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ABSTRACT. Regression problems on massive data sets are ubiquitous in many application domains
including the Internet, earth and space sciences, and finances. Gaussian Process regression is a
popular technique for modeling the input-output relations of a set of variables under the assumption
that the weight vector has a Gaussian prior. However, it is challenging to apply Gaussian Process
regression to large data sets since prediction based on the learned model requires inversion of an
order n kernel matrix. Approximate solutions for sparse Gaussian Processes have been proposed
for sparse problems. However, in almost all cases, these solution techniques are agnostic to the
input domain and do not preserve the similarity structure in the data. As a result, although
these solutions sometimes provide excellent accuracy, the models do not have interpretability.
Such interpretable sparsity patterns are very important for many applications. We propose a
new technique for sparse Gaussian Process regression that allows us to compute a parsimonious
model while preserving the interpretability of the sparsity structure in the data. We discuss how
the inverse kernel matrix used in Gaussian Process prediction gives valuable domain information
and then adapt the inverse covariance estimation from Gaussian graphical models to estimate the
Gaussian kernel. We solve the optimization problem using the alternating direction method of
multipliers that is amenable to parallel computation. We demonstrate the performance of our
method in terms of accuracy, scalability and interpretability on a climate data set.

1. INTRODUCTION

In many application domains, it is important to predict the value of one feature based on certain
other measured features. For example, in the Earth Sciences, predicting the precipitation at one
location given the humidity, sea surface temperature, cloud cover, and other related factors is an
important problem in climate modeling. For such problems, simple linear regression based on mini-
mization of the mean squared error between the true and predicted values can be used for modeling
the relationship between the input and the target features. In decision support systems which use
these predictive algorithms, a prediction with low confidence may be treated differently than if the
same prediction was given with high-confidence. Thus, while the predicted value from the regression
function is clearly important, the confidence in the prediction is equally important. A simple model
such as linear regression does not provide us with that information. Also, models like linear regres-
sion, in spite of being easy to fit and being highly scalable, fail to capture nonlinear relationships
in the data. Gaussian Process regression (GPR) is one regression model that can capture nonlinear
relationships and outputs a distribution of the prediction where the variance of the predicted distri-
bution acts as a measure of confidence in the prediction. Moreover, the inverse kernel (or covariance)
matrix has many interesting properties along the gaussian graphical model perspective, that can be
exploited for better understanding relationships within the training examples. Depending on the
nature of the data, these relationships can indicate dependencies (causalities) for certain models.

However, predictions based on GPR method, requires inversion of a kernel (or covariance) ma-
trix of size n x n, where n is the number of training instances. This kernel inversion becomes a
bottleneck for very large datasets. Most of the existing methods for efficient computation in GPR
involve numerical approximation techniques that exploit data sparsity. While this does speed up
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GPR computations, one serious drawback of these approximations is that the resulting GPR model
loses interpretability. Even if we get reasonably accurate predictions, we fail to unearth significant
connections between the training points or identify the most influential training points for a specific
set of test points.

In this paper we propose a sparse GPR algorithm which not only scales to very large datasets
but also allows us to construct a complete yet sparse inverse covariance matrix, thereby facilitating
interpretability. The method proposed in this paper induces sparsity by introducing a regularizer in
a pseudo negative log likelihood objective used for covariance selection. This forces the algorithm
to seek a parsimonious model for GPR prediction having excellent interpretability. One of the
highlights of the solution technique used in this paper is a completely parallelizable framework
for solving the inverse covariance estimation problem using the alternating direction method of
multipliers (ADMM) that allows us to exploit modern parallel and multi-core architectures. This
also addresses the situation where the entire covariance matrix cannot be loaded into memory due
to size limitations.

The rest of the paper is organized as follows. In the next section (Section 2) we present some
background material related to GPR and some existing methods of solving the GPR problems. In
Section 3 we discuss the equivalence between inverse kernel and covariance matrices. Next we present
our new sparse inverse covariance matrix using ADMM technique (Section 4). Experimental results
are discussed in Section 5. We conclude the paper in Section 6.

2. BACKGROUND: (GAUSSIAN PROCESS REGRESSION

Since this paper proposes a technique of model fitting using Gaussian Process regression, we start
with a brief review of it here. Rasmussen and Williams [15] provide an excellent introduction on
this subject. Gaussian Process regression is a generalization of standard linear regression. If X is
the training data set having n multidimensional observations (rows) x1, ..., X,, with each x; € R”
and the corresponding target is represented by a n x 1 vector y, then the standard linear regression
model is:

f) =xw',  y=f(x)+e
where w is a D-dimensional weight vector of parameters and e is additive Gaussian noise such
that € ~ N(0,0?). Assuming that we choose the prior distribution of the weights to be Gaussian

with mean zero and covariance X,, the posterior distribution of the weights, following Bayesian
inferencing techniques, can be written as:

(WX, y) ~ N (%AlXTy, A1>
g

where A = 07 2X?"X 4 X!, Given the posterior and the likelihood, the predictive distribution of a
test input x* is obtained by averaging over all possible models (w) to obtain:

1
p(y* X X, y) ~ N (—QX*A‘lXT% X*A‘1X*T)
g

Using a kernel (covariance) function k(x;,x;) in place of a mapping from input space to an N-
dimensional space, and applying some algebraic manipulations, we can write the predictive mean
and variance of the posterior distribution as

(1) ¥ o= KT+ E)y

(2) C = K" -K*(c’I+K)'K*"

where the ijt" entry of K is k(x;,x;) and K* and K** are similarly the cross covariance matrices
involving the test point x*. Equations 1 and 2 pose significant computational challenge due to the
requirement of inverting the covariance matrix K of size n2. If the number of observations n is large,

the O(n?) operation can be a bottleneck in the process of using Gaussian Process regression.
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In the next section, we discuss several techniques that have been proposed in the literature for
approximating the inverse matrix for large datasets.

2.1. Existing methods for efficient GP computation. Approximations are introduced in the
Gaussian Process literature for either finding closed-form expressions for intractable posterior dis-
tributions or for gaining computational advantage for large data sets. Here we are interested in the
second goal and, therefore, briefly discuss the existing research in this area. Smola and Bartlett
[16] describe a sparse greedy method that does not require evaluating the full covariance matrix
K and finds an approximation to the maximum aposteriori estimate by selecting an ‘active’ subset
of columns of K by solving an expensive optimization problem. The running time of the numeri-
cal approximation is reduced from O(n?) to O(nm?) where m (m < n) is the rank of the matrix
approximation.

A related approach of low rank matrix approximation called the subset of regressors method
[21] involves selecting the principal sub-matrix of the unperturbed covariance matrix K by matrix
factorization. Though this method has been found to be numerically unstable, recent research by
Foster et al. [8] has shown that if we use partial Cholesky decomposition to factorize the covariance
matrix and perturb the low rank factor such that independent rows and columns form the principal
sub-matrix, then the approximation we get is numerically stable. The authors report excellent
accuracy using their approximation calculations when the rank of the reduced matrix is a small
factor (5) times the rank of the original data matrix X.

The generalized Bayesian committee machine [20] is another approach for reducing the compu-
tational complexity of any kernel-based regression technique, by dividing the data arbitrarily into
M almost equal sized partitions, training a different estimator on each partition, and combining
the estimates given by the different estimators using the inverse of the variance to ensure that least
certain predictions are given the smallest weights in the final prediction. This method allows us
to choose M to be equal to K« so that it becomes linear in K in computational complexity. The
Bayesian Committee Machine weights the training data based on the test points using a block diag-
onal approximation and, therefore, the model needs to be retrained every time a new test set comes
in. A related method recently proposed by Das and Srivastava [4] works for multimodal data. It
partitions the input space into multiple clusters, with each one corresponding to one mode of the
data distribution. Then, each cluster is modeled using a normal distribution and all points which are
not modeled by any of the normal distributions are grouped using a separate cluster. Each cluster
learns a separate GP model and a weighted sum based prediction is used for the gating.

A recent development is the ¢; penalized GPR method (GPLasso) introduced by Yan and Qi [22]
in which the authors explore sparsity in the output rather than the input. They propose a GPR
technique that minimizes the Kullback-Leibler divergence between the posterior distributions of the
exact and the sparse solutions using a ¢; penalty on the optimization. They pose this problem as
a LASSO optimization [19] and solve a rank reduced approximate version of this using the Least
Angle Regression (LARS) method [7]. The authors present this work as a pseudo output analogy of
the work by Snelson et al. [17]. Quinionero-Candela and Rasmussen [14] provide a unifying view of
all sparse approximation techniques for Gaussian Process regression by analyzing the posterior and
reinterpreting each algorithm as an exact inferencing method using approximate priors.

All the methods discussed in this section apply some form of numerical approximation technique to
reduce the rank of the kernel matrix for efficient matrix inversion. As a result, they often lose model
interpretability — a value at any position of the reduced rank inverted matrix cannot be traced back
to any cell of the original kernel. In many domains, however understanding the sparsity structure is
important. For example, in Earth Sciences, it is not only important to get good predictions from the
GPR model, but it is also important to understand how different geographical regions are connected
and how these locations influence one another. Unfortunately, none of the efficient GPR techniques
allow this. Our proposed technique in the next section not only learns a sparse GP model but also
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allows domain scientists to draw conclusions about the sparsity structure by studying the inverse
covariance matrix.

3. SPI-GP:SPARSE GAUSSIAN PROCESS USING INVERSE COVARIANCE ESTIMATION
Let x1,X2,...,X, be a set of multi-dimensional gaussian observations such that
X; NN(M,E) ERd

where 1 € R and ¥ € R%**? are the mean and covariance matrices. While the mean p measures
the center of the distribution, the covariance matrix ¥ measures the pairwise (linear) relationship
between the variables. It is well known that a value of 0 at any cell of ¥ implies independence of
the observations:

Ei)j =0= P(Xin) =0

which means x; and x; are independent. In many cases, we may be interested in studying how
two variables influence each other when the information about the other variables are taken into
consideration. One way of doing this is by studying the inverse covariance matrix, also known as
the concentration matrix or precision matrix denoted by £~!. Unlike ¥, a value of 0 in any cell
of ¥~ implies conditional independence among those variables [1]. For example, x; and X; are
conditionally independent, given all the other variables, if ©~'=0. Mathematically,

E;; =0= P(Xinlx_i7_j) =0

where x_; _; denotes all the variables other than x; and x;. Note that independence of elements
implies conditional independence but not vice-versa i.e. a value of 0 at any cell of ¥ implies that the
corresponding location of £~ is also 0; but a non-zero value at any cell of ¥ matrix does not imply
that the corresponding cell of ¥ ~! will also be non-zero. The reason for studying ¥~! rather than
3., is for many gaussian distributed variables, there is more sparsity in the inverse covariance matrix
than in the covariance matrix and this sparsity reveals interesting data relationships. It has been
shown in [9], that inverting a covariance matrix (with the additional assumption that the inverse is
sparse) is equivalent to learning a graphical model, where each node in the model corresponds to a
feature and the absence of an edge between any two signifies that those features are conditionally
independent.

In the case of GPR, the kernel matrix between the observations (see Eqn. 1 and 2) can be
viewed as a covariance matrix among the function outputs. Formally, a gaussian process is defined
as a collection of random variables, any finite number of which is jointly gaussian. Hence, it is a
distribution over functions, completely specified by its mean function and covariance function as,

f(xi) ~ GP(m(xi), k(xi, %;))

where m(x;) = E[f(x;)] and k(x;,x;) = E[f(x;) — m(x;)][f (x;) —m(x;)] are the mean function and
covariance function of some real process f(x;). Note that f(x;) are random variables and GP fits a
distribution over all possible f(x;). In our case since f(x;)’s are linear functions f(x;) = x;w’, the
mean and covariance of GP can be stated as,

m(x;) = E[f(x;)] = XiE[WT] =0

k(xi,x;) = E[f (x:) f(x))] = i E[w’ wlx] = x;Z,x]

(2

where w ~ N(0,X,) denotes the prior distribution of the weights. The covariance function k, also
known as the kernel function specifies the covariance between a pair of random variables

cov(f(xi), f(x;)) = E[f (%) f(x5)] = k(xi,%;)

Therefore, a kernel function computed over the pairwise input points is equivalent to a covariance
between the outputs. There are several choices of the kernel functions available. In this paper we
4



have used the widely used gaussian radial basis function (rbf) kernel:

2
X — X
k(xi,x;j) = exp (‘%)

where o is known as the bandwidth parameter which is typically learned from the data.

In many GPR applications, it is not only important to get good prediction accuracy, but also
understand the model. For example, in Earth Sciences teleconnections [11] reveal important sym-
metric and sometimes causal relationships among different events observed in geographically distant
locations and can be studied by exploiting sparsity in the inverse kernel in GPR. Another possible
application area is the study of climate networks [18]. Fig. 1 (left) shows the observed precipitation
data of the world overlaid on a 360 x 720 grid. Figs. 1 (center and right) show a kernel or similarity
matrix generated from the data and the corresponding inverse covariance matrix. Each cell in the
kernel (except the diagonal) denotes the similarity between the precipitation values of a grid loca-
tion (lower resolution). The highlighted row and column correspond to the location marked in white
on the world map. In this paper we are interested in studying the sparsity pattern of the inverse
covariance matrix, with the information that sparsity patterns in the inverse covariance matrix leads
to conditional independence among the locations of interest.

FIGURE 1. Precipitation data of the world map (top figure). Note that the data
is only available for land (the ocean locations have fill values of -9999). The figure
in the center shows a kernel in which similarity is computed between every pair of
locations from the precipitation data. Note the location marked with a circle on
the left figure corresponds to the row and column in blue on the center and right
figure. The right figure shows the inverse kernel matrix.

4. SPARSE COVARIANCE SELECTION

There exist several techniques in the literature for solving the inverse covariance estimation prob-
lem also known as the covariance selection problem.

Given a dataset containing d features, Meinshausen et al. [13] infers the graphical model (and
therefore the inverse covariance matrix) by taking one variable at a time and then finding all the
connections of that variable with all of the other ones. For each variable d; in the dataset, the
method constructs a lasso regression problem by taking all the other variables as inputs and d;
as the target with an additional sparsity constraint on the solution weights. The non-zero entries
of the weight vector signifies a connection between that feature and the target d;. To deal with
inconsistencies among the connections, the authors have proposed two schemes: (1) in the AND
technique, an edge is established in the graphical model between any two features d; and d; iff both
d; and d; have non-zero entries in the weight vector when they are each used as target in different
lasso problems, and (2) in the OR scheme, an edge is established if either d; or d; has a non-zero
weight when the other is taken as the target. One serious drawback of this method is the number
of independent lasso problems increases linearly with the size of the feature space.

Banerjee et al. [1] propose a different solution to the inverse covariance selection problem. They
show that based on Dempster’s theory [5], estimating the inverse covariance matrix is equivalent to

5



minimizing the pesudo negative log likelihood. The objective function takes the form:
Tr(KS) — logdet(S)

where K is the empirical covariance (or kernel) matrix and S is the desired inverse of K i.e. S = K1,
Tr(-) is the trace of a matrix, and det(-) is the matrix determinant. Solution to the above equation
is stable when an additional sparsity constraint is imposed on the inverse, i.e.

Tr(KS) — logdet(S) + M ||S||

where A controls the degree of sparsity. This is a convex optimization problem and in order to solve
this, the authors propose a block-wise interior point algorithm.

Friedman et al. [9] generalizes both these papers and present a very efficient algorithm based on
the lasso technique. Their objective function is the same as used by Banerjee et al. [1] i.e. they
try to maximize the log likelihood of the model with the additional sparsity constraint. They show
that the solution proposed by Meinshausen [13] is an approximation of the log likelihood estimate
proposed by Banerjee et al. [1]. They propose a new algorithm based on coordinate descent to
solve the same trace minimization problem. This algorithm is based on recursively solving lasso
subproblems for each variable until convergence. The authors note that this new algorithm is at
least 50 to 4000 times faster than existing techniques and therefore scales to much larger data sets.

However, there is one drawback common to all these optimization techniques. All these tech-
niques assume that the data can be loaded in computer memory for the analysis. Unfortunately, in
applications such as Earth Sciences, most datasets are massive — they contain millions of observa-
tions (locations) and therefore constructing a full covariance matrix in memory is itself impossible,
leaving aside the computational power necessary to run these optimization techniques for inverse
estimation. To solve the large scale inverse covariance estimation problems which do not fit into the
memory of one machine, in this paper we propose our SPI-GP method which works by distributing
the workload among a network of machines. The technique we follow is based on the method of
Alternating Direction Method of Multipliers (ADMM) which is a distributable algorithm for solving
very large convex optimization problems. We give a brief overview of ADMM technique in the next
section.

4.1. Alternating Direction Method of Multipliers for convex problems. Alternating Di-
rection Method of Multipliers (ADMM) [10][6][2] is a decomposition algorithm for solving separable
convex optimization problems of the form:

min  Gi(z) + G2(y) subject to Az —y=0, z€R" yeR™

where A € R™*™ and G; and G» are convex functions. The algorithm derivation is as follows. First,
the augmented Lagrangian is formed:

Ly(w,y,z) = Gi(z) + Ga(y) + 2" (Az —y) + p/2 | Az — g3

where p is a positive constant known as the penalty parameter. ADMM iterations can then be
written as:

@ 2= min{Gaa) + 2T Ar o2 e 1)
(4> y = i {Galy) — <y /2 Ax —)
(5) Z = 2t p (AT =yt

This is an iterative technique where ¢ is the iteration counter, and the initial vectors y° and z° can
be chosen arbitrarily. ADMM can be written in a different form (known as the scaled form) by
combining the linear and quadratic terms of the Lagrangian:

Az —y) +p/2(Az —y)l; = p/2]1(Az —y) + (1/p)=l5 — 1/(2p) ||2]13
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Now scaling the dual variable p = (1/p)z, the iterations of ADMM become:

o) P = min{Gi) + /2 Ae -+ ')
G i = i {Galy) + o2 4s* g+ )
(8) P = i (A2 -yt

It has been argued [10] that ADMM is very slow to converge especially when high accuracy is
desired. However, ADMM converges within a few iterations when moderate accuracy is desired.
This can be particularly useful for many large scale problems similar to the one we consider in this

paper.
Critical to the working and convergence of the ADMM method is the termination criterion. The
primal and dual residuals are:

ritt = Az'tt —y"1 (primal residual)

ritt = pA(y*™ —y")  (dual residual)
A reasonable termination criterion is when either the primal or the dual residuals are below some
thresholds i.e.
t+1 t+1
e, < ep and g™
where €, and €4 are the primary and dual feasibility tolerances. Using user-defined values for ¢; and
€9, these tolerances can be stated as,

& = e1v/m + ey max (|| Az, [y ],)

€4 = €1/n + e ||ATpH'1H2 .
In the next section we discuss the ADMM update rules for the sparse inverse covariance estimation
problem.

< €4.

4.2. Alternating Direction Method for sparse inverse kernel estimation. We start with
the prior assumption that the inverse kernel matrix K ! is sparse. This is a reasonable assumption
when studying climate data, because given a location i.e. any row of the inverse kernel matrix, there
are few major locations which influence this location.

With such an assumption, the ADMM algorithm is as follows. Let K be the observed kernel
matrix between the grid locations. For a moderate sized K, one can search over all sparsity patterns,
since for a fixed sparsity pattern the log likelihood estimate of K is a tractable problem. However,
this becomes very challenging for large K. One technique which has been used earlier for sparse
covariance selection problem [1] is to minimize the negative log likelihood of S = K ~! with respect
to the observed data with a penalty term added to induce sparsity. This resulting objective function
can be written as

min  Tr(KS) —logdet(S) + A5,
where ||-||; is the £;-norm or the sum of the absolute values of the entries of a matrix and X is a
constant which determines the amount of sparsity. Larger the value of A, sparser is the solution S.
The ADMM version of this problem can be written as follows:

min  Tr(KS)—logdet(S)+ A||Y|; subjectto S—-Y =0
By constructing the augmented Lagrangian and using the derivations given in Section 4.1 for the
scaled version of the problem, the ADMM updates for the above estimation problem are:

(9) S = min(Tr(KS) —logdet(S) + p/2||S = Y' + P*|| )
(10) yitt = myin (MYl +p/2||S =Y + P )
(11) Pt+1 — Pt + (St+1 _ Yt+1)
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with ||-||  denoting the Frobenius norm of a matrix. These updates can be simplified further. Taking
the derivative of Eqn. 9 and setting it to 0 we get,

K-S t'+pS-Y'+P)=0
= pS—-St=pY'-P)-K
Now let QAQT be the eigen decomposition of p(Y* — P!) — K. Therefore, continuing from the
previous step,
pS—St=p(Y' - P~ K
pS =S~ =QAQ"
pQTSQ - QTSTIQ =QTQAQTQ
(12) = pS—81=A [since QTQ = QQT =TI
where § = QT SQ. Solution to Eqn. 12 can easily be found notinAg that the right hand side is a
diagonal matrix of the eigenvalues \;’s. For each diagonal entry of S;;, Vi = 1 : n, we have
pSii — §1-_Z- T=\

which, using the formula of finding the roots of a quadratic equation is

G- Ai + \/m

ii —2p

Therefore, S = Q§QT is the optimal value of the S minimization step.

Eqn. 10 can also be simplified further and can be written as the element-wise soft thresholding
operation:

4

t+1 t+1 t
Yij =S/p (Sij + Pij)
In the next section we describe the SPI-GP algorithm in details.

4.3. SPI-GP: algorithm description. The SPI-GP algorithm is based on the ADMM technique
described in the earlier section. Alg. 1 presents the pseudo-code of the algorithm. The inputs are
the kernel K, algorithm parameters A and p, number of iterations numlter and the error tolerances
€1 and €. The output of the algorithm is the estimated inverse of K in S = K~!. The algorithm
proceeds in an iterative fashion. In every iteration, an eigen decomposition is performed of the
matrix
Q@ Al=p(Y='— P - K.

The eigenvalues A and eigenvectors () are used to update the S variable. The Y-update is a soft
thresholding operation of (St + Pt_l) with threshold A/p. Finally, the P-update is a linear dual
variable update. Also during each iteration, the primal and dual residuals r, and r4 are computed
along with the corresponding error thresholds. Whenever the residuals become less than the error
thresholds, the algorithm stops. The result is returned in the matrix S. In our experiments we have
chosen 7ho =1

Running time of ADMM: Since the algorithm requires eigen decomposition for every S update,
and the Y and P updates are constant time operations, the runtime complexity is O(mn?), where
m is the number of iterations and n is the size of the dataset (training points).

Convergence of ADMM: In order to ensure convergence of ADMM, two basic assumptions are
necessary: (1) the functions G and Ga are closed, proper and convex, and (2) the unaugmented
Lagrangian has a saddle point. Based on these two conditions, it can be shown that [2]:

e primal residual approaches 0 i.e. r* — 0 as t — oo

e the objective function approaches the optimal value

e dual variable P approaches feasibility



Input: K, p, A\, numlter, €1, €3
Output: S = K~!
Initialization: Y! =0,P! =0
begin
for t=2 to numlter do
@ Al =evd[p(y! — P1) - KJ;
for i=1 to n do

g — Xi+/AZ+4p
i T7

end
S' = QSQT;
V' = softThreshold[(S" + P'') ,A/p];
Pt — Pt—l + (St _ Yt);
rp =S = Y| ;
ra = |[=p(S" =YY
ep = €1/ + €2 max(|[S*[| p, [[Y]|p);
€a = e1v/n + e[pP!||p;
if (r, < €p) AND (rq < €q) then
reak;
end
end

end
Algorithm 1: SPI-GP: ADMM for Sparse Kernel Inversion

In practice however, ADMM may be slow to converge. This type of algorithms, are therefore,
more useful when moderate accuracy is necessary within a relatively few iterations. Although this
algorithm is slow and sometimes has convergence issues, it is the only method that is amenable to
parallel computing which is essential for many large data sets that do not fit in the main memory
of a single machine.

4.4. SPI-GP: distributed implementation. As we have discussed earlier, ADMM is amenable
to distributed computation in a network of machines. This becomes particularly important when
the data does not fit into the memory of one machine. This form of ADMM is known as consensus

optimization. In this form, the objective function G; needs to be decomposable across ¢ nodes
My, ..., M, as follows:

min Ele G1(x;) + Ga(y) subject to  Az; —y=0, xz; €R"*, yeR™

where z; is the i-th block of data and is stored at machine M;. The solution to this optimization is
the same as given in Section 4.1. The update rules can be written as,

a1 = min{Gi(@) + 2T Aws + p/2 || Az — o'} }

‘
gttt = n%in{Gg(y)—i—Z(—szy+p/2HA$§+1_sz)}
! i=1

2T = g (Ax?l -y

3

Unfortunately, the above method cannot be applied for the optimization of the inverse covariance
matrix in our case. This is because logdet(S) is not a decomposable function.

Therefore, to solve this problem for large kernel matrices, we use the ScaLAPACK routine of
Matlab. It allows the kernel matrix to be distributed across different machines, but still compute
the eigen decomposition correctly. For a Matlab implementation, this is done using the co-distributed
array data structure and an overloaded eig function. It should be noted here that this method does
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not attempt to speed up the GPR process. Instead, it makes GPR possible for extremely large data
sets where the entire kernel matrix cannot be loaded in the main memory due to size limitations.

5. EXPERIMENTAL RESULTS

For the performance study of SPI-GP, the experimental results are reported on a synthetic mul-
tivariate Gaussian distribution data and a real life climate domain data set. For generating the
multivariate Gaussian, we fix the number of dimensions and samples. We then generate a sparse
inverse covariance matrix with all zeros and ones along the diagonal. We randomly insert 1 at certain
locations in our inverse covariance. We make this inverse matrix symmetric and positive definite (by
making the min eigenvalue positive). Finally we invert this matrix and draw Gaussian samples with
zero mean which becomes our covariance matrix. Using this data set we demonstrate the scalability
of the distributed SPI-GP method on a cluster of computing nodes.

Our second data set is a historical climate domain data set which consists of NCEP/NCAR
features available at http://www.cdc.noaa.gov/data/gridded/data.ncep.reanalysis.html [12]
and cross-matched normalized difference vegetation index (NDVI) data (NDVI) from the National
Oceanic and Atmospheric Administrations Advanced Very High Resolution Radiometer (NOAA/AVHRR).
The climate variables used in this study include pressure (hgl1000 and hg500), sea surface temper-
ature (sst), Temperature (temp) and precipitation (pre). We use this data set to demonstrate a
Gaussian Process regression task where our goal is to take as inputs the first five variables and pre-
dict/model precipitation (output) using our SPI-GP method. We have used data from years 1982 -
2002 (21 years). Each variable is observed at a 0.5° resolution over the entire grid. The data used
here are composites of observations over a month. Thus there are 360x720=259200 values for each
variable vectorized and stored as a single row corresponding to a time point (a month). Therefore,
each variable has 12 x 21 = 252 rows in the data set, each having 259200 columns. Note that some
variables are observed only in land while others only in ocean. For any variable, the locations which
do not contain any meaningful data has a fill value of -9999.0.

If we want to use all five variables (hg1000, hg500, sst, temp, ndvi) for predicting precipitation,
then we have to create a GPR model which takes the five variables as input and precipitation as the
output. Since there are missing values for each variable, the locations where all values are present
are the coastlines of the continents (only approximately 8500 points). This means that if we build
a model based on only these points, the other data points cannot be used in the model. Instead
we use a multiple kernel approach as follows. Let Kpg1000, Kngs500, Kndvi, Ksst, and Kiemp be the
kernels computed from each of the 5 input variables separately after removing the fill values. We
create a global training kernel as,

Kglobal = thlOOO + th500 + Ksst + Ktemp + Kndvi
Similarly we create the test kernel as,
K;lobal = KZglOOO + K;;g500 + K:st + K:emp + K;;dvi

In both these global kernels, we normalize the values by making their range between 0 and 1. We
then use the following two GPR equations

(13) y© o= K;lobal(U2I+K9l0bal)_ly

(14) C = Kjopa— K;lobal(a2j + KglObal)ilK;lTobal

using the kernels just computed by combining the individual kernels. By construction, Kgiopar is a
matrix on the entire set of grid locations (n x n). K, is a test kernel of size m x n, where m is
the number of test locations. y is the training output of size n x 1. As a result g* becomes of size
m X 1. One issue is in using the entire y vector. For our prediction problem, this corresponds to
precipitation and hence has only values on land. So when we use the y vector for the entire world’s
data, it contains missing values of -9999.0 (about 40% of the total size of y). To circumvent this
problem, we replace the fill values with an average value of the feature y.
10
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FIGURE 2. Scalability study of SPI-GP on synthetic data

5.1. Study 1: Scalability study on synthetic data. In this study we report the scalability of
the SPI-GP algorithm. The metric we use is running time (in seconds). We report results from
two different experiments. In our first experiment we fix the number of cores on which we run
our experiment and vary the size of the training data. Figure 2 (left) shows the result. We used
the Matlab Parallel Computing toolbox and a local scheduler for multicore architecture. For this
experiment we chose 4 processors on a single CPU to simulate the distributed computing environ-
ment. We experimented with five different sizes of the covariance matrix starting from 1000 x 10000
to 5000 x 50000 and notice that the growth in the running time is less than cubic in spite of the
eigen decomposition step. This is due to the distributed eig function usage which makes the method
complexity O(nr?) where r is the chunk (rank) of the matrix for the covariance matrix partition in
any one of the processors. Figure 2 (right) reports the results of running SPI-GP on a 1000 x 10000
matrix on a varying number of processors starting from 1 to 4. The result is counter-intuitive since
we see that a single processor takes the highest time while there is no clear trend in the time as
we increase the number of processors, keeping the data fixed. This is because there is considerable
overhead in distributing a job over the parallel computing framework and there is an optimal number
of processors for a fixed partitioning of the data. The performance degrades with deviation from
the optimal.

5.2. Study 2: Precipitation prediction in the Indian subcontinent. In the climate study, we
observe which geographical regions are most similar to the precipitation pattern of India. We want
to identify these points and study how these points change over a time period of 20 years. Since all
climatic connections change very slowly with time, we construct the relevant network connections
for Indian precipitation every 5 years. Fig. 4 shows the results. Each plot in Fig. 4 is for the average
of one year’s data. The variable shown in the figures is precipitation. The black markers are the
locations in India. The yellow markers indicate the the top 10 areas which influence India. These are
the points which have the highest values in the estimated inverse kernel matrix corresponding to test
points for India. As Figure 4 shows, there are certain regions which remain similar to our test set
for the entire period of 20 years, while others have a more disparate pattern. Some locations which
show consistent influence pattern include the west coast of South America, west coast of Africa, and
east coast of Australia. Some less consistent locations include areas in China. To illustrate how this
method can be used for studying climate networks, we represent a portion of the precipitation-based
inverse covariance matrix as a network. As can be seen in Figure 3, the true inverse covariance is
difficult to understand or interpret, given the huge amount of network connections for any particular
node in the graph. The reference node in this study is denoted in red in both the left and right
subfigures in Figure 3. The right figure, which a sparse variant of the same graph shows only the
important connections to the colored node, and enhances interpretability of learnt models like in
Gaussian Process regression.
11
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(a) Network representing a sub-matrix of the inverse (b) Network representing a sub-matrix of the sparse
covariance matrix inverse covariance matrix estimated using SPI-GP

FIGURE 3. Interpretability of sparse inverse covariance matrix

As we will observe in section 5.3, this regression problem performs poorly due to the immense
amount of missing data in the different modalities used to predict precipitation. Therefore, for
demonstrating the fact, that the poor regression results are only due to the nature of data available,
and not due to the technique discussed here, we study a a different regression problem where we
want to predict the precipitation in the Indian subcontinent based on only precipitation data from
four weeks in advance. In this study, we use only precipitation data to predict precipitation for a
delay of 1 month. This study is also performed for over a 20 year period at intervals of every 5 years.
For every year we study the prediction problem quarterly.

5.3. NMSE of SPI-GP. If a set of points are very similar to the points representing rainfall in
the Indian subcontinent, then it is intuitive that those points should be very good predictor of
precipitation in India. Our next study tries to verify this intuition. For this, we choose the top k
locations of the world that are most similar to the precipitation in the Indian subcontinent for each
of the years 1982, 1986, 1990, 1994, and 1998 and build GPR models by taking only this subset as
the training examples. We test on year 2002. As a baseline comparison, we train a separate GPR
on the entire world’s data (Full-GP). For both these methods, we use the same locations of India
as test sets. We build these two GPR’s separately for each of the five years mentioned before. The
first row of Table 5.3 shows the normalized mean squared error (NMSE) values for these two GPR
methods for each of the five years, where NMSE is defined as
NMSE = M

Uk

n X var(y*)

The value of k is chosen to be n/2 where n is kernel dimension. For this study, for each of the five
years, the NMSE value for the GPR model of top k values from SPI-GP is better than the Full-GP.
This happens because the most similar points capture more information and less of noise as has
been verified earlier in [4]. However, as it can be noted the improvement in NMSE observed is not
significant. Not only that, even for the improvement that is observed, the NMSE values are quite
high (approximately 1). Now, a value of 1 for NMSE implies that the prediction is equal to the
mean of the target. This explains the observed NMSE in our experiments. Since approximately 40%
of the target data used in our experiments were actually fill values and were replaced by the mean
of the target. Therefore, the NMSE that we see is largely an artifact of the data preprocessing for
this data set since the mean-based smoothing technique applied here may have failed to capture the
dynamics in the data.

To verify that the high NMSE values are not an artifact of the technique, but the data, we perform
similar experiments for the precipitation based regression study. The second row of Table 5.3 shows
the NMSE values when we predict rainfall for August of 2002 based on rainfall in July for each of
the years 1982, 1986, 1990, 1994, and 1998. We can notice that the NMSE values are much lower

12



(a) Climate network for 1982 based on precipitation

(e) Climate network for 2001 based on precipitation

FIGURE 4. Evolution of the climate network over 20 years based on precipitation data.



[ 1982 [ 1986 [ 1990 | 1994 | 1998 |

Regression using all variables Full-GP || 1.085 | 1.218 | 1.115 | 1.883 | 1.138
SPI-GP || 0.902 | 0.811 | 1.05 | 1.072 | 0.979
Regression using precipitation Full-GP || 0.695 | 0.664 | 0.611 | 0.651 | 0.669
SPI-GP || 0.6912 | 0.664 | 0.605 | 0.650 | 0.667

TABLE 1. NMSE of GPR for 2002 when entire world’s data is used (Full-GP) vs.
top few similar points in SPI-GP. For the first regression scenario, each column
shows the NMSE for that year. For the second scenario, each column shows the
NMSE for prediction of rainfall in August for that year.

Training years

Training months

1

4

7

10

Full-GP | SPI-GP

Full-GP | SPI-GP

Full-GP | SPI-GP

Full-GP | SPI-GP

1982 0.237 0.283 0.454 0.439 0.426 0.426 0.371 0.361
1983 0.258 0.292 0.492 0.492 0.658 0.658 0.374 0.374
1984 0.261 0.273 0.451 0.451 0.818 0.819 0.374 0.368
1985 0.196 0.208 0.475 0.450 0.396 0.396 0.385 0.385

TABLE 2. NMSE of GPR for 1986 when entire world’s data is used (Full-GP) vs.
top few similar points in SPI-GP.

Training years

Training months

1

4

7

10

Full-GP | SPLGP

Full-GP | SPLGP

Full-GP | SPLGP

Full-GP | SPLGP

1982 0.311 0.293 0.554 0.563 0.706 0.706 1.23 1.22
1986 0.325 0.295 0.587 0.595 0.81 0.809 1.301 1.3
1991 0.281 0.278 0.564 0.586 0.782 0.781 1.15 1.15

TABLE 3. NMSE of GPR for 1996 when entire world’s data is used (Full-GP) vs.
top few similar points in SPI-GP.

compared to the first study. However, it should be noted that the precipitation prediction problem
that we are studying is a difficult one since the data does not have reasonably high predictability.
The linear correlations for different data subsets and different test sets can vary from -0.2 (very
poor) to 0.88 (high correlation) accounting for the high variability in the NMSE values for the
different test scenarios. Tables 5.3 and 5.3 document the NMSE values for predicting precipitation
in India for months February, May, August and November for the years 1986 and 1996 respectively.
NMSE values in the table range from as low as .19 to as high as 1.3 indicating the difficulty level
of different prediction scenarios. For example year 1986 has reasonably good predictability and has
lower variation in the NMSE values thatn year 1996. Although February, May and August have
quite low NMSE values for 1996, the month of November does not have that since the prediction is
working as poorly as random for the different training years. The year 2002 is worse than 1986 in
terms of average predictability, but data is more consistent across the different training years.

6. CONCLUSION

In this paper we discuss a method for sparse inverse Gaussian Process regression that allows us to
compute a parsimonious model while preserving the interpretability of the sparsity structure in the
data. We discuss how the inverse kernel matrix used in Gaussian Process prediction gives valuable
information about the regression model and then adapt the inverse covariance estimation from
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Gaussian graphical models to estimate the Gaussian kernel. We solve the optimization problem
using the alternating direction method of multipliers that is amenable to parallel computation.
This sparsity exploiting GPR technique achieves two goals: (i)it provides valuable insight into the
regression model and (ii)it allows for parallelization so that the entire kernel matrix need not be
loaded into a single main memory, thereby removing the size related constraints plaguing large scale
analysis. We perform experiments on historical climate data of 20 years. The climate network study
shows evolution of the most influential points over time for predicting precipitation in the Indian
subcontinent. The NMSEs reported are relatively high due to the mean-based smoothing adopted
in the preprocessing. For future work, we plan to pursue other spatial smoothing processes such
as the ones proposed by Cressie and Wikle [3]. We also want to pursue teleconnection study using
different climate data for specific climate scenarios.
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