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Problem statement

Given a time-varying sequence of weighted graphs G1,G2, . . . ,GT :

1 Identify if any single transition Gt to Gt+1 is anomalous

2 If yes, identify which edge relationship changes were responsible for
the anomalous transition

3 Identifying abnormal climate patterns over time by analyzing
anomalous nodes and edges in time graphs
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What do we mean by anomalous edge changes?

• Case 1: high magnitude change (increase or decrease) in edge weight
from time t to t + 1.

• Case 2: new edges that bring distant nodes closer.

• Case 3: decrease in edge weight (or deletion of edges) between
central or bridge nodes in the graph that push proximal nodes far
apart.
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Running example

• S1: New edge between b1, r1 (refers to Case 2)

• S2: Small decrease in edge weight between r7, r8 (refers to Case 3)

• S3: Large increase in edge weight between b4, b5 (refers to Case 1)

• S4: Small decrease in edge weight between b1, b3

• S5: New edge between b2, b7

AGU14, Das et al. Introduction 5/14



Distance function

• d̄S(G ,H) : a generic notion of distance that captures structural
differences due to abnormal changes in the edges in the
complimentary set E − S

• For a dissimilarity threshold δ, G and H considered similar with
respect to edge set E − S at level δ if d̄S(G ,H) < δ

• If d̄S(Gt ,Gt+1) < δ for some subset S , then Et ⊆ S

Optimization problem

Et := arg min
S

|S |

subject to d̄S(Gt ,Gt+1) < δ.
(1)
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Polynomial time solution

• (1) is a combinatorial optimization problem. Intractable for large
graphs.

• Can be reduced to polynomial time if, for any S ⊆ E :

d̄S(Gt ,Gt+1) =
∑

e∈E−S
∆Et(e), (2)

where ∆Et(e) is a non-negative functional of the graphs Gt and Gt+1

independent of the set S

Proposed metric

d̄
(0)
S (Gt ,Gt+1) =

∑
e∈E−S

∆Et(e),

where ∆Et(e) for e = ei ,j is given by

∆Et(ei ,j) = |At+1(i , j)− At(i , j)| × |dt+1(i , j)− dt(i , j)|.
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Proposal for distance function

Anomalous edges:
1 Large changes in magnitude (Case 1):

• |At+1(i , j)− At(i , j)| will be large
• Will result in |dt+1(i , j)− dt(i , j)| being large

2 New edges / dissolving edges (Case 2/3):
• |dt+1(i , j)− dt(i , j)| will be large
• At+1(i , j)− At(i , j) will be non-zero

Non-anomalous edges:
1 Small magnitude changes between node-pairs i ,j that are tightly

coupled:
• |At+1(i , j)− At(i , j)| will be small
• |dt+1(i , j)− dt(i , j)| will also be small

2 Neighboring edges of new edges / dissolving edges (Case 2/3):
• For some neighboring node of i (say ni ) and j (say nj):
• |dt+1(i , j)− dt(i , j)| will be large
• But, |At+1(i , j)− At(i , j)| will be small (possibly 0)

AGU14, Das et al. CAD 8/14



Performance of distance metric

Edge b1, r1 b4, b5 r7, r8

∆Ei (.) 10.6 9.56 8.99

Edge b1, b3 b2, b7 Rest

∆Ei (.) 0.1 0.22 0

Table : Table listing the values of ∆Et(.) for edges in the illustrative example.
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Anomaly detection performance on synthetic data set

• Random realization of 4-component Gaussian mixtures (matrix P) at
time t

• Sum of random perturbation of P (matrix Q) with matrix R, where

R(i , j) =
{

0 with probability p = 0.95

u(i,j) with probability p = 0.05,
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Results on precipitation (PRE) network for different time
transitions

• 67,420 nodes, monthly precipitation aggregates, top-10 neighbor graph

• Analysis results for January for the 1994-1995 transition
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Figure : Heat map of rainfall for January 1995. Red squares and yellow circles are
nodes associated with anomalous edges (indicated by blue dotted lines) found by
CAD
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Results on temperature (TAS) network for SOI phases

• Monthly Temperature At Surface (TAS), 1980-2010, 2.5◦x2.5◦ resolution (10512 nodes)
• Preprocessing: Removal of annual seasonality and linear trends followed by z-scoring

• High ENSO(> 1 std. dev)

• Neutral (within 1 std. dev)

• Low ENSO(< 1 std.dev)
• For each phase, network constructed by computing Pearson correlation between the time

series of two grid cells. Only the edges with negative correlations (< -0.3) were retained.

• Most of the anomalous nodes in neutral vs. high and low vs. high found were
concentrated in equatorial pacific where ENSO’s impact is found

• These nodes are not anomalous in low vs. neutral

AGU14, Das et al. Experimental results 12/14



Results on pressure (PSL) networks for SOI phases

• Monthly Pressure at Sea level (PSL), 1980-2010, 2.5◦x2.5◦ resolution
• Preprocessing : Removal of annual seasonality and linear trends followed by z-scoring

• High ENSO(> 1 std. dev)

• Neutral (within 1 std. dev)

• Low ENSO(< 1 std.dev)
• For each phase, network was constructed by computing Pearson correlation between the

time series of two grid cells. Only the edges with negative correlations (< -0.3) were
retained.

• Region near South Africa behaves similarly in low and high phases of SOI, but not in
neutral.

• Region in equatorial pacific behaves similarly in low and neutral phases of SOI, not in high.
• Region near south-east of Australia behaves similarly in neutral and high phases of SOI,

not in low phase.
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Summary

• We proposed a novel method for localizing abnormal changes in edges
that are responsible for anomalous change in structure in dynamic
graphs

• CAD tracks changes in edge strength and structure (via commute
time distance) in order to determine these anomalies.

• CAD has an O(n log n) run-time complexity per graph instance for
sparse graphs, making it scalable

• Experimental studies on synthetic and large climate datasets showed
that CAD consistently and efficiently localizes anomalous edges and
associated nodes responsible for anomalous changes in graph structure

• Ongoing work includes more systematic study of the SOI phase
transitions honoring the time component of these climate phenomena
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