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Abstract. Analysis of privacy-sensitive data in a multi-party environ-
ment often assumes that the parties are well-behaved and they abide
by the protocols. Parties compute whatever is needed, communicate cor-
rectly following the rules, and do not collude with other parties for ex-
posing third party’s sensitive data. This paper argues that most of these
assumptions fall apart in real-life applications of privacy-preserving dis-
tributed data mining (PPDM). This paper offers a more realistic formula-
tion of the PPDM problem as a multi-party game where each party tries
to maximize its own objectives. It develops a game-theoretic framework
to analyze the behavior of each party in such games and presents detailed
analysis of the well known secure sum computation as an example.

1 Introduction

Advanced analysis of privacy-sensitive data plays an important role in many
multi-party, cross-domain applications. For example, the US Department of
Homeland Security-funded PURSUIT project? involves analysis of network traf-
fic data from different organizations. Network traffic is usually privacy sensitive
and no organization would be willing to share their information with a third
party. PPDM offers one possible solution which would allow comparing and
matching multi-party network traffic to detect common attacks and compute
various statistics for a group of organizations that are not willing to share the
raw data. However, many of the existing PPDM algorithms make strong as-
sumptions about the behavior of the participants, e.g., they are semi-honest and
not colluding with others. Unfortunately, participants of a real application like
PURSUIT may not all be ideal. Some may try to exploit the benefit of the sys-
tem without contributing much; some may try to sabotage the computation; and
some may try to collude with other parties for exposing the private data.

This paper suggests an alternate perspective for relaxing some of the as-
sumptions of PPDM algorithms. It argues that large-scale multi-party PPDM
can be thought of as a game where each participant tries to maximize its benefit
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by optimally choosing the strategies during the entire PPDM process. Applica-
tions of game theory in secure multi-party computation and privacy preserving
distributed data mining is relatively new [1,4,2]. This paper develops a game-
theoretic framework for analyzing the rational behavior of each party in such a
game, and presents detailed equilibrium analysis of the well known secure sum
computation [7,3] as an example. A new version of the secure sum is proposed.
It works based on well known concepts from game theory and economics such
as “cheap talk” and mechanism design. This paper also describes experiments
on large scale distributed games and illustrates the validity of the formulations.
The remainder of this paper is organized as follows. Section 2 describes multi-
party PPDM from a game theoretic perspective. Section 3 illustrates the frame-
work using multi-party secure sum computation as an example. Section 4 gives
the optimal solution using a distributed penalty function mechanism. Section 5
presents the experimental results. Finally, Section 6 concludes this paper.

2  Multi-Party PPDM As Games

A game is an interaction or a series of interactions between players, which as-
sumes that 1) the players pursue well defined objectives (they are rational) and
2) they take into account their knowledge or expectations of other players’ be-
havior (they reason strategically). For simplicity, we start by considering the
most basic game - the strategic game.

Definition 1 (Strategic Game). A strategic game consists of

— a finite set P: the set of players,

— for each player i € P a nonempty set A;: the set of actions available to
player i,

— for each playeri € P a preference relation =; on A = X jepAj;: the preference
relation of player i.

The preference relation >=; of player i can be specified by a utility function
u; : A — R (also called a payoff function), in the sense that for any a € A,b € A,
u;(a) > u;(b) whenever a =; b. The values of such a function is usually referred
to as utilities (or payoffs). Here a or b is called the action profile, which consists
of a set of actions, one for each player. Therefore, the utility (or payoff) of player
1 depends not only on the action chosen by herself, but also the actions chosen
by all the other players. Mathematically, for any action profile a € A, let a; be
the action chosen by player ¢ and a_; be the list of actions chosen by all the
other players except 4, the utility of player i is u;(a) = u;({a;, a—;}).
One of the fundamental concepts in game theory is the Nash equilibrium:

Definition 2 (Nash Equilibrium). A Nash equilibrium of a strategic game is
an action profile a* € A such that for every player i € P we have

w;({a},a*;}) > u;({a;,a*;}) for all a; € A;.



Therefore, Nash equilibrium defines a set of actions (an action profile) that cap-
tures a steady state of the game in which no player can do better by unilaterally
changing her action (while all other players do not change their actions).

When the game involves a sequence of interactive actions of the players, and
each player can consider her plan of action whenever she has to make a decision,
the strategic game becomes an extensive game. In that situation, the action a;
for player i, is replaced by o;, the strategy for that player, which is a complete
algorithm for playing the game, implicitly including all actions of that player for
every possible situation throughout the game. The utility function also assigns
a payoff to player 7 for each joint strategies of all the players, i.e., u;({0;,0-;}).

Armed with the basic knowledge of game theory, we are now ready to formu-
late multi-party PPDM as a game. In a multi-party PPDM environment, each
node has certain responsibilities in terms of performing their part of the compu-
tations, communicating correct values to other nodes and protecting the privacy
of the data. Depending on the characteristics of these nodes and their objectives,
they either perform their duties or not, sometimes, they even collude with oth-
ers to modify the protocol and reveal others’ private information. Let M; denote
the overall sequence of computations node ¢ has performed, which may or may
not be the same as what it is supposed to do defined by the PPDM protocol.
Similarly, let R; be the messages node i has received, and S; the messages it
has sent. Let G; be a subgroup of the nodes that would collude with node 1.
The strategy of each node in the multi-party PPDM game prescribes the actions
for such computations, communications, and collusions with other nodes, i.e.,
o; = (M;, R;, Si, G;). Further let ¢; ,,,(M;) be the utility of performing M;, and
similarly we can define ¢; (R;), ¢; +(Si) and ¢; 4(G;). Then the overall utility of
node i will be a linear or nonlinear function of utilities obtained by the choice
of strategies in the respective dimensions of computation, communication and
collusion. Without loss of generality, we consider an utility function which is a
weighted linear combination of all of the above dimensions:

wi({03,0-i}) = Wi mCim (M;) + w; i r(Ri) + Wi 5¢i,5(Si) + Wi g¢i g(Gi),

where w; m, Wi, Wis, Wiy represent the weights for the corresponding utility
factors. Note that we omitted other nodes’ strategies in the above expression
just for simplicity. In the next section, we would illustrate our formalizations
using one of the most popular PPDM algorithms, the secure sum computation.

3 Case Study: Multi-Party Secure Sum Computation

Secure sum computation [7,3] computes the sum of n different nodes without
disclosing the local value of any node. It has been widely used in privacy preserv-
ing distributed data mining as an important primitive, e.g., privacy preserving
association rule mining on horizontally partitioned data [5], k-means clustering
over vertically partitioned data [8] and many else.

Secure Sum Computation Suppose there are n individual nodes organized in
a ring topology, each with a value v;,j = 1,2,...,n. It is known that the sum
v = 2?21 v; (to be computed) takes an integer value in the range [0, N — 1].



The basic idea of secure sum is as follows. Assuming nodes do not collude, node
1 generates a random number R uniformly distributed in the range [0, N — 1],
which is independent of its local value v;. Then node 1 adds R to its local value
v1 and transmits (R + v1) mod N to node 2. In general, for i = 2,...,n, node i
performs the following operation: receive a value z;_; from previous node ¢ — 1,
add it to its own local value v; and compute its modulus N. In other words,

z; = (zi—1 4+ v;) mod N = (R"I_Z'Uj) mod N,

Jj=1

where z; is the perturbed version of local value v; to be sent to the next node
i+ 1. Node n performs the same step and sends the result z, to node 1. Then
node 1, which knows R, can subtract R from z, to obtain the actual sum. This
sum is further broadcasted to all other sites.
Collusion Analysis It can be shown that [6] any z; has an uniform distribution
over the interval [0, N — 1] due to the modulus operation. Further, any z; and
v; are statistically independent, and hence, a single malicious node may not be
able to launch a successful privacy-breaching attack. Then how about collusion?
Let us assume that there are k (k > 2) nodes acting together secretly to
achieve a fraudulent purpose. Let v; be an honest node who is worried about
her privacy. We also use v; to denote the value in that node. Let v;_1 be the
immediate predecessor of v; and v;4; be the immediate successor of v;. The
possible collusion that can arise are:

— If k =n — 1, then the exact value of v; will be disclosed.

— If £ > 2 and the colluding nodes include both v;_; and v;11, then the exact
value of v; will be disclosed.

— If n—1 >k > 2 and the colluding nodes contain neither v;_1 nor v;;1, or
only one of them, then v; is disguised by n — k — 1 other nodes’ values.

The first two cases need no explanation. Now let us investigate the third case.
Without loss of generality, we can arrange the nodes in an order such that
V1V2 . ..Un_k—1 are the honest sites, v; is the node whose privacy is at stake and
Vi41 - - - Uitk form the colluding group. We have

n—k—1 itk
v;  + V4 = v - v o,
N denoted by Y —_—
denoted by X denoted by W

where W is a constant and is known to all the colluding nodes. Now, it is clear
that the colluding nodes will know v; is not greater than W, which is some extra
information contributing to the utility of the collusions. To take a further look,
the colluding nodes can compute the posteriori probability of v; and further
use that to launch a maximum a posteriori probability (MAP) estimate-based
attack. It can be shown that, this posteriori probability is:

1 r o .
) ) — 1\ (r—3)(m+1)+t
fposterior (Vi) = (m+ )1 X E (1) Ol 1y Cln k=t (re ) (D)4t
=0



where v; < W, r = L%:{J and t =W —v; — LVZJ_Z (m+1). When v; > W,
fposterior(vi) = 0. Due to space constraints, we have not included the proof of
this result here. Interested readers can find a detailed proof in [6].

Note that, when computing this posteriori probability, we model the colluding
nodes’ belief of each unknown v; (j =1,...,n—k—1) as a uniform distribution
over an interval {0,1,...,m}. This assumption has its roots in the principle of
maximum entropy, which models all that is known and assumes nothing about
what is unknown, in that case, the only reasonable distribution would be uniform.
Overall Utilities The derived posteriori probability can be used to quantify
the utility of collusion, e.g., g(v;) = Posteriori — Prior = fposterior (Vi) — %
We see here that this utility depends on W — v; and the size of the colluding
group k. Now we can put together the overall utility function for the game of
multi-party secure sum computation:

ui({0i,0-i}) = WimCi,m(Mi) + wi rcir(Ri) + wi sci s(Si) +wig Z 9(vj),
jeEP-G;

where P is the set of all nodes and G; is the set of nodes colluding with node 3.

Let us now consider a special instance of the overall utility where the node
performs all the communication and computation related activities as required
by the protocol. This results in a function: u;({o,0-:}) = wi g > ;e p_q, 9(v)),
where the utilities due to communication and computation are constant and
hence can be neglected for determining the nature of the function. Figure 1(Left)
shows a plot of the overall utility of multi-party secure sum as a function of the
distribution of the random variable W — v; and the size of the colluding group
k. It shows that the utility is maximum for a value of k that is greater than
1. Since the strategies opted by the nodes are dominant, the optimal solution
corresponds to the Nash equilibrium. This implies that in a realistic scenario
for multi-party secure sum computation, nodes will have a tendency to collude.
Therefore the non-collusion (k = 1) assumption of the classical secure multi-
party sum is sub-optimal. Next section describes a new mechanism that leads to
an equilibrium state corresponding to no collusion.

4 Achieving Nash Equilibrium with No-colluding Nodes

To achieve a Nash equilibrium with no collusions, the game players can adopt a
punishment strategy to threaten potential deviators. One may design a mecha-
nism to penalize colluding nodes in various ways:

1. Policy I: Remove the node from the application environment because of
protocol violation. Although it may work in some cases, the penalty may be
too harsh since usually the goal is to have everyone participate in the process
and faithfully contribute to the data mining process.

2. Policy II: Penalize by increasing the cost of computation and communication.
For example, if a node suspects a colluding group of size k' (an estimate of
k), then it may split the every number used in a secure sum among ok’ dif-
ferent parts and demand ak’ rounds of secure sum computation one for each



Fig. 1. Overall utility for classical secure sum computation (Left) and secure sum
computation with punishment strategy (Right). The optimal strategy takes a value of
k > 1 in the first case and & = 1 in the second case.

of these ak’ parts, here o > 0 is a constant factor. This increases the compu-
tation and communication cost by ak’-fold. This linear increase in cost with
respect to k', the suspected size of colluding group, may be used to counter-
act possible benefit that one may receive by joining a team of colluders. The
modified utility function is given by @; ({0, 0_;}) = w;({0i,0-;}) —w; prak’.
The last term in the equation accounts for the penalty due to excess com-
putation and communication as a result of collusion.

Figure 1(Right) shows a plot of the modified utility function for secure sum with
policy II. It shows that the globally optimal strategies are all for ¥ = 1. The
strategies that adopt collusion always offer a sub-optimal solutions which would
lead to moving the global optimum to the case where k = 1.

As a toy example, consider a three-party secure sum computation with the
payoff listed in Table 1. When there is no penalty, all the scenarios with two bad
nodes and one good node offer the highest payoff for the colluding bad nodes.
So the Nash equilibrium in the classical secure sum computation is the scenario
where the participating nodes are likely to collude. However, in both cases with
penalty, no node can gain anything better by deviating from good to bad when
all others remain good. Therefore, the equilibrium corresponds to the strategy
where none of the nodes collude. Note that, the three-party collusion is not very
relevant in secure sum computation since there are all together three parties and
there is always a good node (the initiator) who wants to only know the sum.
Implementing the Penalty Mechanism without Having to Detect Col-
lusion: In order to implement the penalty protocol, one may use a central me-
diator who can monitor the behavior of all nodes (see, e.g., [2]). However, this is
usually very difficult, if not impossible in a real application environment. More-
over, it requires global synchronization which might create a bottleneck in the
distributed system. Instead, we borrow the concept of cheap talk, a pre-play com-
munication concept from game theory, to realize an asynchronous distributed
control. The idea is based on the assumption that collusion requires consent
from multiple parties. So a party with intention of collusion might get caught



A B C Payoft Payoft Payoff
(No Penalty)|(Policy I)|(Policy II)

Good|Good|Good| (3,3,3) |(3,3,3)] (3,3,3)
Good|Good| Bad | (3, 3, 3) (2,2,0)| (2,2, 2)
Good| Bad |Good| (3,3,3) |(2,0,2)] (2,2,2)
Good| Bad | Bad | (3,4,4) |(0,0,0) | (2,2,2)
Bad |Good|Good| (3,3,3) |(0,2,2)]| (2,2,2)
Bad |Good| Bad | (4,3,4) |(0,0,0) | (2,2,2)
Bad | Bad |Good| (4,4,3) |(0,0,0)]| (2,2,2)
Bad | Bad | Bad | (0,0,0) |(0,0,0) ] (0,0,0)

Table 1. Payoff table for three-party secure sum computation.

while sending out collusion invitation randomly in the network if those invita-
tions reach some honest parties. The new protocol will therefore have a pre-play
phase where “lobbying agents” (well-behaved nodes or advocacy groups) will
make participants aware of the fact that one will be penalized if any collusion is
detected. This “lobbying” does not affect the utility function. It simply makes
everyone aware of that. It does not require a perfect collusion detection. A real
threat with an estimated high-enough value of the collusion-size (k) will do.
The threat of a good node introducing penalty using a perceived value of k" will
push everyone toward proper behavior.

The new secure sum with penalty (SSP) protocol we proposed is as follows.
Consider a network of n nodes where a node can either be good (honest) or
bad (colluding). Before the secure sum protocol starts, the good nodes set their
estimate of bad nodes in the network £’ = 0 and bad nodes send invitations for
collusions randomly to nodes in the network. Every time a good node receives
such an invitation, it increments its estimate of k’. Bad nodes respond to such
collusion invitations and form collusions. If a bad node does not receive any
response, it behaves as a good node. To penalize nodes that collude, good nodes
split their local data into ak’ random shares. This initial phase of communication
is cheap talk in our algorithm. The secure sum phase consists of O(ak’) rounds
of communication for every complete sum computation. This process converges
to the correct sum in O(nak) time. Note that, the SSP protocol does not require
detecting all the colluding parties. Raising k&’ based on a perception of collusion
will do. If the threat is real, the parties are expected to behave as long they are
acting rationally to optimize their utility.

5 Experimental Results

We empirically verify our claim that the SSP protocol leads to an equilibrium
state where there is no collusion. The utility function used for the experiments
is the one described in Policy II. The penalty in this case is the excess amount of
communication and computation needed. In the first experiment we demonstrate
for different sizes of the network (500 nodes and 1000 nodes) that the utility is
maximum when the collusion is minimum, see Figure 2 (Left). The maximum
utility in the figure corresponds to the classical secure sum computation without
collusion. The second experiment shows that the number of bad nodes decreases



with successive rounds of SSP, see Figure 2 (Right). Each bad node has a random
utility threshold that is assigned during the setup. If the computed utility falls
below a node’s threshold, the node decides to change its strategy and becomes
a good node for the subsequent rounds. The time taken to have a no collusion
scenario depends on the initial number of bad nodes in the network.

-4-500 Node i 0 -#50% Bad Nodes

1000 Node i - More than 99% Bad Nodes
---Max Utility (500)
---Max Utility (1000)|

10 20 50 60 80 100 % 12345067886 0111213
Percentage of Bad Nodes Rounds of secure sum (increasing time)

Fig. 2. (Left) Utility vs. Collusion-size. (Right) Rate of decrease of bad nodes.
6 Conclusions

This paper questions some of the common assumptions in multi-party PPDM
and shows that if nobody is penalized for cheating, rational participants tends
to behave dishonestly. This paper takes a game-theoretic approach to analyze
this phenomenon and presents Nash equilibrium analysis of a well-known multi-
party secure sum computation. A cheap-talk based protocol to implement a
punishment mechanism is proposed to offer a more robust process. The paper
illustrates the idea using the secure sum problem as an example. Future work
includes theoretical analysis of the existence of Nash equilibrium, as well as the
relationship between the amount of penalty and the payoff from collusion.
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