default values of � = 0.15 and � = 0.2 in our ex-
periments. We convert the edge delays in Waxman model to simulator ticks for
time measurement since wall time is meaningless when simulating thousands of
computers on a single PC.

We have experimented with two publicly available datasets at the UCI KDD
archive4. The first is the mushroom dataset5. This dataset has been previously
used for classification and prediction tasks. In our experiments, we have not
used any semantics of the data; rather we have chosen this dataset because of
the presence of categorical features with binary class labels. The full dataset
has approximately 8000 tuples and 23 features. Of these features, 22 categori-
cal features are used to describe the mushroom and the class feature is binary
depicting if this is edible or not. We convert the nominal features to categorical
(integer valued) by assigning an integer value to each possible symbol that the
category can take. The maximum value of any categorical feature is 12. The
second dataset that we have used is the forest cover dataset6. This dataset has
54 features — 44 binary and the rest categorical. It has a total of 581012 tuples.
The last column is the class label which can take values between 1 to 7. Since
our algorithm can only handle binary class labels, we create a one-vs.-all class
distribution by re-assigning all tuples which have a class label of 2 (Lodgepole
Pine) as 1 and the rest as 0. Our goal is to identify the set of features which are
important for identifying the Lodgepole Pine forest type. Although this dataset
is located at a single location, but many high-dimensional earth science data
sets are distributed based on geographical locations. Once PAFS can identify

2 http://www.umbc.edu/ddm/Sftware/DDMT/
3 http://www.cs.bu.edu/brite/
4 http://kdd.ics.uci.edu/
5 http://archive.ics.uci.edu/ml/datasets/Mushroom
6 http://kdd.ics.uci.edu/databases/covertype/covertype.html

http://www.umbc.edu/ddm/Sftware/DDMT/
http://www.cs.bu.edu/brite/
http://kdd.ics.uci.edu/
http://archive.ics.uci.edu/ml/datasets/Mushroom
http://kdd.ics.uci.edu/databases/covertype/covertype.html
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Fig. 2. Plot of the number of messages transferred vs. number of peers (misclas-
sification gain).

the most important features in a distributed fashion, only the data correspond-
ing to these features can be centralized to build a classifier. The cost of this two
step process will be much less compared to centralizing the entire dataset with
comparable accuracy.

In order to apply our distributed feature selection algorithm, the total number
of tuples is equally split into non-overlapping blocks sequentially such that each
block becomes the data of a peer.

In all our experiments we measure two quantities: the quality of our results
and the cost incurred by our algorithm. We compare these quantities to the
centralized execution of the same algorithms. Next we present the performance
analysis of each of the variants of the PAFS algorithms on these two datasets.

8.1. Distributed Misclassification Gain

The PAFS algorithm is provably correct. In all our experiments of PAFS us-
ing misclassification gain, we have seen that it generates the same ordering of
attributes when compared to the centralized algorithm.

Figure 2 shows the variation of the cost of the feature selection algorithm
using misclassification gain when the number of nodes increases from 50 to 1000.
The results are on the mushroom data set. As seen in Figure 2, the y-axis refers
to the number of messages sent by each peer per unit of time. It varies between
0.16 and 0.167 which is a really low increase considering a 20-fold increase in
the number of peers. As pointed out in Section 7, the total number of messages

exchanged per round is
∑i

i=1 mi. In this case,
∑i

i=1 mi = 60. Assuming 4-bytes
per integer, the size of a message per round is 60 × 4 = 240 bytes. Hence we
claim that our algorithm shows excellent scalability in terms of the number of
messages transferred.
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Fig. 3. Plot of the number of messages transferred vs. number of peers (gini
index).

8.2. Distributed Gini Index

In our distributed experiment using the Gini measure on the same mushroom
data set, the PAFS algorithm do not report the same ordering compared to
centralized scenario. One pair of attributes are interchanged compared to the
centralized ordering. This can be explained by the fact that for computing the
gini index, we need to find the ratio of two sums. Since these sums are correct
only asymptotically, there is always a small deviation from the true gini index.
This can lead to error in the distributed algorithm.

The cost of the algorithm is shown in Figure 3. The number of messages
vary between 1.97 and 2.0. Note that for Gini index, for each attribute and each
possible value of an attribute, we need to execute 2 distributed sum protocols. For
the same scenario, we need only 1 sum computation for misclassification gain. As
a result, the number of messages per peer per unit of time doubles in this scenario.

As before, the size of a message per round is 2
∑i

i=1 mi × 4 = 2× 60× 4 = 480
bytes.

8.3. Distributed Entropy

In our last experiment with the mushroom data set, we test the entropy based
distributed PAFS algorithm. The quality results are similar to the distributed
Gini algorithm and can be attributed to the fact that in this case we need to
compute the logarithm of sums. This introduces some error in the value and hence
some features may be ordered differently compared to centralized execution. In
our empirical analysis, we noticed three attributes mis-ordered by the distributed
algorithm.

The number of messages per peer per unit of time varies between 1.98 and

2.0. In this case as well, the size of a message per round is 2
∑i

i=1 mi × 4 =
2× 60× 4 = 480 bytes.



26 K. Das et al.

50 100200 500 1000
1.9

1.95

2

2.05

2.1

Number of peers

M
es

sa
ge

s/
pe

er
 p

er
 u

ni
t o

f t
im

e

Fig. 4. Plot of the number of messages transferred vs. number of peers (entropy).

8.4. Experiments with Forest Cover dataset

In this set of experiments our focus is to identify the set of attributes which
contribute highly towards classifying the Lodgepole Pine forest type. We have
run all three variants of PAFS. Figure 5 shows the attributes along x-axis along
with the measurement metric on the y-axis. Note that ordering of the attributes
is not the same for all three measurements. In all these cases, we have run a
centralized algorithm which produced the same results. We do not present any
graphs on communication complexity because they are similar to what has been
presented for the mushroom data set. In this case,

∑54
i=1 mi = 19746. Thus, per

round, PAFS exchanges 19746 ∗ 4 = 78984 bytes compared to 1974600 bytes
needed for centralization.

Therefore to sum up, all the proposed techniques demonstrate the superior
quality of the algorithms at moderate cost of communication.

8.5. Discussion

As shown in the above experimental results, PAFS converges to the correct result
with a fraction of the cost necessary for centralization. Consider a scenario in
which there are multiple users each having a number of songs. Each song has
various features associated with it such as type, time, genre etc. Also based on
its own preference each user has classified each song as liked or not-liked. Now,
for a company which does song advertisement of new or yet unknown songs, it
might be interested to send the advertisement to only the interested users. One
way of achieving this is to run PAFS first to identify the top few features. Then a
classifier can be built based on only these features by either centralizing the data
associated with those features over all users or using a distributed classifier such
as the one proposed in (Bhaduri et al., 2008). The classifier will essentially create
a mapping from the users to songs based on the features selected by PAFS. Due
to the unavailability of such real-life P2P user and song dataset, we could not
run any such experiments.
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Fig. 5. Relative values of the three feature selection measures for all the features
of the forest cover dataset as found by PAFS.

9. Conclusions

In this paper we discuss the need for developing technology for taking personal
content and delivering it to interested parties in a large population with di-
verse interests in a distributed, decentralized manner. We argue that the existing
client-server models may not work very well in solving this problem because of
scalability and privacy issues. We suggest that distributed and P2P data mining
is likely to play a key role in many information and knowledge management tasks
such as indexing, searching, and linking the data located at different nodes of
a network in the future. Therefore, we also emphasize the need for developing
local, asynchronous, distributed privacy-preserving data mining algorithms.
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We have taken a very simple example problem and proposed a privacy pre-
serving asynchronous algorithm for doing feature selection in a large P2P net-
work. Distributed and privacy preserving versions of three popular feature selec-
tion techniques have been proposed. The algorithms are scalable, accurate and
offers low communication overhead. Feature selection is a key step in match-
making since it provides a compact representation of the huge volume of data
otherwise available. This paper opens up a whole new genre of research in dis-
tributed privacy preserving data mining where the users are in control of both
the privacy and the quality of the results.
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