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ABSTRACT

Title of Dissertation:  Privacy Preserving Distributed Data Mining
based on Multi-objective Optimization and
Algorithmic Game Theory

Kamalika Das, Doctor of Philosophy, 2009

Thesis directed by: Dr. Hillol Kargupta
Professor
Department of Computer Science and
Electrical Engineering

Use of technology for data collection and analysis has seemprecedented growth
in the last couple of decades. Individuals and organizatgenerate huge amount of data
through everyday activities. This data is either centealifor pattern identification or
mined in a distributed fashion for efficient knowledge digexy and collaborative compu-
tation. This, obviously, has raised serious concerns ghdcy issues. The data mining
community has responded to this challenge by developingnabmeed of algorithms that
are privacy preserving. Specifically, cryptographic teghas for secure multi-party func-
tion evaluation form the class of privacy preserving dataing algorithms for distributed
computation environments. However, these algorithmsireall participants in the dis-
tributed system to follow a monolithic privacy model andcateake strong assumptions
about the behavior of participating entities. These caomastdo not necessarily hold true
in practice. Therefore, most of the existing work in privamgserving distributed data
mining fail to serve the purpose when applied to large readlavdistributed data mining
applications.

In this dissertation we develop a novel framework for priwaceserving distributed
data mining that allows personalization of privacy regueats for individuals in a large
distributed system and removes certain assumptions riegadrticipant behavior, thereby

making the framework efficient and real-world adaptable.



First, we propose the idea of personalized privacy for iildigls in a large distributed
system based on the fact that privacy is a social concepter®ift parties in a distributed
computing environment have varied privacy requirementsteir data, and also varying
availability of computation and communication resourddaserefore, we model privacy as
a multi-objective optimization function where each pattgmpts to find the optimal choice
between two conflicting objectives — (i) maximizing the datavacy, and (i) minimizing
the cost associated with the privacy guarantee. Each pptiyiaes its own objective to
define the privacy model parameter that satisfies its prigadycost requirements and then
participates in the collaborative computation.

Secondly, to address the issue of assumptions regardingetsavior in cryptography-
based privacy preservation techniques, we formulate @yiyaeserving distributed data
mining as a game. The participating entities are the playktise game and the strategies
they adopt in communicating their data, doing necessarnpatations and attacking others
data to reveal personal information, decide the result@fjdime in terms of the quality of
the data mining results. Knowing that, in the absence of arsigor, the tendency of any
player in this game would be to cheat, we design a penalizghanism and blend it with
the distributed data mining algorithm for getting a selfreating system that forces parties
to follow the protocol and not cheat.

The framework that we have proposed is independent of theelod the privacy
model for the distributed computation and also applicablarty privacy preserving data
mining application involving multi-party function evaltian in a distributed environment.
To demonstrate the working of our framework, we have adaptedwork for some real
life distributed data mining applications such as web atiks&ment ranking, distributed fea-
ture selection, and online similarity identification in tuging patterns. We have designed
mechanisms for privacy preserving sum computation and ipraduct computation in a

distributed environment and adapted the framework to worlkBfayes optimal model of



privacy ande-differential privacy model. We have simulated the workaighe distributed
applications and presented experimental results for ebtliealgorithms developed, us-
ing the Distributed Data Mining Toolkit (DDMT) developed biye DIADIC laboratory at
UMBC.
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Chapter 1

INTRODUCTION

1.1 Motivation

Use of technology for data collection has seen an unpretedigmowth in the last
couple of decades. Individuals and organizations genbrege amount of data through ev-
eryday activities. Decreasing storage and computatiots t@ve enabled us to collect data
on different aspects of people’s lives such as their creahd ¢ransaction records, phone
call and email lists, personal health information and weidwising habits. Security issues,
government regulations, and corporate policies requirstmithis data to be scanned for
important information such as terrorist activities, ctedird fraud detection, cheaper com-
munications, and even personalized shopping recommendatSuch analysis of private
information often raises concerns regarding the privagiyts of individuals and organiza-
tions. The data mining community has responded to this ehg# by developing a new
breed of algorithms that analyze the data while paying attero privacy issues.

Considerable research in privacy preserving data minirge&ed towards the cen-
sus model where the data in a private database is sufficieingtprted’ to prevent leakage
of individually identifiable information and then releagedentrusted agencies for pattern
mining [2]. However, this set of solutions does not encomspbkreal world problems
in data mining. Under many circumstances, data is colleatelifferent locations and the

data mining task requires the entire data to be centralmadéntifying the global patterns.



2
For example, the US Department of Homeland Security fund¢®SUIT project for pri-

vacy preserving distributed data integration and anabisis at analyzing network traffic
of different organizations to detect “macroscopic” pattefor revealing common intrusion
detection threats against those organizations. Howeeérank traffic is usually privacy
sensitive and no organization is generally willing to shtaesr network traffic information
with a third party. Similarly, different collaborative cqmting environments also require
individuals to share their private data for different fuontcomputations. For example,
peer-to-peer networks are a type of distributed systemsatkacharacterized by huge size
in terms of number of participating nodes and a lack of cowmtibn among the nodes.
Peer-to-peer systems are emerging as a choice of soluti@nrfew breed of applications
such as collaborative ranking, electronic commerce, soommunity formation, and di-
rected information retrieval [103]. Most of these applioas require information integra-
tion among the nodes, some of which maybe privacy sensifive.census model solutions
do not work well in many of these emerging distributed pri#aensitive data mining ap-
plications. Cryptographic techniques for secure compariathave been deployed for such
privacy preserving distributed data mining problems [36].

Broadly speaking, cryptographic protocols compute fuomgiover inputs provided
by multiple parties without sharing the inputs with one d&®ot The robustness of cryp-
tographic protocols depends on the mutual trust placed empdhnties. The cryptography
literature assumes two types of participant behavior. Aigeanest party is curious and at-
tempts to learn about others’ private information duringggbmputation, but never deviates
from the protocol. Malicious participants deviate from gvetocol, collude with others to
send spurious messages to reveal others’ private datamdetethat are secure against ma-
licious adversaries are computationally extremely experand therefore cannot be used

in real-life for large scale data mining applications. Téfere, considerable effort has gone

Ihttp://www.agnik.com/DHSSBIR.html



3
into developing secure protocols in the semi-honest adweraodel [36, 80, 85, 151, 152].

However, information integration in such multi-party distited environments is often an
interactive process guided by the dynamics of cooperatioicampetition among the par-
ties. The behavior of these parties usually depends on dlgirobjectives and is guided
by whatever maximizes their personal benefits. If gettingnow someone’s private infor-
mation is beneficial, then every self-interested party exdbmputation will try to get that
information. Therefore, the assumption of semi-honesatiei falls apart in most real life
distributed data mining applications [87].

Another important shortcoming of existing privacy preseguistributed data mining
applications is the definition of a monolithic privacy modet all participants. Privacy
is a social concept and, therefore, the privacy concernbeoflifferent participating en-
tities vary, as does their ability to protect their privasgaldue to varying availability of
resources. Therefore, in a distributed computing enviremnit is important that the par-
ties be able to tailor their privacy definitions based onrthegjuirements and yet be able to
participate in a collaborative computing task.

In this dissertation we develop a novel framework for peadiaed privacy in dis-
tributed data mining environments, paying careful attanto performance and real-world

adaptability.

1.2 Problem Statement

This dissertation addresses the following problem. Carsaddistributed computing
environment consisting of nodes (parties) and connectedrvunderlying communication
infrastructure. Each node has some data which is known aniis¢lf. The nodes can
exchange messages with any other node in the network. Baanmeh aims at answering the
following question: “how can data mining tasks for extragtuseful knowledge from the

union of all the data be executed in the system such thateliftenodes participating in the
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collaborative computation (i) can specify their own priyaequirements without having to

adhere to a monolithic privacy definition, (ii) can ensura tihe required privacy is actually
achieved without having to rely on unrealistic assumpti@gsrding the behavior of other
parties and (iii) can compute the privacy preserving dataimgiresults with an efficient

use of resources.

1.3 Contributions

In this dissertation we have systematically studied thetsbmings of existing pri-
vacy preserving data mining techniques in terms of theitieplpility to real life applica-

tions of distributed data mining, and provided alternatatsans for some of those.

1. We have identified the importance of personalization ofgay in distributed sys-
tems since most of these distributed programs run at diftéoeations on computers
owned by a variety of individuals or organizations, opergidy partial or complete
autonomy. These entities have varied privacy requirenfentseir share of the pri-
vate data, and also varying availability of computation eoshmunication resources.
Therefore, for such heterogeneous distributed computimganments, we propose
a framework of personalized privacy based on multi-obyeatiptimization. Privacy
comes at a cost and higher privacy usually means higher €oetrputation. In our
framework, each party attempts to find the optimal choiceveenh two conflicting
objectives — (i) maximizing the data privacy, and (ii) minzimg the cost associ-
ated with the privacy guarantee. Each party optimizes its objective to define
the privacy model parameter that satisfies its privacy astireguirements and then

participates in the collaborative computation.

2. Research in distributed privacy preserving data minargsecure function evalua-

tion, often tacitly assumes that the different parties ia dstributed computation
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perform their tasks as specified by the system designer.rnftieely, parties are

sometimes explicitly modeled as adversaries, who can tewdbitrarily from the
specification in order to defeat the intentions of the sysiesigner or the other par-
ticipants. However, in most real life scenarios, the paréiee merely self-interested
agents acting to maximize their personal benefits and congpeith each other in
the process. Therefore, we formulate privacy preservisgriduted data mining as
games where the participating entities are the playerstansttategies they adopt in
communicating their data, doing necessary computatiodsaftacking others data
to reveal personal information decide the result of the gamterms of the quality
of the data mining results. Knowing that in the absence of&siisor, the tendency
of any player in this game would be to cheat, we design a pgnglmechanism and
blend it with the distributed data mining algorithm for gegf a self-correcting sys-
tem that forces parties to follow the protocol and not ch&gt. want to emphasize
here that of all possible cheating behavior by a party, westeldressed only the
problem of collusion in this dissertation. However, incembased mechanisms can

similarly be designed for addressing these issues [98, 99].

. Usually, the primary focus of research on distributedesys is the development of
efficient distributed algorithms, i.e., algorithms witwl@omputational complexity
and communication requirements. In this dissertation, asehaken our person-
alized privacy and mechanism design schemes to work witstiegi efficient dis-
tributed algorithms for different data mining tasks suchdesributed ranking, dis-
tributed feature selection and distributed similarity su@@ment. Our results use a
privacy preserving sum computation and a privacy presgrviner product compu-

tation primitive for the data mining tasks at hand.



1.4 Dissertation Organization

This dissertation is organized as follows:
Chapter 1: This chapter describes the motivation behind this reseatates the specific
problem we have addressed, highlights the contributiortbefissertation and gives an
overview of how the rest of this dissertation is organized.
Chapter 2: This chapter presents an overview on fields of reseaixhdistributed data
mining and privacy preserving data mining. Since this diss®n deals with privacy is-
sues in distributed data mining applications, it is impotrta get an understanding of both
these areas. In Chapter 2 we first describe the importanitpués of distributed comput-
ing and present a classification of existing distributeddaining literature. Based on the
type of the distributed computing environment, the modealath communication, and the
application areas, we describe the literature on (i) datangion the grid, (ii) distributed
data stream mining, (iii) data mining in mobile ad-hoc neto and (ii) data mining in
peer-to-peer systems. We then go on to describe in deta&ilBténature on privacy pre-
serving data mining which we have classified based on thetggbs as (i) data distortion
based privacy preservation, (ii) cryptography based pyiyaeservation, and (iii) output
perturbation based privacy preservation. We also discossslome of the existing privacy
preservation techniques fail to adapt to the distributetd daining applications’ require-
ments.
Chapter 3: This chapter presents the multi-objective optimizatiamrfolation of the per-
sonalized privacy problem in a distributed setting. The amof data privacy required and
the cost associated with the privacy guarantee are the twitictong objectives for every
party in the optimization problem. Solution to this multjective optimization problem is
a Paretooptimal solution set such that no one solution in the set &tds” than the oth-
ers. In this chapter we present a distributed averagingigéhgo for solving this distributed

multi-objective optimization problem in a communicatioificéent manner by averaging
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the constraints of all the parties. We finally demonstrageftimctioning of this framework

using a popular privacy model from the privacy preservingaaining literature, namely,
the differential privacy model.

Chapter 4: This chapter presents the game-theoretic formulationegptivacy preserving
distributed data mining problem. Here we first introduce sdey concepts and definitions
in game theory and mechanism design and then present owevirarka \We show that in the
absence of a penalizing mechanism, parties tend to behavashion that is harmful to the
collaborative computing environment and then proceed sigdedistributed mechanisms
for forcing parties to follow the distributed function euation protocol without collusion.
We illustrate this concept using a secure sum computatiotopol from the privacy pre-
serving data mining literature and present a modified sesume with penalty algorithm.
We also provide detailed analytical results for our propadgorithm and present empirical
results to corroborate our claim.

Chapter 5: In this chapter we present a distributed privacy presertamging algorithm
for two real life applications: a web advertisement rankapplication in a peer-to-peer
network and a feature selection algorithm in a peer-to-pewwvork. The ranking algorithm
uses a sum computation primitive and builds on the multecidye optimization framework
for personalized privacy and uses penalty based mechargsigrdto prevent collusion
among peers.

Chapter 6: Inthis chapter we present a distributed privacy presersimglarity detection
algorithm for a peer-to-peer online community like appiica. The similarity detection
algorithm uses inner product among the features as a meabkugrelation or similar-
ity among them. We frame this distributed inner product cotafion as a series of sum
computations and design a mechanism to perform this coriuia a privacy preserving
manner using a penalty scheme.

Chapter 7: This chapter concludes this dissertation and outlines itleetibns for future



research in privacy preserving distributed data mining.



Chapter 2

RELATED WORK

2.1 Introduction

Advances in technology has enabled collection of a huge atufudata about indi-
viduals, groups or organizations from a wide variety of sesr This data collection and
subsequent data mining often leads to a breach of privachésubject under consider-
ation. Privacy preserving data mining is a growing field cfe@rch that tries to address
the issue of privacy in the context of data mining. The olyyecof the field of privacy
preserving data mining is to modify the data or the data ngimrotocols in such a way
that the ‘privacy’ of the subject is preserved while prowmglutility in terms of the mining
results. When the private data is distributed across neltiata repositories owned by dif-
ferent parties, privacy preservation becomes a differemt kf challenge due to personal
preferences while doing distributed data mining.

This chapter briefly introduces the literature on distrdalitlata mining and gives a
description of the state of the art of the field of privacy presig data mining in the con-
text of distributed data mining. We begin with a review of ion@ant concepts from the
distributed computing literature which are relevant te thissertation in Section 2.2 and
followup with a discussion on the literature of distributdata mining algorithms in Sec-
tion 2.3. Section 2.4 introduces the field of privacy presgdata mining. Section 2.5

discusses data perturbation techniques, while Secti@narl 2.7 describe cryptographic
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and output perturbation based techniques for privacy pregpdata mining. Finally Sec-

tion 2.8 summarizes the discussions.

2.2 Distributed Computing Primitives

In this section we first define a distributed system and thesent different types of

algorithms for distributed systems.

2.2.1 Distributed Systems
Leslie Lamport informally defined a distributed systemsa®ivs:

“A distributed system is one in which the failure of a compytau didn’t even

know existed can render your own computer unusable”

While this is not a strict definition it captures the impottaharacteristic of a distributed

system. Ghosh [62] highlights several properties of dsated systems:

Multiple processes There is generally more than one concurrent process. Tlerde

one or more than one process per node of the distributedwsyste

Common goal Any distributed systems must have a common goal. The preset®uld
collaborate to solve the same problem or task. This is onbeofitstinctions with

parallel processing as we discuss later.

Interprocess communication In a typical distributed system, each process performs some
computation by itself and then communicates with other @sses. The communica-
tion can be over a network using finite delagssageslhe messages are transmitted

across the communication channels.

Disjoint address spaceProcesses have disjoint address space. Shared-memoitg@rch

tures are not considered distributed systems.
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Mathematically, a distributed system can be representadjeeph; = (V, E'), where

V' is the set of computers or machines or nodesimslthe set of edges or communication
links connecting them. The messages are exchanged acessigles. It is generally
assumed that the graph is connedtedfor any two arbitrary nodes;, v, € V, there exists
a (possibly multi-hop) path from; to v;. The set of one-hop (immediate) neighborspf

is known as the neighbor set and is denotetl,adathematically, it can be written as,

Fi = {'Uj c V|('UZ‘,U]') c E}

In the next section we describe different types of distedualgorithms.

2.2.2 Types of Distributed Algorithms

Distributed algorithms can be categorized based on thedfypemmunication proto-
col it uses for inter-process communication. We discush eathem in details in the next

few subsections.

Broadcast-based Algorithms Broadcasting is a communication protocol in which a
message from a node is disseminated to all the nodes in tiverketOne way of achieving
broadcast in networks in which there is no point to point @mtion among nodes is through
flooding. In flooding, whenever a node receives a messagewafds it to all its neighbors
except the one from whom it received. As evident, there ig aflovasted resources and
high load on the network since the same message can be ttwtsmiany times along
each link. Moreover, each node needs to process an ovenwliehmmber of messages
in order to identify and disregard the duplicates. The nggssamplexity iSO(| E|), since
each edge sends a message once or more. The running timeastpoal to the diameter
of the network. A slightly more intelligent variant usesatitional flooding — it sends

messages only in one directiery.from lower to higher node identifier.
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Convergecast Algorithms In convergcast algorithms, the communication takes

place on a spanning tree. Such a tree encompassing all ties nad be easily constructed
using a broadcast-based spanning tree algorithm. Comationicgproceeds from the leaf
up to the root of the tree. At each step, a node in the tree shiithas received messages
from all its children. If yes, it simply sends a message tgasent up the tree, else it
simply waits. The parent does the same computation. Thefiraily receives a message
containing information about the entire network. Similarbroadcast, this technique is
also communication expensive: it requi@§V’'|) messages since each node sends exactly
one message. The running time is proportional to the deptinedfee which can be greater
than the diameter of the network. However, once the treeeiscpmputed, this technique

is extremely simple.

Local Algorithms  Both the algorithm types discussed earlier suffer from oagom
drawback — the communication complexity is of the order efsfze of the network. This
is unacceptable for large networks such as peer-to-petgrnsgsn which the size of the
network typically ranges from thousands to millions of nedeocal algorithms [133] are a
different genre of algorithms in which the communicatioad@t each node is either a small
constant or sub-linear with respect to the network sizeyigiog excellent scalability for
the local algorithm. In a local algorithm, a node typicalbngerges to the correct result by
communicating with only a small fraction of nearby neighdbdPrimarily for this reason,

local algorithms exhibit high scalability. Below we presardefinition of local algorithms.

Definition 2.2.1. [a-neighborhood of a vertex] Let G = (V, E) be the graph representing
the network wherd’” denotes the set of nodes afAdrepresents the edges between the
nodes. Ther-neighborhood of a vertex € V' is the collection of vertices at distanaeor

less fromitinG: I',(v) = {ul|dist(u,v) < a}, wheredist(u, v) denotes the length of the
shortest path betweenandv and the length of a path is defined by the number of edges in

it.
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Definition 2.2.2(«a-local query). LetG = (V, E) be a graph as defined in Definition 2.2.1.

Let each node € V store a data sefX,. Ana-local queryby some vertex is a query
whose response can be computed using some funttidn(v)) where X, (v) = {X,|v €

Lo(v,V)}.

Definition 2.2.3 ((«, v)-local algorithm). An algorithm is called(«, v)-local if it never
requires computation of g-local query such that > « and the total size of the response
to all sucha-local queries sent out by a peer is boundechbyx can be a constant or a
function parameterized by the size of the network whitan be parameterized by both the

size of the data of a peer and the size of the network.

We call such and, v)-local algorithmefficientif both o and~ are either small con-
stants or some slow growing functions (sub-linear) of itsapzeters.

The previous set of definitions discuss the efficiency ofitisted algorithms in terms
of the communication required but not in terms of the quatityhe results. There are two
types of local algorithms in terms of accuragxactandapproximate In an exact local
algorithm, once the computation terminates, the resultpded by each peer is the same
as that compared to a centralized execution [160]. Howestst algorithms have only
been developed till date for very simple thresholding fiord (e.g., L2-norm [158]). For
more complicated tasks, researchers have proposed apytexiocal algorithms using
probabilistic techniques (for examplemeans [43]). Next, we define the notations for

measuring the quality of local algorithms.

Definition 2.2.4((¢, §)-correct local algorithm). An local algorithm is €, 0) correct if it
returns the result of a query within andistance of its actual result with a probability of
(1 —§), where the actual result is computed on a centralized dathjais the probability

that the result is outside theradius.

In the rest of this thesis, we will refer to these definitiohtoaality.



2.3 Distributed Data Mining H
Distributed data mining deals with the problem of data asialin environments with
distributed data, computing nodes, and users. This aregd®s considerable research
during the last decade. For a detailed introduction to tlea,ainterested readers are re-
ferred to [89]. Data mining often requires massive amourresburces in storage space
and computation time. If the data happens to be distribut@adhamber of different sites,
then centralizing the data to a single storage locationiregadditional communication
resources. Distributed data mining is a field of researchdbacentrates on developing
efficient algorithms for mining of information from distribed data without centralizing
it. Depending on how the data is distributed across the,sltsgibuted data mining algo-

rithms can be divided into two categories:

¢ Algorithms for homogeneous data distribution: For this kind of data distribution,
also known as the horizontally partitioned scenario, atlkaites or features are ob-
served at every site. However, the set of observations ¢egwgrross the different

sites differ.

e Algorithms for heterogeneous data distribution: For this kind of data distribution,
also known as the vertically partitioned scenario, eahtsas all tuples or rows, but

only for a subset of the attributes for the overall data set.

There exists a vast literature of algorithms for each typdaif partition scenario.
Interested readers are referred to the books by Kargetpah [89], [86], the distributed
data mining bibliography [45] maintained by the DIADIC lahtory at the University of
Maryland Baltimore County and other surveys [167] for dethdiscussion on each algo-
rithm.

In the next few subsections we discuss different classesstriiliited data mining

algorithms based on the data distribution infrastructmekthe computation task.



15
2.3.1 Data Mining in GRID

Distributed data mining has seen a number of applicationt@rid infrastructure.
Informally, a Grid can be defined as - “the ability, using adfetpen standards and proto-
cols, to gain access to applications and data, processimgrpstorage capacity and a vast
array of other computing resources over the Internet” [&f]d computing has gained pop-
ularity as a distributed computing infrastructure for mamyhly computational-intensive
tasks which are impossible to execute on a single computeid &pplications rely on
the computing and processing powers of possibly tens tostruds of dedicated or user-
donated CPU cycles to perform a task. These users may begwotit the Internet or they
may be part of a Grid consortium. The prospect of solvingesrgly challenging compu-
tational problems has found application of Grid computimgiany research domains such
as weather modeling, earthquake simulation, finance, ¢jdlim study the effect of protein
folding), chemistry and high-energy physics.

Grid computing was popularized by the seminal work by Fostel. [60] who are
widely recognized as the “father of the modern grids” [158].Grid is a type of paral-
lel and distributed system that enables the sharing, sete@nd aggregation of resources
distributed across multiple administrative domains, Hase the resources’ availability,
capacity, performance, cost, and the users’ quality-ofise requirements. A Grid in-
frastructure is not a completely asynchronous networkcesthe main goal in Grid is to
submit and execute user jobs, there exists centralizedatytiwvhich monitors and ensures
optimal resource allocations. Hoschekal. [77] discusses the data management issues
for Grid data mining. The goal of voluntary Grid computingtésensure that jobs get
executed in the scavenged CPU cycles in an optimal fashithrout causing too much in-
convenience to the CPU owner. Grid computing is essentdiigterogenous collection of
different machines having access to distributed data, anaesearchers have explored the

use of distributed data mining algorithms for informatiottraction from Grids. Talia and
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Skillicorn [146] argue that the Grid offers unique prospeitir mining of large data sets

due to its collaborative storage, bandwidth and computaticesources. Cannataged al.
[29] address general issues in distributed data miningtneGrid. Several interesting on-
going Grid projects involve data mining over the Grid. TheSMInformation Power Grid
[135], Papyrus [14], the Data Grid [41], the Knowledge GB0] are some examples. The
Globus Consortium has developed the open-source Globukifl[6&], to help researchers
with Grid computing. Grid computing is closely related t@p#o-peer computing infras-
tructure in terms of data storage and computing power. Hew@ne basic difference is
the absence of any centralized authority in peer-to-pestenys. Talia and Trunfio [147]
discuss the similarities between Grid and peer-to-peepcimg. We discuss peer-to-peer

data mining in details in Section 2.3.4.

2.3.2 Distributed Stream Mining

The literature of distributed stream mining has seen daumtions from the distributed
data mining community, and the databases community and teewireless sensor net-
works community.

Computation of complex functions over the union of multiglieeams have been stud-
ied widely in the stream mining literature. Gibboetsal. [64] present the idea of doing
coordinated sampling in order to compute simple functiamshsas the total number of
ones in the union of two binary streams. They have developeshesampling strategy to
sample from the two streams and have shown that their sagnglifategy can reduce the
space requirement for such a computation fa(n) to log(n), wheren is the size of the
stream. Their technique can easily be extended to the soemaere there are more than
two streams. The authors also point out that this methoddwvolk even if the stream is
non-binary (with no change in space complexity).

Much work has been done in the area of query processing aibdigtd data streams.
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Chenet al. [31] have developed a system ‘NiagaraCQ’ which allows amsgesontinuous

gueries in large scale systems such as the Internet. In gsténss many of the queries
are similar. So a lot of computation, communication and léSources can be saved by
properly grouping the similar queries. NiagaraCQ achid¢hissgoal by using a grouping
scheme that is incremental. They use an adaptive regroggimgme in order to find the
optimal match between a new query and the group to which teeygghould be placed.
If none of these matches, then a new query group is formed tishquery. The paper
does not talk about reassignment of the existing queriesthe newly formed groups,
rather leaves it as a future work. A different approach hanlkescribed by Olstoet al.
[124]. The distributed model described here has nodes sgstieaming data to a central
node which is responsible for answering the queries. Thear&tlinks near the central
node become a bottleneck as soon as the arrival rate of dadanles too high. In order to
avoid that, the authors propose installing filters whichrretthe data transfer rate from the
individual nodes. Nod® installs a filter of widthiV, of range [Lo, Hp]. Wy is centered
around the most recent value of the objec{Lo, = V — % andHp =V + %). The
node does not send updated/ifis inside the rangd., < V < Hp; otherwise it sends
updates to the central node and recenters the bolindsd . This technique provides
the answers to queries approximately and works in circumssgwhere the exact answers
to the queries are not required. Since in many cases thearseravide the query precision
that is necessary, the filters can be made to work after ge¢ttenbounds based on this user
input.

The sensor network community provides a rich literaturelendata stream mining
algorithms. Since, in many applications, the sensors gotoged in hostile terrains, one
of the most fundamental task aims at developing a genenalefraork for monitoring the
network themselves. [170] presents a general frameworkhfsrand shows how decom-

posable functions like min, max, average, count and sum eatomputed over such an
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architecture. The architecture is highlighted by thredstdbat the authors catligests,

scansanddumps Digestsare the network parameters.@. count of the number of nodes)
that are computed either continuously, periodically orhie évent of a triggerScansare
invoked when theligestsreport a problemd.g. a sudden drop in the number of nodes)
to find out the energy level throughout the network. Thesesteps can guide a network
administrator towards the location of the fault which candebugged using thdumps
(dump all the data of a single or few of the sensors). Furtbeeirthis paper talks about the
distributed computing of some aggregate functions (meax, gount etc.). Since all these
functions are decomposable, the advantage is in-netwateggtion of partial results up
a tree overlay. The leaf does not need to send all its dateetootht and in this way vital
savings can be done in terms of communication. The majoreranttough is maintain-
ing this tree structure in such a dynamic environment. Atgs technique would fail for
numerous non-decomposable functieng. median, quantile etc.

The above algorithm describes a way of monitoring the statiise sensor network
itself. There are many data mining problems that need to deeaded in the sensor net-
work scenario. Such an algorithm for multi-target clasatfmn in sensor networks has
been developed by Koteclat al. [94] Each node makes local decisions and these de-
cisions are forwarded to a single node which acts as the neamaggle. The maximum
number of targets is known apriori, although the exact nunolbéargets is not known in
advance. Nodes that are sufficiently apart are expecteatidarindependent feature vec-
tors for the same target which can strengthen the globasidecmaking. Moreover, for
an optimal classifier, the number of decisions increasesrexgtially with the number of
targets. Hence the authors propose the use of sub-optimealriclassifiers. Through real
life experiments they show that their sub-optimal classfgerform as well as the optimal
classifier under mild assumptions. This makes such a schetraet&e for low power, low

bandwidth environments.
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Frequent items mining in distributed streams is an actiea af research. There are

many variants of the problem that has been proposed in #ratitre. Interested readers
are referred to [110] for a description. To give a broad dediniof the problem, there
arem streamsS;, Sy, .., S,,. Each stream consists of items with time stamps such as
dir, t;1 >, < djo,tip >, €tc. LetS be the sequence preserving union of all the streams. If
an item: € S has a countount(i) (the count may be evaluated by an exponential decay
weighting scheme), the task is to output an estimﬁu‘ﬁ(i) of count(i) whose frequency
exceeds a certain threshold. Each node maintains a pre¢igieshold and outputs only
those items exceeding the precision threshold. As two mwdreases, the threshold can
be set to very low 0) or very high & 1). In the first case, all the intermediate nodes
will send everything without pruning resulting in a messagplosion at the root. In the
second case, the intermediate nodes will send a low numb&m$ and hence no more
pruning would be possible at the intermediate nodes. Sordgmgion selection is crucial
for such an algorithm to produce meaningful results with mmmunication overhead.
The paper presents a number of ways to select the precisioaesvior different scenarios

of load minimization.

2.3.3 Data Mining in Ad-hoc Networks

Ad-hoc networks, as the name suggests, consists of a ¢oheaftlight-weight (pos-
sibly mobile) battery-powered sensors capable of comnatinig via wireless links. Cur-
rently such networks are mainly used for data collectiomflostile and uninhabited en-
vironments such as war fronts, deep seas, volcanos, owtee sand safety critical equip-
ments. The data is usually collected in an offline fashion strigped to the base station
using wired or wireless sensor network. However, with tr@ifaration of network infras-
tructure and low maintenance cost, it seems that the nexdrggon of sensor nodes will

be able to communicate in an peer-to-peer fashion using tredess ad-hoc links. It is
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generally agreed upon that for a sensor, the majority of thveep is wasted in commu-

nicating with its neighbors. Therefore, these ad-hoc nets/éorm an ideal testbed for
communication-efficient distributed data mining algamth Note that in such networks,
one also needs to minimize the computations at each sengmderve battery power. De-
tails about information processing in sensor networks eafohnd in the book by Zhao
and Guibas [169].

Since data collection is communication intensive, manyilgms have been pro-
posed to reduce the amount of data collected: LEACH, LEACHHEACH-F [74,75],
and PEGASIS [102] are some examples. Monitoring applioatfor wireless sensor and
ad-hoc networks include intrusion detection by Radivagaal. [138], anomaly detec-
tion by Palpanagt al. [130] and Branchet al. [28], and expectation maximization and
target tracking by Gu [68] and Nowak [122]. Rabbat and NowEd6] present an algo-
rithm for optimization in sensor and ad-hoc networks. Gvesd et al. [66] present a
general framework for computing theapproximate quantiles and median of the sensor
data. Since these statistics are not decomposable andvadthey make the aggregates
“quasi’-decomposable and thereby achieve excellent tedum communication cost per
node.

Optimal node placement in sensor networks is an other aateseof research. Krause
et al. [95] developed a technique in which optimal sensor placeheads to maximization
of information and minimization of communication cost. @siiet al. [61] present a
technique for logical clustering of the sensors for redgdime cost of data transfer and
computation. Several other techniques for sensor nodéecing are also presented in the

literature such as [33, 165].
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2.3.4 Peer-to-Peer Data Mining

Peer-to-peer (P2P) networks are becoming increasinglylpofor different applica-
tions that go beyond downloading music without paying foSibcial network applications,
search and information retrieval, file storage, and cedamsor network applications are
examples of popular P2P applications [128]. In many cakesjddes or peers in such P2P
networks are loosely coupled with no shared memory and nchsgnization. In general,
P2P networks can be viewed as a massive network of autonamdes with no central ad-
ministrator site monitoring their activities. Therefodata mining in P2P networks requires
a different genre of algorithms which are highly scalabld eammunication efficient. In
this section we discuss some techniques for distributeal mhating in P2P environments
and then discuss some desired properties of P2P data migimgtlams.

P2P data mining is a comparatively new field of research. Rbceseveral data
mining algorithms have been proposed in the literature ftberént mining tasks. These
algorithms are either approximate or exact. Dattal. [42] present an overview of this
topic.

Probabilistic approximation techniques sometimes relgampling either the data or
the network nodes. Examples include clustering algoritdescribed in [16] and [43].
Gossip-based algorithms rely on the properties of randotksiem graphs to provide esti-
mates of various data statistics. Kengieal. [91] and Boydet al. [26] have put forward
important theories for development of gossip based algoist Deterministic approxima-
tion techniques transform the P2P data mining problem into@imization problem and
look for optimal results in the sometimes intractable seamace using mathematical ap-
proximation. One such approximation is the variationalragpnation technique proposed
by Jordan and Jaakkola [81, 84]. Mukherjee and Kargupta][éti&nded the variational
approximation techniques for distributed inferencingensor networks.

Exact algorithms form an exciting paradigm of computatidreveby the result gen-
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erated by the distributed algorithm is exactly the same astenario where all the peers

had been given all the data. Thus, contrary to approximatentques, these algorithms
produce the correct result every time they are executedctEgorithms can be designed
using flooding, convergecast or the more communicationieffidocal algorithms. Local
algorithms for P2P data mining include the majority votinglaassociation rule mining
protocol developed by Wolff and Schuster [161], multivegigegression [22], decision tree
induction [24], eigen monitoring [38J-facility location [96], meta-classification [108],
distributed stream mining [159] and expectation maxindaaf23].

From the above discussion it is evident that not all typeslgdérghms are suitable
for P2P applications. Next, we identify and discuss centi@sirable features of P2P algo-

rithms:

1. Communication efficiency: Distributed data mining algorithms are developed to
avoid centralization of the data. Therefore, it is impott#at these algorithms pro-
vide excellent performance in terms of the communicatiauired for computing
the results from multiple data sources. There exist differeetrics for measuring
the communication efficiency of a distributed algorithm. mhher of messages per
node of the communication network and the size of the medsdgges are exam-
ples of such metrics. The definition of local algorithms gemrted in [39] provides a
novel way of deciding whether a distributed data mining atgm is communication

efficient based on these metrics.

2. Asynchronism: In asynchronous algorithms there does not exist a globaésys
clock requiring the computations to be performed in a serighrallel fashion across
the different sites containing the data. In other wordstehe no time dependence
across sites for performing their computations. This is@rédble property for dis-
tributed data mining algorithms since real life network#esufrom connection la-

tency and node failures making synchronism requiremengsaatical.
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3. Scalability: Scalability of a distributed data mining algorithm says heell the al-

gorithm scales with respect to the different independerarpaters such as the size of
the data and the number of data sites. Usually, communicefiiwient asynchronous

algorithms scale well with increasing values of these irtelent parameters.

4. Privacy and security: Since distributed data mining builds a global model by shar-
ing data or knowledge from independent sites, data privaeyMery important issue

that need to be addressed.

This dissertation highlights some of the open problems ivapy preserving dis-
tributed data mining and proposes a solution concept fodlranthe user’s privacy re-

quirements in the context of different distributed dataingrapplications.
2.3.5 Privacy Preserving Distributed Data Mining
Since this dissertation deals with privacy preserving @dlgms in distributed environ-

ments, we dedicate the next few sections on a thorough diseusn this topic.

2.4 Privacy Preserving Data Mining

The area of privacy preserving data mining has been exteyswdied by the data
mining community. In this discussion, we classify privagggerving data mining algo-

rithms into three categories:

1. Data distortion based privacy: These algorithms aim at distorting the original pri-

vate data, when released, do not divulge any individuatyidiable information.

2. Cryptography based privacy: Cryptographic protocols are called private when
their execution does not reveal any additional informaabout the involved par-

ties’ data, other than what is computed as a result of the@pobexecution.
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3. Output perturbation based privacy: Output perturbation techniques discuss pri-

vacy with respect to the information released as a resultuefyjng a statistical

database by some external entity.

Privacy preserving data mining as a field has been hugelyeinéled by the research
in statistical disclosure control. In this section, we gavbrief overview of the statistical
disclosure control literature before delving into the diggion of the individual privacy

preserving data mining techniques.

Statistical Disclosure Control Statistical disclosure control is a field of research
that concentrates on how to provide summary statisticadrindtion on a statistical
database without disclosing individual’s confidentialadafhe privacy issues in such a
scenario occur when the summary statistics are computdueatata of very few individu-
als or when the data of most individuals in the database argimhl. Adam and Wortmann
[2] provide an extensive review of the security control noeth for statistical databases.
Statistical disclosure control approaches suggesteckititdrature are classified into four
general groups: conceptual, query restriction, outputupeation and data perturbation.
Two models are based on the conceptual approach for diselosatrol. The conceptual
model [34] provides a framework for investigating the ségudrom the development of the
schema to the implementation at the data-model level. Titiedanodel [49] constitutes a
framework for data represented in a tabular form at diffelerels of aggregation. Disclo-
sure control methods that are based on the query-restriapproach provide protection
through the following measures [48]: restricting the qussy size, controlling the overlap
among successive queries and making cells of small sizeesaible to users in the tabular
data representation. The data perturbation approachdintes noise into the database and
transforms it into a different representation. The methuoaised on the data perturbation

techniques either are probability distribution based adigata perturbation based. In the
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former, a database is considered to be a sample from a pmpweith a given probabil-

ity distribution and the security control method repladesadriginal database with another
sample from the same population or by the distributionfitskel the latter, the values of
the attributes in the database are perturbed and replatae la@swering any queries. The
output perturbation approach perturbs the answer to usgreguwhile leaving the data in
the database unchanged. The disclosure control techrscgaad to be secure if the vari-
ance of the estimatd; of an attribute4, in the database after one or more gueries to the
database is bounded byvhere the constantis a parameter set by the database owner or
administrator.

Addressing privacy issues in data mining require more stighaited techniques since
data mining results from algorithms such as clusteringssifecation, and association rule
mining go beyond summary statistics. However, many pddalles of research in privacy
preserving data mining are very similar to the statistiéstidsure control approaches, as
will be noticed in the next few sections where we describedtita distortion based, cryp-

tography based and output perturbation based privacypregedata mining techniques.

2.5 Data Distortion based Privacy

In data distortion techniques, some transformation is lysagplied on the data for
privacy preservation. Examples of such transformationkige adding noise to the data
or suppressing certain values and reducing the granulairitye data. It should be noted
here that there is a tradeoff between the privacy achievedrenutility of the data mining
results. We divide the literature on data distortion bas@eapy into the following cate-
gories: (i) data perturbation, (ii) data microaggregati@i data swapping, and (iv) data

anonymization. We discuss each of these techniques in defita next few sections.
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2.5.1 Data Perturbation

The data distortion based privacy preservation technigimest modifying the private
data values by adding additive or multiplicative noise drdmm a probability distribution
to the data values. Quantification of privacy is a very imgotaspect in understanding the
effectiveness of a technique as a privacy preserving methbere are several quantifica-
tions of privacy in the literature of data perturbation lthpavacy preserving data mining.
Agrawal and Srikant [8] said that if the real value can benesated withc% confidence
to be in the rangén, as], then the interval widtla4, as) is the amount of privacy pro-
tection provided by the randomization algorithm. Howetbis definition does not take
into account the initial data distribution. An alternatdefinition proposed in [6] says that
privacy can be quantified by the expressf'), whereh(A) is the differential entropy of
arandom variablel since it takes into account the inherent uncertainty in tita galue. A
number of quantification issues in the measurement of pribaeaches has also been dis-
cussed by Evfimievski [55]. In the next two sections we disadditive and multiplicative

perturbation in details.

Additive Perturbation In additive perturbation, there is a private data Bet=
dy,ds, . ..d, and to everyl; € D random noise; is added, where; is drawn from a known
distribution such as a uniform distribution or a Gaussiastritiution. The modified data
setD’ = dy +r,dy+79,...d, + 1, is released to the data miner. The data miner uses
an expectation maximization algorithm to extract the valakd; from d; + r;. Agrawal
and Aggarwal [6] prove that this expectation maximizati@mwerges to the maximum
likelihood estimate of the original distribution. This domization method has been used
for a number of data mining tasks such as privacy presenfasgitication [8], association

rule mining [56], [139], collaborative filtering [134] andheer applications such as OLAP
[9].
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Karguptaet al. [88] proposed a random matrix based spectral filtering élgorfor

reconstructing the private data from additively perturbath, thereby questioning the pri-
vacy guarantees provided by additive perturbation. L&e and Wu [69] provided the-
oretical bounds on the reconstruction error from spectiteriing and singular value de-
composition based reconstruction techniques. With thetifigation of the fact that the
reconstruction gets better with higher correlation amdregactual data points, Huareg
al. [78] proposed a modified additive perturbation algorithnevethe random noise added

to the data has similar correlation as the actual data.

Multiplicative Perturbation  To address the privacy issues of additive perturbation
techniques, multiplicative perturbation has been expl@a®an alternative. The two most
common multiplicative perturbation techniques have beemdwed from the statistical
disclosure control literature. In the first method, everfaddement!; of a private database
D = dy,ds,...d, is multiplied by a random number drawn from a truncated Gaunss
distribution with mearu (usually iz = 1) and variances?. In the second method, the
data setD is first transformed by taking a natural logarithm such thatttansformed data
elements are; = In(d;). Then, to each of these transformed data elemgntandom
noiser; is added where; is drawn from a multivariate Gaussian distribution with mea
i = 0 and variances? = cX, where0 < ¢ < 1 andX, is the covariance matrix of
the transformed data elements The data released to the data miner is an exponential of
the noisy transformed datag. D" = exp(z; + 1), exp(zy + 73), ..., exp(z, + ry). Both
these multiplicative transformations preserve mean amidwvee of the real data, but fail
to preserve Euclidean distance or inner product. This wbaldn issue for most privacy
preserving data mining applications. To address this prabLiu et al. proposed [105]

a random projection based multiplicative perturbatiomtegue that preserves distance on
an average. If there exists a private databRse,,, the technique produces a perturbed

databaseD;mn such thatD'nxm = Roxn X D,xm, WhereR,,.,, is an x n orthogonal
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matrix. The perturbed databasg . is released to the data miner. [123], [32], and [117]

present some other distance preserving multiplicativeupgeation based privacy preserving
algorithms. Liuet al. [104] analyze the privacy of their orthogonal projectioséd privacy
algorithms with respect to principal component analyssebaattacks.

The advantage of randomization based data perturbatidmitpees is that privacy
of the data can be preserved during the data collection psogiace the amount of noise
to be added to each data record is independent of the latenalt®ns. This advantage
leads to a weakness of randomization based privacy pregervaSince the amount of
noise added is not correlated to the data distribution, givnbe difficult to mask outliers.
Also, randomization techniques do not take into accoumirmowledge about a database
for privacy analyses which lead to known vulnerabilitiestteese techniques discussed in

Section 2.5.5.

2.5.2 Data Microaggregation

To obtain microaggregates in a data set withecords, these are combined to form
g groups each of size at leakt For each attribute, the average value over each group
is computed and is used to replace each of the original agdraglues. It is a popular
approach for protecting the privacy of the confidentialiladiies in statistical databases.
For univariate confidentiality in attributes, the confidahattribute is sorted for creating
the groups [71]. For multivariate microaggregation, coeiihl attributes are grouped
using a clustering technique [50]. The optimabartition, from the information loss point
of view, is defined to be the one that maximizes homogeneitlgiwa group: the higher
that homogeneity, the lower the information loss, sinceraaggregation replaces values
in a group by the group centroid. Obviously, in the extrenseaz all identical values, this

can lead to a privacy breach.
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2.5.3 Data Swapping

Other than adding or multiplying noise to the data, anotipg@re@ach to preserve pri-
vacy is to swap data values across records in a databas&nalsa as data swapping [59].
This method preserves the marginals of individual attebudf the data and is therefore,
very useful for privacy preserving aggregate computatidhss technique does not follow
the general principle of randomization which allows theueabf a record to be perturbed
independently of the other records. Therefore, this tepmican be used in combination
with other frameworks, as long as the swapping process igmesto preserve the defini-

tions of privacy for that model.

2.5.4 Data Anonymization

Data anonymization is a privacy preserving technique aiing some of the limita-
tions of randomization. In anonymization algorithms, tmarmlarity of representation is
lowered by generalization and suppression so that indaligidentifiable information is
absent in the released database. In generalization, tileutdtvalues are generalized to
a range of acceptable values while in suppression the @itrialue is deleted from the
database to avoid identification of individuals. The mogiydar anonymization based pri-
vacy model called thé-anonymity was proposed by Sweeney [146Janonymity states
that each release of data must be such that every combinaftieaues of released at-
tributes that are externally available and, thereforeilabi for linking attacks on privacy,
can be indistinctly matched to at legstespondents. The basic approach proposed in [145]
is a greedy solution using domain generalization hierasbf quasi-identifiers to builk-
anonymous tables. Subsequently, there has been extease@ch on thé&-anonymity
model of privacy. Meyerson and Williams [115] does a comijeanalysis of thek-
anonymization problem and states that optifanonymity is an NP hard problem. The

optimality is based on a cost metric defined on the qualitynefgrivacy achieved versus
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the utility of the released data. A number of heuristic mdthbave been proposed for

optimally £-anonymizing a data set. One such method proposed by Bagaiégrawal
[19] attempts to bound the running time of the search algoriby presetting a desired
quality of the output, which might not be the optimal qualityhe algorithm assigns a
penalty to each data record based on how many records inghsformed data set are
indistinguishable from it. If an unsuppressed record falis an induced equivalence class
of sizej, that record is assigned a penalty;jofif a record is suppressed, it is assigned a

penalty of| D

, Where| D| denotes the size of the data g&tlf ¢ denotes the anonymization
function for a giverk, then mathematically, the algorithm optimizes the obyectunction
Cost(g, k, D) = Y uper psk 1B+ vmer iz < DI El, whereE is the set of equivalence
classes of records ifv. The first sum computes penalties for each non-suppressedire
the second for suppressed records. Other heuristic seaechhigues such as simulated
annealing [157] and genetic algorithm [79] have also beexl tisr optimizing the perfor-
mance of the anonymization algorithm. Xiao and Tao [162$en¢ an interesting variation
of the k-anonymization problem by introducing the concept of peadiaed privacy. In
this approach a person can specify the the level of privachi®or her sensitive values
and is a good fit for distributed data mining scenarios. Jemd) Clifton also proposed a
distributedk-anonymity model [82]. They have developed a secure prbfocachieving
k-anonymity in case of two vertically partitioned data sites

Thek-anonymity model is susceptible to attacks when all theesbf the sensitive at-
tribute in a anonymized group éfrecords are the same (homogeneity attack). Sometimes
even background knowledge on the association between-mleadifiers and sensitive at-
tributes can lead to inferencing of the sensitive attriat@rectly (background knowledge
attack). The technique d@fdiversity [109] has been proposed to address the homdgenei
attack. The main idea behirfediversity is that the anonymization not only maintains in-

distinguishable groups of siZe but also maintains diversity of the values of the sensitive
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attribute within that group. However, this technique, lk@nonymity suffers from the

curse of dimensionality [3].

Another disadvantage of tHediversity method is that it treats all values of a given
attribute in the same way irrespective of its distributiorithe data. This is far from what
happens in a real life data set and background knowledgekatta be used to inference
correctly the values of a sensitive attribute. To addreisstoblem, the-closeness model
[100] has been developed which uses the property that ttendis between the distribution
of the the sensitive attributes within an anonymized grong #hat between the global
distribution of the same attribute should not be differepiiore than a threshold The
inherent weakness of anonymization based privacy preggalgorithms still remains that
although these methods are effective in preventing ideatitin of a record, they are not

always effective in preventing inference of the sensitiakigs of the record.

2.5.5 \Vulnerabilities of Data Distortion Techniques

There has been considerable research in analyzing therabifiges of existing pri-
vacy preserving data mining techniques. Some of theseteffi@ve assumed the role of
an attacker and developed techniques for breaching priwaegtimating the original data
from the perturbed data and any additional available pnmowedge. Additive data per-
turbation attacks use eigen analysis for filtering the mtett data. The idea for techniques
such as PCA [78] is that even after addition of random nolse correlation structure in
the original data can be estimated with considerable acguihis then leads to removal
of the noise in such a way that it fits the aggregate correlatinicture of the data. It has
been shown that such noise removal results in predictioralfes which are fairly close
to their original values. Kargupta et al. [88] use resultsrfrmatrix perturbation theory
and spectral analysis of large random matrices to propos$eiany technique for random

additive noise. They show that when the variance of noisevisdnd the original data
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has correlated components, then spectral filtering of thartance matrix can recover the

original data with considerable accuracy. A second kinddveasarial attack uses pub-
licly available information. Assuming that the distribwti of the perturbation is known, a
maximum likelihood fit of the potential perturbation to a fialy available data creates a
privacy breach. The higher the log-likelihood fit, the gezahe probability that the public
record corresponds to a private data record.

For multiplicative perturbation, privacy breach is in gealenore difficult if the at-
tacker does not have prior knowledge of the data. Howeveh same prior knowledge,
two kinds of attacks are possible [104]. In the known inputpoit attack, the adversary
knows some linearly independent collection of records, @it mapping to the corre-
sponding perturbed version and linear algebra techniqaede used to reverse-engineer
the nature of the privacy preserving transformation. Fer khown sample attack, the
adversary has a collection of independent samples fromrigaal data distribution and
assumes that the perturbation matrix is orthogonal. Usiisglie can replicate the behavior
of the original data using eigen analysis techniques.

Data anonymization techniques are prone to differentksteéithe adversary has back-
ground knowledge about the private data set. If all valuea sénsitive attribute in an
anonymized data set are the same, then the privacy of thaigemgtribute is breached.
Such an attack on anonymization is called the homogendigla{55]. In background
knowledge based attacks of data anonymization technitheesdversary can use an asso-
ciation between one or more quasi-identifier attributes Wit sensitive attribute in order
to narrow down possible values of the sensitive field [109].

In the next section we discuss a different paradigm of pyiyaeserving data mining,
viz. cryptography based privacy preservation. This is mosliegige for distributed data
mining applications since it deals with privacy preserv(sgcure) function computation

on different parties’ private information.
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2.6 Cryptography based Privacy
Cryptography is the practice and study of hiding informati®he broad approach to
cryptographic methods can be listed as either data enoryptisecure multi-party compu-
tations. There is a considerable overlap between disatbpitivacy preserving data mining
and secure multi-party computation since both tend to caenfunctions over inputs pro-

vided by multiple participants without actually sharing ihputs with one another.

2.6.1 Secure Multi-party Computation

Privacy preserving distributed data mining requires midtparties to collaborate for
computing joint functions on their privately held data vehiroviding a privacy guarantee
that the participants would not learn any information beamat is implied by the output
of the function computation. This is what even secure npdtity computation deals with.
If there aren parties involved in a distributed data mining protocol whérei-th party
owns datar;, then secure multi-party computation is the approach topeaenthe function
f on all parties’ dataf (z1, 2, ..., %,) = (y1,¥2,---,¥Yn), SUCh that party only gets to
know y; and nothing else. An example of such a computation is Yadlgomaire problem
[164]. The problem description is as follows: two milliores meet in the street and want
to find out who is wealthier without having to reveal theiruwadtfortune to each other.
The function computed in this case is a simple comparisowdst two numbers. If the
result is that the first millionaire is wealthier, then he Wsahat, but this should be all the

information he learns about the other guy and not the exdgé\a his assets.

Adversary Model: The privacy threats in this system arise from participariie sheat,
also known as adversaries. The secure multi-party compatéterature defines
two types of adversaries. Semi-honest adversaries (hboesurious adversaries)
who follow the protocol, but try to infer additional informi@n about other parties’

data during the protocol execution. The malicious advgrsaondel assumes that
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the adversary can deviate from the protocol and send migigadessages to other

parties to infer secret information about other partiesad# is understandable that
it is easier to design a solution that is secure against femest adversaries than

against malicious adversaries.

Privacy: There exists different definitions of privacy (called setyufor cryptography
based guarantees) for both the secure computation modsls AScomputation is
called secure if the information obtained by any party caolt@ained through only
its own input and output. An alternative definition is basedlee hypothetical exis-
tence of a trusted third party. All parties send their peviaputs to the trusted party,
who computes the function and sends the appropriate rdsdtsto all the parties.
We say a protocol is secure or private if anything that an esdwg can learn in the
actual world can also be learned in the ideal world. Protsatisfying this defini-
tion prevent an adversary from gaining any extra advantadfes actual world over

what it could have gained in an ideal world.

Oblivious Transfer Protocol: A key building-block for many kinds of secure function
evaluations is the 1 out of 2 oblivious-transfer protocdl,[637] which involves two
parties: a sender, and a receiver. The sender’s input isrgair;) and the re-
ceiver’s input is a bib € 0,1 denoting the index of,. At the end of the protocol
the receiver learns, and nothing else, and the sender learns nothing. There can be
many ways for implementing the oblivious transfer protohe simple way is for
the receiver to generate two random public kelyg,and K, but to know only the
decryption key forK,. Using the public keys the sender can encrigpt z;) and
send it back to the receiver who can decrypt only one of thgmsing the decryp-
tion key. Oblivious transfer is sufficient for secure congtian in the sense that,
given an implementation of oblivious transfer, it is po$sito securely evaluate any

polynomial-time computable function without any addi@bprimitive. Oblivious
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transfer can be used to design secure protocols for bothisengist and malicious

adversaries and there exist generalizations of the 1 outodliZious protocol to 1
out of N oblivious protocol in the literature for designinffi@ent secure function

computations.

Circuit Evaluation: Yao [164] presents a constant round protocol for secure atemp
tion of probabilistic polynomial time functions by expressthe functions as combi-
natorial circuits with gates defined over some fixed base.pbhgomial size circuit
consists of AND and XOR gates and the input bits are transthitirough wires
connecting these gates. The protocol requires one of theepap generate an en-
crypted or “garbled” circuit representing the function te évaluatedf, and send
it to the other party. The receiver can then reconstruct #iees from the garbled
representation using a 1 out of 2 oblivious transfer prdtotdsing this informa-
tion the receiver can now compute the output of the circunidalf. Although Yaos
generic circuit evaluation method is secure, it poses Bagmt computational prob-
lems since the computational complexity of the protocobisghly linear in relation
to the size of the input and the communication complexityniedr in relation to the
size of the circuit. Given the size and computational costaih mining problems,
representing algorithms as a boolean circuit results iealigtically large circuits.
Therefore, this technique is not used usually for distedytrivacy preserving data

mining problems.

A number of secure multiparty computation protocols havenedopted for different
privacy preserving data mining tasks till date. A classichpem which is often used as
a primitive for many other problems in data mining is that omputing the scalar dot-
product in a distributed environment and Du and Atallah [8&$cribe a systematic set
of methods for transforming a number of privacy preserviatadnining problems into

secure inner product computation. Cliftetal. [36] describe another set of important
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secure data mining primitives such as sum computation,réehusize of set intersection,

and scalar product. A number of secure data mining appdicathave been developed
using the primitives mentioned above. For the horizont& gartition scenario, examples
include secure classification [101], secure clustering #/@ association rule mining [85].
There exists these solutions even for the vertical datatiparscenario [150], [151], [152],
[166]. Secure multi-party computation is very relevanthe tine of research involving
privacy reserving data mining in distributed environmesitge it requires multiple data
owners to collaborate in computing a function in a privagygerving manner. The secure
sum computation problem has been discussed in details ipt&héin the context of this

dissertation.

2.6.2 Data Encryption

An alternative to secure multi-party computation is thegess of data encryption
where secret data (plaintext) is transformed using an #éhgor(cipher) to a format (ci-
phertext) that is unreadable to everyone except those wmdress to some specialized
information (key) used for decrypting it. A public-key ctggysteniP(G, E, D) is a col-
lection of probabilistic polynomial time algorithms forkegeneration, encryption and de-
cryption. The key generation algorithhproduces a private keyk and public keyk with
specified key size. Anybody can encrypt a message with thiecgdy, but only the holder
of a private key can actually decrypt the message and reathi. encryption algorithm
E take as an input a plaintext, a random value and a public keyk and outputs the
corresponding ciphertext,,(m, ). The decryption algorithnD takes as an input a ci-
phertexic and a private keyk (corresponding to the public key:) and outputs a plaintext
Dgi(c). Itis required thatDy,(E,;(m,r)) = m. The plaintext is usually assumed to be
from Z,,, wherey is the product of two large primes. The integers moduldenotedZ,,,

is the set of (equivalence classes of) intedéxd, ..., — 1}. Addition, subtraction, and
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multiplication inZ,, are performed modulp.

Homomorphic Encryption A public-key cryptosystem is homomorphic when one
can perform a specific algebraic operation on the plaintgxpérforming a (possibly
different) algebraic operation on the ciphertext. For eplnfor the Paillier public-
key cryptosystem [129)mi, ma, 71,79 € Z,, Dgs(Epr(ma, r1)Es(ma,r2) modpu?) =
my + mo mody;. This feature allows a party to add or multiply plaintext yirdy simple
computations with ciphertext, without having the secrat k&n application of Paillier's

homomorphic encryption scheme for secure scalar prodaiscsissed in Chapter 5.

Commutative Encryption A cryptosystem is called commutative when the com-
position of the encryption with two different keys is the saimrespective of the order
of encryption. This means that the encryption algoritlimtaking as input plaintext
m for two different encryption keysk, andpk, will produce the same ciphertexte.
Eoiy [Epk,(Mm)] = Epk,[Epk, (m)]. The encryption function is such that the ciphertext pro-
duced from two different plaintexts is never the same. Adsmryption of the ciphertext for
retrieving the plaintext takes polynomial time. Based omuouwtative encryption, Agrawal

et al. [7] developed several secure protocols for set iat#ien, equijoin, intersection size,

and equijoin size. We refer interested readers to their i@mrknore details.

2.6.3 Disadvantages of Cryptography based Techniques

Although cryptography based privacy preserving techrsgure most suitable for dis-
tributed data mining applications, these techniques aradopted frequently in practice
because of the high cost involved in doing secure compuistidost of these protocols
require a completely synchronous distributed computingrenment which is not realistic
for large P2P systems. Also, cryptography based data miogpcols model parties as

either honest, semi-honest or malicious. However, in iBahtost parties can be assumed
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to be ‘rational’ instead, and game theoretic analysis cegalénteresting characteristics of

these algorithms leading to mechanism design for optimatiogol design. By adjusting
the size of the keys used in the protocols, the trade off batvpeivacy and efficiency can
be modulated. However, unlike perturbation based teclasigoryptographic techniques
do not allow easy trade-off between privacy and accuracyhibdissertation, we aim at

making privacy preserving data mining more adaptable tblifeaequirements.

2.7 Output Perturbation

The cryptography based privacy preservation techniquestprovide any guarantee
that the outcome of the data mining analysis does not revsainalividually identifiable
information and even a secure protocol can lead to compexhgavacy. Output perturba-
tion based privacy models are an alternative solution wploblem, where an individual’s
data is included in an analysis only if does not change thdtrégso much’. Like data per-
turbation based techniques, even this line of researchthasats in the statistical disclo-
sure control literature and discusses the privacy of assitzdl databas® = d;, ds, ..., d,
by constructing output perturbation mechanisms [2]. Umnlike anonymization literature,
output perturbation based techniques, do not identify iipetata attributes inD to be
more privacy sensitive than others. Privacy is achieved dfinohg algorithmic mecha-
nisms called sanitizers that work by perturbing the outfat guery functionf (D) on the
database. Mathematically, the sanitizer is defineBaas(D, f) = f(D) + Y whereY is
random noise following a probability distribution. A samér is private if an adversary can
gain no significant knowledge about an individual in the Hate beyond what he or she
could have learned by interacting with a similar (neighltafabase where that individual
entry is arbitrarily modified, or removed. The most populavgcy model in the output
perturbation literature is thedifferential privacy model [52] which states that a sarti

San is e-private if for all neighbor statistical databasBs D' (databases differing only
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in one entry) and for all subsets of possible answErghe ratio of Pr[San(D) € 7|

to Pr[San(D’) € 7] is bounded by. The advantage of this privacy model over ex-
isting models is that it does not depend on a specific teclenagquwutput format. Also,
e-privacy is not a property of a specific outcome of a sanitiatnechanism, but of the
mechanism itself. It is possible to extend this privacy gnége even when the adversary
poses a series of adaptive questions to the database byyimngdihe amount of noise
added to each query result. The amount of noise to be addée tguery result for con-
structing the sanitizer is proportional to the global sewisy of the query function [53].
For Laplacian noise, the sanitizer on datab&séor query functionf can be written as
San(D, f) = f(z) + (Y1,Ys,...,Y,), where(Y3,Ys,...,Y,) are i.i.d random variables
from Lap(GS;/¢), andGS; is the global sensitivity of the query functigh If the noise

is correlated with the instande, then special techniques [121] need to be applied to smooth
sensitivity of the locally sensitive function, to preveaakage of information.

McSherry and Talwar proposed a generic technique for coctstig e-private sanitiz-
ers by attaching a score to the result of a query depending guuality. This improves the
utility of the e-private query results. Bluret al. [25] shows how to compute singular value
decompositions, find the ID3 decision tree, carry out k-rsedinsterings, learn association
rules, and learn anything learnable in the statisticaliggdearning model using only rel-
atively small number of counting queries. This lays the b&simework for adapting the
e-differential privacy model for standard data mining tasBaraket al. [17] extends the
privacy model for contingency tables and OLAP cubes.

Recently, Xiao and Tao [163] showed that the differentiatgmy model suffers from
two major drawbacks. Finding the global sensitivity of theery function is an NP-hard
problem and therefore, the model requires prohibitive astemjpon overhead. They also
proved that this model of privacy can answer only a limitethber of queries, after which

the database has to be shut down to prevent leakage of pirNateation. In this disser-
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tation, we adapt the differential privacy model to fit a disited data mining problem.

2.8 Summary

In this chapter we have first presented an overview of thealitkee on distributed data
mining algorithms. We have talked about the desired prageedf these algorithms that
would make them useful for large administration-free emwments such as P2P networks.
We have then described the literature on privacy presedatg mining. We have classified
existing literature on privacy preserving data mining ititcee types: (i) data perturbation
based privacy preservation, (ii) cryptographic privacggarvation, and (iii) output per-
turbation based privacy preservation. We have given a bovadview on each of these
techniques. For details on the state of the art of the fiekdrésted readers can refer to
the book by Aggarwal and Yu [5]. Starting from the next chapies focus on describing
the research contributions of this dissertation, where s hiaken some of the existing
privacy preservation techniques and modified them to fit €ggiirements of a distributed

data mining environment.
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Chapter 3

MULTI-OBJECTIVE OPTIMIZATION BASED
PERSONALIZED PRIVACY

3.1 Introduction

Proliferation of communication technologies and reduciio storage costs over the
past decade have led to the emergence of several distrigygezins. Gnutella, BitTorrents,
e-Mule, Kazaa, and Freenet are some examples which can gerlbe viewed as isolated
systems of file storage or data transfer. Researchers inagtedpcade have pointed out
the value of information hidden in the data in these systehh@wever, mining of such
data naturally requires satisfying the privacy requiretseai the users. Also, in multi-
party environments such as the Internet, each user haseaetiffrequirement of privacy.
Binding all users to one common model of privacy is a not stialscenario; personalized
privacy seems to be a more attractive solution.

Research in privacy has shown that the privacy guarantex igfistic; it often comes
with its own assumptions and drawbacks [52, 109, 145]. Farmgte, consider the widely
usedk-anonymity privacy model [145] in which one uses the cona#puppression or
generalization to hide a sensitive tuple amang 1 other tuples. But such privacy comes
at a cost — loss in data accuracy and the cost involved in peifig the anonymization.

Thus, privacy preserving techniques can be posed as optinzof multiple objectives,
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commonly referred to as multi-objective optimization. Tihdividual objective functions

can be conflicting.e. improving one degrades the other. For example, in the peEtion
based privacy model, increasing the noise in the data peewetter privacy, but degrades
the accuracy of the results.

When the data is distributed across multiple parties, plingi privacy becomes even
more challenging. An important shortcoming of existingvpay preserving distributed
data mining applications is the definition of a monolithio’zpcy model for all participants.
Since each participant has its own requirement for privany the cost it is willing to
bear for it, a single privacy model is not likely to work for &tBrogenous computing
environment such as the Internet.

In this chapter we present a framework for personalizedapyivbased on the concept
of multi-objective optimization. We frame the privacy ptelm as a multi-objective opti-
mization problem where each user tries to find an optimaltgmiween two possibly con-
flicting objectives — (1) maximizing the data privacy or mmmzing the threat of privacy
breach, and (2) minimizing the cost associated with theaggi\guarantee. Solution to this
multi-objective optimization problem isRaretooptimal solution set [47] — none of which
are “better” than the others. Any solution in this set mays$athe unique privacy and cost
requirements of a node, thereby providing personalizedhpyi This chapter attempts to
provide personalized privacy guarantees to nodes in adggreous collaborative comput-
ing environment by solving the multi-objective optimizatiin a communication-efficient
distributed manner. The global solution found by our dmtred algorithm is guaranteed
to be in theParetooptimal set. In this context we also discuss an alternatvwadlation of
the multi-objective optimization problem that providesaptimal cost-privacy model for
the overall system and not for individual participants.dHy) we end this chapter with an

illustration of our framework of personalized privacy ugthee-differential privacy model.



3.2 Optimization in Privacy *
Privacy preserving data mining is a relatively new field afe@rch and the pioneering
works in this area has shown that in most cases, privacy catmgegost. Sometimes this
cost is in terms of the amount of excess computation thatsveele performed to ensure
privacy and sometimes it is additional communication fause multi-party computation
techniques. Other than requirement of additional reseum@vacy also comes at the cost
of utility in many situations. The quality of the data minirgsults is compromised due to
different kinds of perturbation or anonymization techr@gu Therefore, privacy preserva-
tion for data mining can be thought of as an optimization fgwb The problem of utility
based privacy preserving data mining was first studied fiyny Kifer [93] where the
problem of dimensionality in the process of anonymizingdat privacy preservation was
addressed by separately publishing marginal tables congpattributes which have util-
ity, but were not as good in terms of privacy preservatione &pproach is based on the
idea that the generalization performed on the marginaésabhd the actual tables do not
need to be the same. As discussed in Chapter 2, the probleptinfab k-anonymization
is NP-hard [19]. The optimality is based on a cost metric @efion the quality of the
privacy achieved versus the utility of the released data. ufloer of heuristic methods
have been proposed to find the optimal anonymization of thengilata. One such method
proposed by Bayardo and Agrawal [19] attempts to bound theing time of the search
algorithm by presetting a desired quality of the output, ashimight not be the optimal
quality. The algorithm assigns a penalty to each data rdeasdd on how many records in
the transformed data set are indistinguishable from itnliasuppressed record falls into
an induced equivalence class of sizehat record is assigned a penalty;joflf a record
is suppressed, it is assigned a penalty/of where|D| denotes the size of the data g&t

If ¢ denotes the anonymization function for a giverthen mathematically, the algorithm
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optimizes the objective function

Cost(g.k,D)= > |6+ Y_ |Dlxl.
Vis.t. k| >k Vis.t.|k|<k

wherex is the set of equivalence classe$records inD. The first sum computes penalties
for all non-suppressed records, the second for suppressedds. The utility measure
in this approach is called the generalization height. Otheasures of utility for optimal
anonymization include size of the anonymized group fortdeversity approach [109] and
privacy information loss ratio [155]. For randomizatiorsbd privacy preservation, Zhu
and Liu [171] propose a metric based on the mutual informatietween the randomized
and original data. They propose optimization of this mefvican optimal privacy utility
combination for density estimation tasks on the data.

A different connotation of optimal privacy involves payiatiention to the privacy re-
quirements of individual data owners participating in tledmining task. A condensation
based approach has been proposed in [4] for addressingphacianstraints on the privacy
of data tuples depending on the data owners’ preferencest@dhnique constructs groups
of non-homogeneous size from the data, such that it is gteednhat each record lies in
a group whose size is at least equal to its anonymity levehs&guently, pseudo-data is
generated from each group so as to create a synthetic datélséte same aggregate dis-
tribution as the original data. A comparatively recent workpersonalized privacy based
on k-anonymization has been proposed by Xiao and Tao [162].israfpproach the entire
data set is divided into domains in the form of an ontologgrabh structure and the indi-
viduals can specify the level of privacy required for thesstive attributes by specifying
the node level in the generalization hierarchy. The authorpose a greedy algorithm to

obtain the optimal privacy for different sensitive attribsi depending on the individual’s

the set of tuples which are grouped together due to the anizagion operation
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preference. Although there has been some research in thefawptimization and privacy,

it has never been studied in the light of distributed dataimgin
In this dissertation we present a practical and efficienttewh for achieving person-
alized privacy using a multi-objective optimization framak in distributed data mining

environments.

3.3 Privacy Preserving Distributed Computation Model

Privacy is a social concept and it has different connotation different participants
in distributed data mining applications. Even the requiahof privacy can vary from one
user to another, depending on the data mining applicatidritesensitivity of the private
information. The amount of resources available to a dataeowand its belief about the
adversary’s computing power and background knowledge taigb influence the privacy
expectations. In this dissertation, we propose a multectbje optimization based frame-
work for privacy preserving distributed data mining. Aseuwin Section 3.1, privacy often
comes at a price — both computational and communicationisastolved for achieving
privacy and the quality of the data also gets affected. Ampmal user will try to maxi-
mize both its data privacy and utility while minimizing thest it has to pay for privacy
preservation. Therefore, we can frame the multi-objeciptmization problem as the one

which:
1. maximizes the user’s data privacy at the end of the corntipata
2. minimizes the total cost incurred in the process

In this context, cost may refer to the cost of performing tbmputation, communication
and/or the degradation in quality or utility of the data foining results. For a heteroge-
nous multi-party distributed data mining scenario, eadatterftas an optimization problem,

the components of which are threat to data privacy and thieofak&ta mining. While the
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objective function for each node is the same, the constgr@heach node are different,

depending on its personal preferences. Any multi-partygesi preserving data mining
algorithm should solve this optimization problem in a glbbanse: the outcome of the
optimization problem is a parameter of the privacy presgrdata mining algorithm that
should satisfy both the cost and the privacy requirementohgarticipating individual.
The specific parameter is algorithm and domain-dependehwando not specify it here.
As an example, one might consider the well-studieahonymity [145] model where in-
creasingk increases the privacy while also increases the cost since munber of tuples
need to be anonymized. The optimization problem can be daising the centralized au-
dit based technique where each node sends its constratiiies ¢entralized authority. The
central auditing node can solve the constrained optintngiroblem where the global set
of constraints is the union of the set of all the constraihtee individual nodes. However,
for an asynchronous distributed network, the auditing rezaebecome a performance bot-
tleneck. For thé-anonymity model of privacy in a distributed setting, difat nodes can
end up with different values df depending on the solution of the optimization. The final
privacy preserving data mining algorithm has to be desigmadvay such that it can satisfy
the cost and privacy constraints of all the nodes optimaiythe next section we present
a mathematical framework of the personalized privacy sehbased on multi-objective

optimization.

3.4 Multi-objective Optimization Framework

Multi-objective optimization involves simultaneous optzation of more than one
objective functions. In this section we first formally defimeilti-objective optimization,
show how it can be solved and discuss the solution charattsti Due to the vast literature,
here we present a very brief introduction to this subjederested readers are referred to

the books by Deb [47] and Boyd [27].
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3.4.1 Problem Formulation

Optimization is the task of maximizing or minimizing a reahttion by choosing val-

ues of the variables which define that objective functiontidenatically it can be defined

as,

minimize f(x)
subjectto g(x) >0, (3.1)
h(x) =0,
xl(g) <xz; < xl(“), Vi=1...m
wheref : R™ — R is known as the objective functior, € R™ is am-dimensional input
vector, andy : R — R, h : R™ — R are the constraints. This optimization problem is
known asscalaroptimization since the objective function is a mapping frfh to R.
Multi-objective optimization, also known as multi-criteior multi-attribute optimiza-
tion, is the process of simultaneously optimizing two or enpossibly conflicting objec-
tives subject to certain constraints. Multi-objectiveinptation is found in any situation
where optimal decisions are guided not by a single objebiiNeather by multiple possibly

conflicting objectives. In its general form, it can be matladinally stated as:

minimize f(x) = [fi(x) ... fu(x)]"
subjectto g¢;(x) <0, Vj=1,...,p (3.2)
hi(x) =0, Vk=1,...,q

2 gxigx@, YVi=1...m

)

where there aréd/ scalar objectived; ... fy; with f; : R™ — R, g; andh;, are known

as the constraint functions and each variable also has itsealicit bound betweemy)
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and xﬁ“). The solution to such a multi-objective optimization pel is a vectox* =

{z7,25,...,25} € R™. The bounds restrict the decision variables and hence itatest
thedecision variable spacP.

In this formulation, there ar@/ scalar objective functions. It is assumed that each
objective function needs to be minimized. Note that, any im&ation problem can be
converted to a minimization problem by multiplying it by th¢ duality principal). Mixed
type of objective functions (some maximization and someimiation) can also be han-
dled similarly by converting all of them to the same type. ikalin a single objective
optimization, a multi-objective optimization frameworkassociated with two spaces: (1)
the decision variable spacehich is theR™ space spanned by the inpxt and (2) the
objective space whicis the space spanned by the objective functiér) = z € RM. In
multi-objective optimization, since the objective furtiis a vector of\/ objectives, it is

often referred to agector optimization

Types of Multi-objective Optimizations

Depending on the type of functions, the resulting multiealive optimization can be
classified into several classes. If all the objective fuordiand constraint functions are
linear with respect to the input parameteithe resulting optimization is known agdiaear
multi-objective optimization. If any of these functionsaron-linear with respect te, it
is known asnon-linearmulti-objective optimization. Multi-objective optimizan can be

convex. Before we define convex optimization, we first defimevex functions.

Definition 3.4.1 (Convex function). A functionf : R — R defined on an interval (or

on any convex subset of some vector space) is convex if famengointse andb in its
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domain and any < [0, 1], we have

f(0a+(1=0)b) <6f(a)+ (1—0)f(b)

Geometrically, the above inequality means that given amygaintsa andb lying on
the functionf, the straight line joining them lies completely inside tbadtion. The above
definition is also applicable for multi-variate functiorigere are several tests for convex-
ity. In this dissertation, we will use the second order oplity condition which states that
a function is convex iff the second derivative is positiver Fultivariate functions, there
does not exist a single derivative, rather set of all doublesdtives is known as the Hessian
matrix. Checking for convexity in this case is equivalentiecking if the Hessian matrix
(H) is positive semi-definitee. if

yHy' >0
for any vectory. We now define a convex multi-objective optimization proble

Definition 3.4.2. [ Convex Multi-objective Optimization][27] A multi-objective optimiza-
tion problem is convex if all the objective functions areeq the inequality functions are

convex and the equality constraints are all linear.

For a convex multi-objective optimization, the solutiomsp (the feasible region) will
be, by definition, convex. We will use the concepts of convptinoization in the rest of

this chapter.

3.4.2 Non-dominated Set and Pareto Optimal Set

Most multi-objective optimizations do not have a uniqueimjpd solution. Due to
the existence of multiple objectives, there might exisuBohsx; andxj, such thatk; is
“better” thanx} for a pair of objective functiong;(x) and f;(x) such thatf;(x}) > f;(x%)

while “worse” for another pair of objective.(x) and f,(x) i.e. fi(x]) < fi(x3%). In such
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a situation, without added information, one would not beeablchoosex; overx} or vice

versa. Note that such a situation does not arise in case lair sgatimization due to the
existence of only one objective function. In other wordgyéhis a unique ordering among
the solutions in case of scalar optimization, but none gxistgeneral, for a multi-objective
optimization.

The concept of dominance is intricately related to mulfegbve optimization. Let
x; andx; be two solutions where we define the’*operator asx; < x; implies that
solutionx; is better than solutiox; on a particular objective;(x) i.e. 3j such that,
fi(x7) < f;(x3). Similarly, we define theyt’ operator asx} # x; implying thatx] is no

worse tharx; for the objective functiory;(x) i.e. 35 such thatf;(x}) # f;(x3).

Definition 3.4.3 (Dominance of solutiony. [27] For a multi-objective optimization (as
stated in Equation 3.2), solutiaty; is said to dominate solutiox;, denoted by <1 x3, if

the following conditions hold:
1. the solutiorx] is no worse thar;, on all objectivesi.ef;(x}) »# fi(x5)Vi=1...M

2. the solutionx] is better thanx} in at least one objective i.ef;(x}) < fi(x3) for at

leastong =1... M

The idea of dominance allows us to compare two solutions ofii+mbjective opti-
mization problem. Intuitively, ifc] <1 x3, it means that solutiog; is better than solution
X5

Given a finite set of solutions§, it is always possible to find a subset of solutions
S C S, such that any two solutions ifi do not dominate each other. Moreover, for any
solution inS \ S', we can always find a solution i which dominates the one ifi\ S'.

The setS’ is known as theon-dominated seBelow is a formal definition.

Definition 3.4.4(Non-dominated sef47]). Given a set of solutionS, the non-dominated

setS’ S is the set of all solutions which are not dominated by anytgmitin S.
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Finally, we define &aretooptimal set.

Definition 3.4.5(Pareto optimal sef47]). When the sef refers to the entire search space,

then the sef’ is known as the Pareto optimal set of solutions.

Thus, none of the solutions in tHeareto optimal set are dominated by any other
solution in the entire search space. Moreover, for any diesible solution not in the
Paretooptimal set, there always exists one solution in this setiwdominates the former.
As a result, while searching for optimal solutions, one mialy éocus on thdParetooptimal

set; the other solutions will be ‘inferior’ than all membeifghis set.

3.4.3 Solving Multi-objective Optimization via Scalarizaion

The multi-objective optimization problem defined by EqaatB.2 can be solved in
several different ways to find tHearetooptimal set. Interested readers are referred to the
book by Deb [47] and Boyd [27] for a detailed exposure. In thissis, we explore the
use of one such techniqwe. scalarization Scalarization is the technique of combining
multiple objective functions into a single objective fuioct using a set of weights. Deb
[47] presents a detailed analysis of the advantages andwdistages of this technique.

Due to scalarization, Equation 3.2 can be reformulated as:

minimize F=w'f(x)=[w fi(x)+ ... +wynfu(x)]

subjectto g;(x) <0, Vj=1,...,p (3.3)

wherew is a M-dimensional weight vector whose components are positWe. refer
to it as a positive vector and denote it s > 0. Since multiplication by a constant

does not change the optimal value, it is customary to assbat&t” w;, = 1. Note
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that this technique reduces the multi-objective optimdaaproblem to an ordinary scalar

optimization problem. The exact value of the weights depemdseveral factors: (1) the
importance one associates to each objective function, nifithe objective functions are
not all in the same scale, the weights can be used to scalettheniformity. By varying
the weight vector one can obtain possibly differBatetooptimal solutions of the multi-
objective optimization given in Equation 3.2.

Let x* be a solution to the scalarized optimization problem (Eiguas.3). Then we
claim thatx* lies in theParetooptimal set of solutions of Equation 3.2. The following

theorem formalizes this claim.

Theorem 3.4.1([27,116]) Letx* be a solution to the scalarized multi-objective function
defined in Equation 3.3. For a positive weight vectgrx* is a Pareto optimal solution to

the original multi-objective optimization given in Equati 3.2.

Proof. We prove this by the method of contradiction. Let us assuraexthis an optimal
solution of Equation 3.3, but notRaretooptimal solution of Equation 3.2. Hence, there

must exist another feasible solutigf which is better thax* i.e. y* < x*. Proceeding,

x*—y" = 0
= wl[f(x*)— f(y*)] > 0 sincew =0

= wif(x) > wif(y’)

This contradicts our assumption that is optimal for Equation 3.3. Thus, every optimal

solution of Equation 3.3 is Baretooptimal solution of Equation 3.2. O

The above theorem proves one important point: for any chofcereight vector
w > 0, all generated solutions of the scalarization of the oagmulti-objective opti-

mization problem will lie in the latter'sareto optimal set. Thus scalarization does not
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destroy the structure of the optimization; it merely helpBnding the solution using scalar

optimization techniques.

Although any solution to the scalarization is guaranteellean thePareto optimal
set, we need to prove that the enti®areto optimal set can be generated by solving the
scalarized version (Equation 3.3). Unfortunately, th&eshent is not true in general. If
the Paretooptimal front is non-convex, then it can be shown that alliBohs in thePareto
optimal set cannot be generated by this technique even:f 0. On the other hand, for
convexmulti-objective optimization generating a convearetooptimal set (as defined in
Definition 3.4.2), this statement holds. Note that if theiwidbial objective functions are
convexi.e. f;(x) is convex for alli, then their affine combinatiof’ is also convex by
definition. Henceforth, we will only consider convex objeetfunctionsi.e. all f;(x)’s are

convex. The following theorem proves the claim for convextirabjective optimizations.

Theorem 3.4.2([27,116]) For every Pareto optimal poink?® of the original multi-
objective optimization, there is some nonzero- 0 such thatx?° is a solution of the

scalarized problem of Equation 3.3.

Proof. Let us consider two solutions to the original multi-objeetproblem given in Equa-
tion 3.2:xP° andy, wherex?? is aParetooptimal solution. Then, by definition, there must

exist at least oné such that,

fe(xP?) < fuly), fi(x") < fily) Vi=1...M,i#k.
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Now after scalarization by > 0, we get,

F(x)—F(y) = w'f(x")—w"f(y)
= [wi fi(x") + - Fwn fu (X)) = [wifi(y) + -+ wa far(y)]
= w [/i(x") = i(y)] + -+ war [far (%) = far(¥)]

< 0

where the last inequality follows from the fact that - 0 andx?° is better thary in at
least one objective. This shows tha? is an optimal solution to the scalarized problem
given by Equation 3.3. In other words, evd®gretooptimal solution can be found by the

scalarization technique, provided the weight vector istiwes 0J

Theorem 3.4.2 provides an important statement about gimgall the Pareto op-
timal points. Given a multi-objective optimization probigwe first solve the scalarized
objective function assuming > 0. This gives us a set d?aretooptimal points. In order
to generate all the ‘extrem&aretooptimal points, we apply the limits of the variables (as
specified in the multi-objective optimization problem staent) to generate the range of
w. Next, we illustrate our entire convex multi-objective iopization framework and solu-

tion concept using a numerical example.
Multi-objective Optimization Example

Let the multi-objective optimization problem be represeras,

minimize f(x) = [/i(x) =21 fo(x) = 1422 — 21 — 0.2sin(may)] "

subjectto 0 <z <1, —-2<xy<2 (3.4)
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After scalarization, we have,

minimize F =w" f(x) = w1 + wo [1 + 23 — 21 — 0.2sin(7ay )]
subjectto 0 <z <1, —-2<umxy<2 (3.5)

w1 +wy=1,w, > 0,wy >0

Using the first order optimality condition, we obtain,

oF

— = w; +wy[—1— 0.2 cos(mzy)]
833‘1

OF

97— 9

B WoX9

Setting these to zero, we obtain the critical solutions as,

1 1
vt = —cos! {— [ﬂ — 1} } (3.6)
T 0.2m | wy

Computing the Hessian and checking for positive semi-defieiss gives the condition:
sin(mz]) > 0,

which means thai < z} < (2i +1) Vi =0,1,2,..., while maintaining the condition
that the upper bound of the variable should be 1. Thus, fovengthoice of the weights,
x} andz} provide the optimal values of the objective functions assgnthat the second
order optimality conditions are satisfied. Now, siicel z; < 1, using Equation 3.6, we
get,

x7=0: w =0.62 wy=0.38

x;=1: w =027 wy;=0.63
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Thus any choice ofy; € [0.27,0.62] gives the entiréaretooptimal front of the multi-

objective optimization problem.
In the next section we discuss how we adapt this multi-olwectptimization formu-

lation for our privacy preserving data mining scenario.

3.4.4 Privacy, Cost and their Combination

As discussed earlier, many privacy preserving data minggrahms can be modeled
as an optimization problem with two conflicting objectivesaximizing the privacy (or
minimizing the threat to the data) while minimizing the coBhis allows us to frame pri-
vacy preserving computation as a multi-objective optimdraproblem. Letf; : R™ — R
andf, : R™ — R be two functions defining the threat to data privacy and trst @spec-
tively, wherex € R™ is a multi-dimensional input vector whose components date
the optimal privacy and cost. We do not specify hevis defined here, but rather leave
it as a problem statement for instantiating a particulargmy preserving distributed data
mining situation. Using the examples presented in the Imaginof this chapter, the value
of privacy required such as the valuefofn k-anonymization, the number of nodes with
whom data is shared, the number of colluders present (farseculti-party computation)
in the system are some variables that may define the optimiza¢ctorx. The function
fi(x) is defined by the choice of the privacy model for the systent. éxample, Bayes
optimal model of privacy [109]k-anonymity [145],e-differential privacy [52] are differ-
ent privacy models that will lead to different definitionstbg functionf;(x). Similarly,
fe(x) is defined by the cost incurred during the privacy preserdiaig mining algorithm
execution. This cost includes the standard communicatidrcamputation costs, the cost
of providing privacy to the data and the loss of utility of ttieta mining results, if any, due

to privacy preservation.
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Therefore, the optimization problem in this context cantiagesl as,

minimize f(x) = [fi(x) fe(x)]" (3.7)

6)

subjectto 2\ <z; <2, Vi=1...m

(¢

where as beforex € R™, and eachy; varies between;, ), andxf.“) constraining the fea-
sible search space. From a practical standpoint, the rasigke variables may define the
ranges of threat and cost for a data owner. Using the weigtaatbination of objective
functions (scalarization), we convert this multi-objgetbptimization problem to a scalar
optimization problem for easy solution. Using the notasiokefined in Section 3.4.3, we

can reformulate the same optimization problem now as:

minimize F = w" f(x) = [w1 f;(x) + w2 f.(x)]
subject to :cf.f) <z < xl(“), Vi=1...m (3.8)

w1+w2:1

wy,wy > 0

wherew; andw, are the relative ‘importance’ that a user attaches to ita tfaeat and
cost respectively. As stated before, different choicesrahay generate differerRareto
optimal sets. Moreover, Theorem 3.4.1 and 3.4.2 allows ke the scalarized multi-
objective optimization, while guaranteeing enumeratibthe entirePareto optimal set.
Since scalarization transforms a multi-objective optamtian to a scalar objective function
with known weights, one might be able to find a closed form eggpion for finding the
entireParetooptimal solution set. Next, we show an example of such a céation.

For simplicity, we restrict ourselves o€ R? onlyi.e. we assume = (1, z3). Now
given,

F =w; x fi(x1,22) + wa X fo(x1,29)
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we first compute the first order partial derivatives and setrtio O.

oF Ofi(x1,m2) Ofc(1,12)

81'1 =0= i 81'1 - 81'1
and,

oF Ofi(x1,m2) Ofc(z1,22)

81'2 =0= i 81'2 - 81'2

Solution to these equations, gives us the critical solwieetor(s)x* = (x7, z3) in terms
of w. In order to test for minima, we first compute the matrix ofaet order derivatives

(Hessian matrix) as follows:

9%F 9%F

H = 8:(:% 0x10x2
9%’F 9%’F
Oz20x1 Ox3

at each of the critical points. The next step is to computethen decomposition off. If

all the eigenvalues are positive, thehis a minima. Solutions of the equations involving
the first order derivatives give us a mapping from the obyectector space to the space of
weights. Lets; : RM — R ands, : RM — R be two such (possibly nonlinear) functions

mapping the weight to the objective variables. We can tloeeaiirite:

] = K1 (wy, wy)

x5 = Ko(wy, wy)

Now, sincexgg) <z < :ci“), we can find a range o#, using the extreme values of

the input objective variables. Assuming that the functiensand . are invertible (e.
they are one-to-one and onto), the variationwofbetween | ;" (z\"), k7 1(9:&”)] and

[ml—l(xg”), ml—l(x;@) allows us to list all the solutions in tHearetooptimal set.



3.5 Privacy Protection in a Multi-party Scenario >

Given the formulation of privacy preserving data mining astati-objective optimiza-
tion problem, we now discuss how a distributed privacy prgsg data mining scenario
can be modeled on this framework. As discussed, in Sectiba, 3 privacy preserving dis-
tributed data mining environment such as the Internet stmsf autonomous participants
with varying degrees of privacy requirements and varyingams of resource availabil-
ity. Therefore, this can be modeled as a distributed muggctive optimization problem,
where the functiong,(x) and f.(x) are same across all nodes in the system, the weights
maybe different and the constraints may vary across thesnode

The constraints are different since each node has its owshbid of privacy and cost
defined by its own requirements and resources. The weightdmdifferent for different
participants depending on the importance they attach tdwbeoptimization problems,
viz. threat and cost. Note that, in a multi-party scenario, eantypan define its own
optimization functions and solve them independently. Big tnight generate a different
Paretooptimal set for each party. The other extreme solution igflatodes in the network
to use the same objective functions and constraints. Batiesk solutions are undesirable
— in the first, parties do not guarantee a global solutionevinithe second, each party has
to abide by the same threat and cost requirements. In ttasrtigion we guarantee a global
solution based on the personalized requirements of useachieve this, we require that
the threatf;(x) and the cosf.(x) functions be the same for each party. The privacy model
across each party may be different. For example, in the dgs@vacy by anonymization,
parties can choose either theanonymity [145]/-diversity [109], or the-closeness [100]
model since all of them gives rise to sarnfi¢x). However, the choice of-differential
privacy will be meaningless in this context, since the measent of threaf;(x) will be
different for this privacy model. It should be noted here thare is no restriction offy (x)

and f.(x) other than convexity (as discussed in Section 3.4).
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Let V' = {v1,vs,...,v,} be a collection of. different nodes where each node rep-

resents a party with some privacy sensitive data. They amaemted by an underlying
communication infrastructure. Mathematically the netecan be represented as an undi-
rected graplG = (V, E), whereFE is the set of edges or connections between the nodes.

The set of one-hop neighborsaf, denoted by, ; is defined as
Fl,k = {Ui € D|('UZ‘,U]<;) - E}

For nodevy, its goal is to find a solution to the following multi-objeati optimization

problem,

minimize F = WTf(X) = Wy fr(x) + wo i fe(x)]
subjectto o) <w; <aly, Vi=1...m (3.9)
W1,k + Wo k= 1

Wy g, wa > 0

Whereng,z is the lower bound of constraint for nodev,.. Note that these parameter values
are local to each node and are independent of the valuesrchgsany other node in the
network. If each node solves the optimization problem llgcabhch would have its own op-
timal solution which may or may not lie in tHearetooptimal set of the global optimization
problem. In other words, if every node solves its own mulfjeative optimization problem
using only its local constraints and if the intersectionted feasible solution sets defined
by these local constraints on the optimization variablenalefor any pair of nodes in the
network, then no privacy preserving collaborative compuits possible with that solution.
So it is important to consolidate the local constraints eniify the common feasible set.
To develop a collaborative solution, we can centralizeteldonstraints such that the solu-

tion of each node is in the globBaretooptimal set. However, this technique may not scale
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for large number of nodes. A more efficient approach thanrakring all the constraints

is to compute the average of the cost constraints of all nadésthe threat constraints
of all nodes separately and use these average constraswévothe global optimization
problem. Since each constraint is represented as an iniggoake way of computing the
average constraint over all nodes is to compute separéielsverage of the lower bounds
and higher bounds for each inequality. In the next sectiordescribe a decentralized
asynchronous averaging algorithm for computing the aweagstraints in a distributed

fashion.

3.5.1 Distributed Averaging

In distributed averaging, the objective is to compute thebgl averageAf-Z) =
%Ele 9:52 of the lower bound (and similarly upper bound) of every caaist z; of x.
Recall from Section 3.5 thaztf.f,g is the lower bound of constraint; for nodev, andn
is the size of the network. For convenience, we are goingfey te AEZ) asA; through
the rest of this section. In the naive solution, all nodesearhange messages with every
other node in the system to compute the correct average. Wowis solution is highly
synchronous and does not scale well for large distributed@mments such as P2P net-
works. Distributed approaches include the iterative Laplabased approach proposed by
Mehyaret al. [113], the LTI approach proposed by Scherber and Papadopfld3]. The
basic idea of all these approaches is to maintain the cuestimate of\; denoted byzi(t)
and exchange messages with its immediate neighbors toejzfaatAs iterationt — oo,

2 — A,, i.e. the system asymptotically converges to the correct average

In this thesis, we adopt the distributed averaging algori(PAvg as shown in Alg. 1)
proposed by Scherber and Papadopoulos [143]. In [143],uthees exploit the properties
of the symmetric negative semi-definite connectivity maftito derive the update rule for

asymptotic convergence Whichz'g) = WZEH), Wherezgt) denotes a column vector of the
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estimates of all the nodes at timd.e. z\") = [zi(tl)zi(tz) 2! )} andW is a matrix used in

first order linear transformation rules. At |n|t|aI|zat|015 V= x = [xgél)x%) Z“,)L] . In
order forzi to converge ta\;, W must satisfy the following properties: §y.1=W*.1=

1, wherel denotes & x 1 vector of all ones and (ii) the eigenvaluesif \; when arranged
in descending order are such that= 1 and|);| < 1 fori > 1. It has been shown in [143]
that if Q2 is a symmetric matrix, thew can be constructed frofa as follows:W = | + p().
Herel is then x n identity matrix andp is a small number which determines the stability
of the solution and the convergence rate. Typicallgan be set tom For updating
from timet to ¢ + 1, the update rule for any nodk can be written as

t+1 t t t
50 = 4 p T, (29 - )

DAvg (Algorithm 1) presents the pseudo-code for the disted averaging algorithm.

Algorithm 1: Distributed Averaging Algorithmip Avg)[143]

Input of node vy:

Convergence ratg, local datavgf,z, round
Initialization:

Setzi{ — x%,

Setround «— 1,
On receiving a messagez@,) from vy

0 (o),
Sendzl.(f,;F to all neighbors im;

3.5.2 Optimal Privacy-Cost Solution

The distributed averaging algorithm discussed above camsbd for computing the
average for a set of numbers in a distributed setup. In ourasste for each variable of

the objective function each party needs to instantiate tyagate distributed averaging
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algorithms: one for computing the average lower bound aedther for computing the

average upper bound of the individual constraints. Let tieeae of the lower bounds of

n (£)
D=1 Zik
n

z; be denoted byi; i.e. ;¥ = . Once these are computed using Algorithm
DAvg, each node can solve the same multi-objective optiticagproblem without any
further communication. In this scenario, the objectivection at each node would look

like:

minimize F =w X fi(x) + (1 —w) X f.(x)

subjectto 7Y <z, <mm™W, Vi=1...m

Therefore, we can write the range-wofas,

kU T < w < k7T (3.10)
1 1

Note that, given the range af, each node selects a value fofrom that range, so that the
solution lies in the globaParetooptimal set. The solution achieved by each node will not

be the same; however, they are guaranteed to remain in thalglaretooptimal set.

3.5.3 Multi-party Multi-objective Optimization Algorith m

The overall distributed multi-objective algorithm (DMORB)depicted in Algorithm 2.
The input of each node, are the objective functions (x) and f.(x), the set of constraints
and the relaxation parameter v initializes two distributed averages for each objective
variablezx;. Once the averaging algorithms converge (or after sufficiere has elapsed),
nodew, solves the optimization problerf with the average of the constraints. The out-

come of the solution is an optimal vectot which lies in theParetooptimal set.
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Algorithm 2: Distributed Multi-objective Optimization Based Privagygorithm
(DMOP)

Input of node vy:
Convergence ratg, threat functionf,(x), cost functionf.(x), constraints
xlez, <z < :é?,j,\ﬁ =1...m
Initialization:
Instantiate two distributed averaging algorithms for eeatiablex;, one forng,z

and the other for_")

On receiving a message fromy,:

Pass it to the underlying distributed averaging algorithm

On convergence of the averaging algorithms:

Find optimal (minimal) points* of the following optimization problem:

Minimize F' = w x fi(x) + (1 — w) X f.(x)
subjecttar;\¥ < z; < 7™, Vi=1...m

Below we present the correctness criteria for the distetbumulti-objective solution

technique and prove that DMOP algorithm is correct.
Definition 3.5.1. A multi-objective optimization solution technique is @mtrif:

1. Necessary:Any solutionx* found by the distributed technique lies in the Pareto

optimal set, and
2. Sufficient: All solutions in the Pareto optimal set can be found by thithoe.

Lemma 3.5.1.The solution found by the distributed multi-objective optiation technique

is correct.

Proof. In order to prove that any solution found by the distributégbgthm lies in the
Paretooptimal set, we use Theorem 3.4.1. Whenever a party soleemtliti-objective
optimization problem, we put an additional constraint: @eonly selects non-negative
weights. This ensures that the condition of Theorem 3.4elsatisfied and hence any

solution found by the distributed algorithm will lie in thRaretooptimal set.
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Using Theorem 3.4.2, we can prove that any solution founcheymulti-party tech-

nique lies in thePareto optimal set. Since the distributed solution does not chahge
objective function, by our initial assumption, boff{x) and f.(x) are convex. Moreover,
by construction, a node only selects non-negative weighesice, by Theorem 3.4.2, all
solutions in theParetooptimal set can be found by the distributed technique. Theze

our proposed distributed technique is correct. O

Globally Optimal Model of Privacy It is important to note here that Algorithm
2 produces optimal solution of the multi-objective optiatibn problem for every node.
The optimality for each peer is defined in terms of the degu@dacy and cost thresholds
defined by each node. The averaging of the constraints isreeljfor ensuring that the
union of theParetooptimal feasible sets of solutions across all the nodestisumia Here
each node ultimately comes up with its own solution basedsparsonal choice of.
Therefore the solutions obtained here are not to be confugkdhe global optimal privacy
solution for the entire system. Finding the global optimaldal of privacy for the entire
system would also call for a multi-objective optimizatiomeve the the functiong,(x)
and f.(x) would be defined on optimization variatye= (y1, 2, - .., y,) Wheren is the
number of nodes in the system. Each such optimization Variabl have n constraints
coming from each of the nodes and solving the multi-objective optimization wiltjtere
either centralizing all the constraints to one central fimraor communicating the every

node’s local constraints to every other node in the system.

3.6 lllustration using Differential Privacy Model

In this section we demonstrate our solution technique uaipgpular privacy model
viz. e-differential privacy model [52], whereis a user specified privacy parameter. Before

we formulate our solution, we briefly discuss the differahpirivacy model.
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3.6.1 Differential Privacy Framework

Differential privacy is an output perturbation based privgpreservation technique
recently proposed by Dwork [52]. For discussing the diffieiad privacy model, we define

some important terms used through the rest of this section.

Definition 3.6.1(Statistical Databasg. [52] A statistical database of sizer over domain
D is a collection ofr tuples

t:(tl,...,tT)

In order to access information from the datab&s# is assumed that there exists a
mechanism which has access to the database. This mechanteminonly known as the
sanitizer meaning that it sanitizes the data before it is releasethdmlifferential privacy
framework, it is assumed that all database queries are #®cdv¢ia the sanitizer. A query is
a mapping; : t” — R? in which the output is often referred to as theswerto or output
of a query.

A sanitizer can be viewed as a technique which either moddreshanges query
values depending on its sensitivity. There are severamifft ways in which a sanitizer can
be defined. In this section we define a sanitizer which simgidisaandom noise to its query
result: San(t, ¢) = ¢(t) + Y. The noise is generally added from a probability distribnti
based on the type of the query result. Henceforth, withoss lof generality, we will
interchangeably use the terran(t) andSan(t, ¢) if the queryq is inconsequential. In
this section we only consider a specific distribution of thise — Laplacian distribution. A
one-dimensional Laplace distribution with mean 0 and vexé2¢? has a density function

defined by:
Lap(e) :  h(y) = e e

Before we present the definition edifferential privacy, we present what is meant by

neighbor databases.
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Definition 3.6.2 (Neighbor Database} [52] Two databases andt’ are called neighbor

databases if the Hamming distance between them.&s 1

disty (t,t) = Hz 1, t;} —1

A sanitizer is private if an adversary can gain no signifidardwledge about an in-
dividual in the database beyond what he or she could havedddry interacting with a
similar (neighbor) database where that individual entigristrarily modified, or removed.

Below is a formal definition.

Definition 3.6.3 (e—differential privacy ). A sanitizerSan is e-private if for all neighbor
statistical databases, t' (databases differing only in one entry) and for all subsdts o

possible answerg,
Pr[San(t) € T]
Pr[San(t’) € 7]

IA

e, €>0

Sum queries are defined ag; = > ;_, Y(,t;) whereY : N x t — [0,1]. The

sanitizer in this case can be defined as,

T

San(t,qr) = > T(i,t;) +Y

i=1

whereY ~ Lap(1/e) i.e. the noise variance is proportional 1@e for the sanitizer to be
e-differentially private [52].
In the next section we analyze the privacy/cost tradeoffisf¢anitizer in a distributed

data mining environment using our multi-objective optiatian framework.
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3.6.2 Differential Privacy as Multi-objective Optimization

From the discussion in Section 3.4.4, we understand thahdoefkpressions for the
threatf,(x) and costf.(x). In the differential privacy framework, there is only oneiable
e which determines the privacy and the cost. Therefore, migbenariox € R. We will
usez instead ofX in the remainder of this section.

Note that by increasing the variance of the Laplacian ndiga€ducinge), one can
hide the data better. This increases the privacy, thus negltice threat to the data. Thus,

threat of the data decreases with decrease e can write,

fi(z) = €.

In this context, the cost refers to the decrease in datdyudifiincrease in error for
varying levels ofe (ignoring some constant computational cost). For a fixethumae of
the Laplacian, we can write the error introduced as the sgudifference between the

sanitized output and the true output as:

Error = E[{San(z) — q(x)}?]
= E[{q(x)+Y - q(2)}}
= E[Y?
= Var(Y)+[E(Y)]

= — +(0)* [sinceY follows a (0,2/¢) laplacian distributioh

Therefore, increasing the value oflecreases variance and hence decreases the error. For

the cost, we can write,
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Next we show that each of these functions are convex. Note tha

d2
d—;)j2ft<x) =e° > 0, Ve > 0.

Also, the cost function is convex since:

d? 12
@f(;(x) = 6—4 > O, Ve > 0.

This allows us to apply the multi-objective optimizatiomardnework without any change.

Using Equation 3.7, we have,

T
minimize f(x) = |e° —} (3.11)

subjectto € < e < @

Using scalarization, we can convert this multi-objectiypéiimization to a single optimiza-

tion problem as:

minimize F=w'f(z) = [wleﬁ + wQ—Z}
€
subjectto ¥ < e < ™ (3.12)

w1+w2:1

In order to find theParetooptimal point, we proceed as follows:

dF
= =0
de
4
éwlee—% =0
€
4
e = -2 (3.13)

wq
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Letx : R — R be a function such that,

Assuming the inverse of exists, we can write the optimal value dfas,

* o —1 (41112)
€ =K —
w1y
Now whene* = ¢¥), we get

ee“) (E(e) )3

@/ (N3 _ 4wy Wo
e € = —
( ) w1 w1 4

Usingw; + we = 1, we get

4 e (e®)3
T ey T e ()3
Similarly, whene* = ¢, we can write
4 e _(u))3
0 0y — _° (™)

T At e ()3 T g e ()

Thus, the entire ranges af; andw, which lists the entirdPareto optimal front of this

optimization are:
4 4

4t e ey = S e (03

and
ee(") (6(4))3 ee(u) (e(u) )3
— e S W S
44 e (e0))3 4 4 e (ew)3

Now, different nodes in the distributed data mining compatecan choose any value

in this range forw; andw, and get a solution of accordingly. Based on their choice of
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¢, they can have their personalized privacy requirementi#iéal (by adding noise to their

data) and still participate in a collaborative computingiesmment.

3.7 Conclusion

In this chapter we have presented a multi-objective opation framework for pri-
vacy protection in a multi-party environment. Since privéintricately related to one’s
preferences such as data, computing power, etc., we feetyagteuld be given the free-
dom to specify its own privacy requirement. Therefore, darmi model and privacy con-
straint for each node in the network is not desirable; we reepdrsonalized solution for
each node. To achieve this, we have proposed a multi-obgegpitimization based frame-
work where each node may have a different set of constragmnghgng its desired privacy
and cost. Théaretooptimal solution set provides the privacy/cost tradeoffdach node.
To ensure that each node generates a solution in the Bame&o optimal set, which is
important for the distributed data mining algorithm to waxdkrectly, we take an average
over the constraints of all the nodes. For this purpose, weansexisting asynchronous
distributed averaging protocol which, without centraliall the constraints, can generate
a ‘global’ constraint for the multi-objective optimizatigproblem. Finally, we illustrate our

framework on the-differential privacy framework.
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Chapter 4

MECHANISM DESIGN FOR PRIVACY PRESERVING
DISTRIBUTED DATA MINING

4.1 Introduction

Analysis of privacy sensitive data in a multi-party envineent often assumes that the
parties are well-behaved, they abide by the protocols angotiery to collude. Many of
these assumptions fall apart in real-life applicationsrofgey preserving data mining. For
example, the US Department of Homeland Security funded RIRBroject for privacy
preserving distributed data integration and analysis divakk traffic data from different
organizations aims at detecting “macroscopic” patteromfnetwork traffic of different
organizations for revealing common threats against thag@nizations. However, partici-
pating entities in a consortium like PURSUIT may not all bead Some of them might try
to collude with other parties for exposing the private ddtarmther party. Therefore, in-
formation integration in multi-party distributed envimments is often an interactive process
guided by the dynamics of cooperation and competition antbagarties. The assump-
tions of well-behaved parties fail to translate to real &ifgolications, where self-interested
parties try to maximize their own benefit, even if that regsicollusion.

To address this issue, we formulate privacy preservingratang problems as games

http://www.agnik.com/DHSSBIR.html
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where each party tries to maximize its own objectives. Wealgerithmic mechanism

design to modify existing privacy preserving data miningtpcols to incorporate incentive
or penalty so that the protocol reaches a desired equiligraven in the presence of self-
interested participants (rational agents). We then chagsspular privacy preserving sum
computation technique, namely, the secure sum protocdlusirate this framework. We
show, in the light of the game theoretic framework, that tesuaption of semi-honesty
in participant behavior is sub-optimal and propose a pgitelsed mechanism for a series
of secure sum computations. We also present equilibriuatyais of the algorithm and
experimentally demonstrate the performance of the meshani

The rest of this chapter is organized as follows. Sectionmtrdduces some of the
key concepts and definitions in game theory and mechanisigrdeSection 4.3 discusses
how game theory has been used in the privacy and securitgtlite. Section 4.4 frames
the problem of privacy preserving distributed data minisggames. Section 4.5 illustrates
this concept using the secure sum computation protocoliddet.6 discusses a modified
secure sum with penalty (SSP) algorithm. Section 4.7 pes/aldetailed analysis of the
SSP algorithm while Section 4.8 describes the experimeesallts. Finally, Section 4.9

concludes this chapter.

4.2 Game Theory and Mechanism Design

In this section we give a brief introduction to game theorgt emechanism design and
point out some relevant definitions that we will use througttbe rest of this dissertation.
For further details, interested readers can refer to th&dbyg Owen [127] and Osborne

[126].
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4.2.1 Strategic Games

A game is an interaction or a series of interactions betwdsyeps, which assumes
that (i) the players pursue well-defined objectives (theyrational) and (ii) they take into
account their knowledge or expectations of other playegbavior (theyreason strategi-

cally).

Definition 4.2.1(Strategic Gamg. A strategic game consists of (i) a finite g&tthe set of
players, (ii) for each playef € P a nonempty set;: the set of actions available to player
i, and (iii) for each playet € P a preference relation; on A = x,cpA;: the preference

relation of player:.

The preference relation; of player: can be specified by a utility functian : A — R
(also called a payoff function), in the sense that for ang A, b € A, u;(a) > u;(b)
whenever =; b. The value of such a function is usually referred to as wyt{lir payoff).
Herea or b is called theaction profile which consists of a set of actions, one for each
player. Therefore, the utility of playerdepends not only on the action chosen by itself,
but also the actions chosen by all the other players. Mattieatlg, for any action profile
a € A, leta; be the action chosen by playeanda_; be the list of actions chosen by all
the other players except the utility of player: is u;({a}) = u;({a;,a_;}). Henceforth
we will denoteu;({a}) asu;(a). The utility of a game, on the other hand, is the combined
utility of the action profilea = (ay, ..., a;) jointly selected by the players in the game,
mathematically denoted by(a4, ..., as), wherel is the cardinality of seP.

Another type of game is thextensive gami@ which there is a sequence of interactive
actions of the players. In that situation, taetion a; for playeri, is replaced by;, the
strategyfor that player, which is a complete algorithm for playing thame, implicitly
including all actions of that player for every possible attan throughout the game. The

utility function also assigns a payoff to playefor each joint strategy of all the players,

i.e,u;({0}) = wi(o) = w;({os,0_;}).



75
In any strategic game, rational players always try to mazéntheir outcomes by

choosing the actions which seem appropriate based on tvairutility and the actions
of others. There are several techniques to study the equitibcondition of games given
information about agent preferences, rationality, andrimftion available to agents about
each other. One of the most widely used technique to find thea&d outcome for the
overall game was proposed by Nash [119], and the correspgodiicomes are called Nash
equilibria. Nash equilibrium states that, if all the play@adhere to an equilibrium condi-
tion, no single player can do any better by deviating fromrthem, as long as the other

players do not deviate.

Definition 4.2.2 ( Nash Equilibrium). A Nash equilibrium (NE) of a strategic game is a

strategy profiles* € A such that for every playerc P we have

w({o},0%;}) > ui({oi,07,})

Therefore, Nash equilibrium defines a set of actions (amagtrofile) that captures a
steady state of the game in which no player can do better lbgtarally changing its action
(while all other players do not change their actions).

A more rigorous solution concept is known as the dominaategyy equilibrium. In a
dominant strategy equilibrium the players do not decidehair tstrategy based on others’
strategies; rather they choose the one which seems to beeghdrom its set of actions,

irrespective of what others are choosing.

Definition 4.2.3 (Dominant-strategy Equilibrium). Strategys; is a dominant strategy

equilibrium if, for all possible strategies of other agents is the best i.e.
ui(of,0-;) > u;(o},0_;) forall o} # o},

The most important difference between the Nash equilibréathe dominant strategy

equilibriais that the latter maximizes the utility of thepéri independent of the strategies
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of other agents.

Prisoner’s Dilemma A classical example of a strategic game is the Prisoner’s
dilemma. There are two players, each of whom has two actmoldose from: to confess
or to lie. The payoffs corresponding to each action are showable 4.1. If they both con-
fess, each will be sentenced to two years in prison. If only aiithem confesses, he will
be freed, but his confession will be used to convict the otbi@rthree year imprisonment.
If neither confesses, they will both receive a one year seeteue to some minor offense.
The payoffs can be seen as the number of years that each playds spending in prison,
out of a maximum of three. In this case each player is bettdsyo€onfessing since if he
stays quiet, and the other confesses, he may be convictéaefonaximum of three years.
The Nash equilibrium is therefore the case when both conféste that however, if both
do not confess, they receive the minimum prison term of ore. \ia this case we say that

the best strategy does not become the Nash equilibrium.

Table 4.1. Payoff table for prisoners dilemma

Player 2
Don’t confess\ Confess
Don’t confess 1,1 0,3
Player 1 Confess 3,0 2,2

4.2.2 Repeated Games

In repeated (iterated) games the same game (called the gsage), is repeatedly
played in rounds, and the players remember what has happerted past. So, their
actions may depend on the accumulated history of past actiGenerally, the iterations
can last for a finite sequence or infinite sequence oftenrezfdo as finite repeated games

or infinite repeated games. The payoff of the repeated gaafisction of the sequence of
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payoffs of the stage games. One of the most widely used exaigpihe iterated prisoner’s

dilemma whereby the original Nash equilibrium of both casiag for a single stage game
can be tweaked into a neither confessing scenario by aggpdyifficient incentives for each

successive stage. Repeated games are often used in pvaoticehe outcome is generally
stable after a few iterations, rather than at one go. In ticases, the players are often
interested in maintaining good behavior over repeatetsfrsince otherwise if they defect

they may get caught and penalized for successive roundsislirelsearch we are interested
in designing a repeated game for a distributed environmehtdasigning a mechanism to

prevent collusion in such an environment.

4.2.3 Mechanism Design

“If game theory strives to understand rational behaviorampetitive situations, the
scope of mechanism design (an important and elegant résadition, very extensive in
both scope and accomplishment, and one that could alteehabe called “inverse game
theory”) is even grander: Given desired goals (such as tammag a society’s total wel-
fare), design a game (strategy sets and payoffs) in suchereiay that individual players,
motivated solely by self-interest, end up achieving thegies’s goals.” - Christos Pa-
padimitriou [131]. Mechanism design is a sub-field of ecormsnand game theory which
studies the art of designing rules of a game to achieve afgpeaicome. This is done by
setting up a structure in which each self-interested plagsran incentive to behave as the
designer intends. Mechanism design has been used in mamgir®mcluding electronic
market design, distributed scheduling problems, Inteapglications and online auctions.
MasColell et al. [111] and Varian [153] provide through seys on the topic of mechanism

design.

Definition 4.2.4 (Mechanism). A mechanism\ consists of two components — a set of

strategy profilesr = (o4, ..., 0,) and an outcome rule which maps the strategy setto
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the set of outcome® i.e. 0 : 01 x --- x 0, — O. o(0) is the outcome of the strategy

function for strategy. Formally, it is denoted a8 = (o4, ..., 0., 0(+)).

In a setting withn players, where each player has a private type 7; associated with
it, the function of a mechanism is to solve a decision probileat affects all the players.
There is a setD of possible outcomes and the desired outcome depends otraiotss
which are defined by a social choice functief,) : 7; x --- x 7, — O defined on the

type of the player.

Definition 4.2.5 (Mechanism design. Given a game induced b¥1, mechanism design
refers to finding a solution to the social choice functigty) under equilibrium conditions
of M. Mathematically, this is equivalent to finding the set{ef(¢,),...,0}} such that
o(o5(t1),...,05(t,)) = s(t;), forall t; € T.

In many problem settings, finding an optimal outcome is anHdR} combinatorial
optimization problem. Algorithmic mechanism design [1P@ls careful attention to the
computational aspects of mechanism design and makes thieprdractable by introduc-
ing approximations without destroying game theoretic props of the mechanism. To
address the issues of high communication cost in applyimgralezed polynomial-time
algorithmic mechanism design to Internet -like computapooblems Feigenbauet al.
[58] proposed distributed algorithmic mechanism desigrafmulti-cost sharing problem.
Algorithmic mechanism design has been researched bothnimatized and distributed
computation in the theoretical computer science commuyb#9] and the multi-agent sys-

tems community [132].

4.3 Game Theory in Privacy and Security

Game theory has been used extensively in multi-agent sgstdattronic commerce,
network performance optimization, and distributed corapahal scenarios such as peer-

to-peer systems, where cooperation among the particgpatitities amidst varied and often
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conflicting personal interests is desired. Kunreuther aadl{D7] discuss a practical se-

curity problem called thénterdependent Security (ID&hd propose several policy-based
recommendations to deal with free riding [72] in collabamEenvironments. Kearns and
Ortiz [90] deal with the computability of Nash equilibria i3S games and present several
algorithms for the same. The IDS model is closely relatedit@py preserving data mining
using secure multi-party computation where rational agyarg motivated to be free riders.
Halpern and Teague [70] consider the problem of secretrgipand multi-party computa-
tion among rational agents. Abraham et al. [1] introducekthesilient Nash equilibrium
and offered a synchronousresilient algorithm for solving Shamir’s secret sharinglp
lem. Zhaet al. [168] uses game theory for measuring privacy in existinggmy preserving
data mining algorithms. Agrawal et al. [10] address the gaimed problem of honest in-
formation sharing where the idea is to make sure that all thiges get to know only the
correct result of the query without any additional inforroat The authors pose the prob-
lem as a game theoretic problem where each entity in the alsgab a player in the game.
who either play honestly, or deviates from the protocol. yrélgow that, in the absence of
a penalizing scheme, the Nash equilibrium and dominantestysequilibrium of the game
is the situation where all players cheat. Introduction o&aditing device for checking for
and penalizing bad behavior forces the system to a desiraticegym, depending on the
amount of penalty and the frequency of audits. Jiang et 8] pBopose a game theory
based accountable computing framework for detecting moalcadversaries in polyno-
mial time. Recently, Layfield et al. [98] use algorithmic gatheory principles to ensure
truthfulness of participating entities in a distributedse computation environment using

non-participation techniques.



4.4 Distributed Privacy Preserving Data Mining as Games %0

In a multi-party data mining application the privacy comeeof the different partici-
pating entities vary along with their ability to protect therivate data. The participants are
either honest or dishonest depending on whether they prefellow the protocol or cheat.
Depending on the type of participants, their preferredtetjias are different. Sometimes,
multiple parties can form a colluding group to reveal soneoprivate information. This
scenario can be thought of asigplayer game where the protocol to be followed dictates
the rules of the game, the participants are the players andctmosen strategies decide the

final outcome of the game.

4.4.1 Game Theoretic Framework

Let V' = {vy,vq,---v,} be a collection of. different nodes where each node rep-
resents a party with some privacy sensitive data. In a rpaltly privacy preserving data
mining environment, each party has certain respons#slitn terms of performing their
computations, communicating correct values to others antegting the privacy of the
data. Depending on the characteristics of these partitspard their personal objectives,
they either perform their duties or not. Sometimes, theymeadude with others to reveal
someone’s private information.

Consider a privacy preserving data mining algorithm in white:-th node adopts a
strategy)/; for computation. Let; ,,();) be the cost associated witf;. Similarly, let R,
be nodei’s strategy for communication with other nodes (receive sertd messages). Let
the cost associated with the node’s communication strdiegy, (R;). Although these are
the basic actions associated with a distributed data mimiagpcol, a node, depending on
its characteristics, might indulge in additional actiestisuch as collusion with other nodes.
Let k& be the number of nodes in the system that collude. Let-thenode adopt a strategy

D, for collusion. Also letc; 4(D;) be the benefit that nodegets by colluding with the
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otherk — 1 nodes in the system. A rational player’s strategy choiceslavbe such that it

maximizes its own objectives, given its belief about howdtieer players are going to play.

In general, any player’s objective function can have séyami@meters. Depending on how
these parameters interact, the objective function canneauj quasi-linear, quadratic etc.
with respect to the parametets;, D; and R;. The cost functions can be either linear or
nonlinear in nature with respect to their parameters. Ia tesearch, we assume that the
objective function is a linear combination of the cost fuoies with respect to the weights.

Each player’s optimal strategy for the game would be the solution to the optimization

problem

ui(o;) = w;acia(D;) _iwi,mci,m(Mi) + wi,rci,r(Ri)};a (4.1)
threat to data privacy total cosT incurred

wherew; 4, w; ,, andw; , are the weights (importance) associated with the privacsath
and cost of computation and communication respectivelyHer-th node. The threat to
data privacy is actually the negation of the utility or gaintained by adapting collusion
strategyD;. The optimization problem is local to each player and thetsmh depends on
local constraints that each player has in terms of cost amdqgyrthreat.

For any distributed heterogenous multi-party data mincenario, there might exist
dishonest participants. They may collude with other digsbiparticipants to reveal the
data of the good nodes. In the next section we describe alp@sgay of designing pri-
vacy preserving protocols which can converge to a desire#ting condition without any

centralized control.

4.4.2 Mechanism Design for Privacy Protection

Mechanism design (structuring incentives so as to indueedsired behavior of self-

ish agents) [120] provides a way of modifying a privacy presg algorithm such that
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no node has an incentive to breach the privacy. For dis&tbptivacy preserving algo-

rithms using secure multi-party computations, semi-htynissone such desired behavior
of the participants. Detection of collusion and subseqgeafdarcement of semi-honesty in

distributed computation environments can be achieved bybthe ways described below:

e Centralized Control: In this scheme there is a central authority who is always in
charge of implementing the penalty policy. Whenever a nasdédentified to have
colluding intentions, the central authority penalizes pleepetrator. This scheme is
relatively easy to implement. However, it requires globaichronization. Such
global synchronization may create a bottleneck and linet $halability of a dis-

tributed system.

e Asynchronous Distributed Control Fortunately, in games like this whenever there
is a solution with a mediator, there is also a solution witrane. It has been shown
[20] that it is possible to achieve desired behavior withaunediator as long as
there is a proper strategy to penalize lack of compliance. is&iduted protocol
for penalizing policy violations requires a distributecht@l mechanism. Such an
algorithm may penalize colluding nodes in such as way thatode has incentive
to deviate from the protocol and collude, so that when théoeam terminates, many

bad nodes convert to good ones.

To achieve a system with no collusion, the game players captadpunishment strat-
egy to threaten potential deviators. This approach may odk W the parties perceive that
the possibility of getting caught is minimal or if the proliék of there being a subsequent
round of game play is zero. One may design a mechanism toipewralluding nodes in a

number of ways:

1. Policy I: Remove the party from the application environment becatfiggotocol

violation. Although it may work in some cases, the penaltyrba too harsh since
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usually the goal of a privacy preserving data mining apfpiliceis to have everyone

participate in the process and faithfully contribute to dlaga mining process.

. Policy Il : Introduce a general penalizing scheme based on one’s abbet whether
there are violators. This policy does not try to identify laitors, but tries to bring
down the overall gain of the colluders in the system, therehying on the rational
behavior of the players to change for good in the lack of arsaathge. Let’ (an
estimate ofk, actual number of dishonest nodes) be the estimate of ttoetie

system. Then for policy Il, the modified utility function isvgn by

ﬂl(al) = UZ(O'Z) —wp X 54 (42)

wherew, > 0 is the weight associated with the penalty. The last termeretjuation
accounts for the penalty imposed by the honest nodes. Odlyj@auch a penalizing
scheme works for repeated games, where bad nodes turn gsaddessive rounds

of the game.

The following steps give a formal description of the meckandesign process.

Step 1 Choose a data mining protocol.

Step 2 Choose a privacy modét.

Step 3 Find the number of bad nodes or violators. When there is ndbfgek from the

system about the type of individual players(an open-logplem), the exact number
of bad nodes is not known. In that case, a peer needs to estimatnumber of

violators ast’ based on heuristics and/or initial information about thetesy.

Step 4 Based on the estimate of the number of violators and the chpeacy model,

compute the utility of collusiol/. ;... @and the cost of the protocol.,;.
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Step 5 Compute utility for a good node. Since a good node does nbtamby definition,

its utility is negative of the cost of the protocol and thetoofsprotecting the data
privacy, added to the utility of the data mining resulés Ujooq = —Ucost + Uresuit-
For a dishonest node, there is also the utility of collusiand the overall utility is

Ubad = Ucollusion — Ucost + Uresult-

Step 6 Design a penalty scheme such that the utility of the bad nederesl,,;, =
Ucottusion—Uecost +Uresuit — Penalty. In order for the bad nodes turn godeéenalty >
Uvonusion. Under such a scheme, rational nodes with the intentionltodmwill not

collude in the lack of any advantage.

Step 7 Apply this amount of penalty in each iteration of the iteratgame.

Table 4.2. Payoff table for secure computation with perfaitya 2-player game.

Player 2
H | C
H| Bi-U" —PO 46 B, —U" — PO 45| B —UY - PW 45, B, + U — pO
Player 1
VL cll B +u® - pw, B,y _ pa) 4 B, +U® _p® B, +U? _ p®

Proof of Nash Equilibrium of Penalty Mechanisms Consider a2-player game
where each node has either of the two strategies two stestbghestf) (good nodes) or
cheat () (bad nodes) B; denotes the payoff of participating in the basic protocolthe
i-th node.U"”)

collusion

denotes the additional utility of cheating when theretabad nodes,
and is thus subtracted from good nodes and added to chehtdhss section we replace

®

collusion

by U due to ease of representation. It is obvious &t = 0. § denotes the

additional payoff if a node does not cheat. From Table 4i8,evident that both good and
bad nodes are penalized by an amogfit, whereb refers to the current number of bad
nodes. It is generally assumed that the utility of cheatsngore than that of being honest,

i.e. U. > 0. By an appropriate choice of it is possible to sufficientlyncentivizea node
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to turn honest. In other words, if

B —UY —PY 5> B +UP - PO

=0 >U0% +U® 4+ pO — p@)

then nodes do better by being honest than by colluding.

Now, let us imagine there areplayers in a game. We map it to the 2-player table by
noting that player 1 in this case is not one player but ratherk players who are honest
to start with. Player 2 denotes the remaining set @layers who are all bad’{) at the
beginning but gradually change to honest)(as the game proceed®®(possibilities in

total). Thus we only consider-tuples in our game and depict them as,

—_——
n—k k

H,Hy,...,H,_), #%%---x%
WV

where each wildcard charactet tan take eitherd or C.

Table 4.3. Payoff table for secure computation with penfaltyann-player game.

Player 1
o, Ha,..  Hon
Hp i1, Hyriz, . Hn (B1,Bz2, -, Bnr), Br—tt1 Brrticts- . Bn)
Hpy_ a1y Ho— s, (B —UV — PO By — UM —pO B, — U — pW)
Chttist, Hopriva .- Hn (Bp_ji1 — UL — PO By i + UL — pO),
Bonpiive —UP — PO 45 B, — U — p)
PRy 2 eitse e Hopois Corrisns | (Bi—UP — PO By —0® — P, B, . —U® — p),
Cn—ktit2, Hn—ktits .-, Hn (Bng1 —UP —P® . By pyip1 +UP — PO,
Bp_piiie +UZ — PO B, —UP — p2)
Ch—kt1r--»Cn (B —U —p®) By U —p® B, — U — pl)y,
(Bp_py1 + U —pW®) . B, + U — p)

Since this is a repeated game, a state represents an meshtite game and it should
be noted that no two states of the game can occur at the sarae Bm- Uc(b) denotes

the payoff of the-th honest node whilé&; + U denotes the payoff of theth bad node,
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whereU " denotes the additional utility of cheating when there tabad nodes. Before

we prove the equilibrium state of this iterative game, wergefiome notations.

Definition 4.4.1. [ Threshold utility] The maximum amount of resources available to any

node for performing the computation is termed as threshuliyidenoted by;.
The payoff of the basic protocol,
B, = Utility of result (U,.) - Cost of executing protocol{,) - Threshold utility ¢;)
Therefore, the payoff of an honest node can be written as,
Payoff of an honest nod8; = Payoff of basic protocolR;) - Utility of cheating (/")
Similarly, the payoff of a dishonest node can be written as,
Payoff of a dishonest nod& = Payoff of basic protocol®;) + Utility of cheating (/")

Since different nodes in the system can have differentiolds,G; andF; can vary across
nodes. However, itis a rational assumption that- G;, Vi. In an asynchronous distributed
control environment, when a penalty mechanism is introdutereduces the payoffs of
both the honest and the bad nodes by the same améihitdenotes the penalty when
bad nodes are present in the systemiavaties fromk to 0. In order to make nodes change
from bad to good, one must increase the penalty at each siveesunds. This is because,
for bad nodes whose utility satisfy — P > 0, will only turn goodi.e. F; — P® < 0, if
P® increases and the honest state— P is better than the current state. As it turns out
thatG; — P < F,— P® we can see that nodes will have no incentive to turn goochdJsi
an additional incentivé, we can ensure that the honest state offers a higher payorfttie
dishonest state. Also, it is important to note that a state@fiame play witth out of £ bad
nodes currently cheating, can generégt)a possible arrangements of the bad nodes. Each
of these arrangements will have the same penalty for eadiedfanest nodes and each of

the cheating nodes and therefore we do not show these asiegiates in Table 4.3. The
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iterated game proceeds from bottom to top in the talbde,our goal is to make sure that

starting fromk bad nodes, the system converges to O (zero) bad nodes. hvaihds, we

intend to design a mechanism to produce a repeated gamdwsuet every iteration of the
game, the Nash Equilibrium of any cheating node is to unifditfechange to good. Below
we state a theorem which determines the amount of incefitikiat needs to be given to

each honest node to achieve this.

Theorem 4.4.1.GivenF;, > G;,Vi = 1...kandAP,, = P® — p®+) where P®)
denotes the penalty fércheating nodes, the Nash Equilibrium in any state of the game

that any cheating nodeturns good irrespective of other players’ decisions, if

§>UY 4+ U L AP,

Proof. Using Table 4.3, consider the first round of the game (the last row) and any
bad node whose payoff iB; + Ut — p+1) | the next round if it becomes good, its
payoff in the honest state will bB;, — U — P® + 4. In order for this node to turn good

unilaterally, the payoff must increase at the new state. om the given condition on,

6> U Uttt L AP,
= 0>U% 4 yutth 4 p® _ plth usingAPR,,, = P® — poth]

= B;—U® +P® 45> B, +Utt) — ptD

Therefore, if we can guarantee thiat U” + U™ + AP,., and the penalty at successive
rounds increase by an amoukpP,, ;, any cheating node will have higher payoff by turning

honest and will decide to do so. O

The following lemma proves that the only Nash equilibriunthad distributed compu-
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tation protocol with appropriate penalty is the scenariewhll nodes become good.

Lemma 4.4.2. Any penalty mechanism satisfying Theorem 4.4.1 will cge/¢o the
Hy, H,, ..., H, statei.e. all nodes will become honest. Furthermore assuming thastin
oldsty,...,t, are known and only one bad node becomes good in each rounaitbent

of penalty needed at any round in which there @led nodes is given by,
PY > B, + U where node changes its state

Proof. This lemma can be proved by induction.
Base casdwhenk=1):
Looking at row 2 of Table 4.3, we see that for node k + i + 1 to change to good in the

next round,

1. its utility must go below 0.e.

Byjriv1 +UD — PO < 0= PY > B, i +UW

2. the utility at the next state (good) should be greater tharcurrent one,

Bp_sit1 > Bopriv1 +UY — PY < 0= PO >yl

Combining these two, we see that) > B,,_..1+ U is sufficient for the g —k-+i+1)-
th node to turn good.
Any other case(k = b):
Here we assume that the lemma holdsioet b bad nodes and prove that the it holds
for k = b — 1 nodes.

Let us analyze any nodewhich is among the current bad nodes. Its payoff at the
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current round is,

B, +U® — p®),

which is negative if

PY > B, +UY.

Therefore applying an amount of penalty equalt® will ensure that the payoff of this

node will go below 0. Moreover, the payoff when it becomesdjisaiven by

B, — U — pt=b 5

By choosing following Theorem 4.4.1, we can make sure that it will havéghar payoff
if it turns good in the next state of play.
Since in each step of the induction process, one node willftom bad to good, after

exactlyk number of rounds, all nodes will become good. O

If we know all thet;’s, at each state we can select the bad node with the highest va
of ¢; and set the penalty using Lemma 4.4.2. This will ensure tkattey £ number of
rounds will be needed for all nodes to turn good.

The game theoretic framework discussed in this section eamskbd to analyze and
develop no-collusion versions of many existing privacysereing data mining algorithms.
The input to this framework will be specifications for the ettjve function — functional
representation of the threat based on the model of privadpéosystem and the calculated
communication and computation cost. It should be notedithe&ch case, the mechanism
designed would be different depending on all of the aboviefacAfter this general frame-
work description, we now illustrate our theory with a speo#fxample, viz. the secure sum
protocol. We have modified the standard secure sum protocodlaveloped a mechanism
for this protocol which ensures that by applying sufficieabglty to the system we can

make the system evolve to a zero collusion state iteratively



4.5 lllustration: Secure Sum with Collusion under Bayes Opimal Privacy %0
The secure sum protocol [36, 142] computes the sum of valliesdifferent nodes
without disclosing the local value of any node. It has beetelyi used in privacy preserv-
ing distributed data mining as an important primitieeg, privacy preserving association
rule mining on horizontally partitioned data [83];means clustering over vertically par-
titioned data [150] and many others. In this section we firsspnt the Bayes optimal
privacy model and then derive the threat associated withplatacy for a secure sum with

k colluding nodes.

4.5.1 Model of Privacy

Given the optimization problem, the privacy preservingadatining algorithm re-
quires a model of privacy for measuring the threat to eactysaprivate data. Here we
have extended the Bayes optimal model of privacy [109] fetriiuted heterogenous en-
vironments.

The Bayes optimal model of privacy uses prior and posteiigtridution to quantify
privacy breach. LeK be a random variable which denotes the data value at each Tibde
value at node; is denoted byt,. The prior probability distribution ig,,,;,, = P(X = ;).
Once the data mining process is executed, the participantsave some extra information.
Given this, we define the posterior probability distribati@s f,,sterior = P(X = x;|B),
whereB represents the extra information available to the advgisathe end of computa-

tion. There are several ways for quantifying the Bayes agitppnivacy breach.

Definition 4.5.1(p privacy breach): Let f,,ior and fyosterior denote the prior and posterior
probability distribution ofX . p privacy breach occurs when the difference between the two

distributions exceed the threshaqld.e., fostcrior — forior > p-

Definition 4.5.2(p,-to-p2 privacy breach)[55]: Let f,.ior @aNd fposicrior denote the prior
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and posterior probability distribution ak’. Thep,; — to — p, privacy breach happens when

fprior S P1 andfposterior Z P2, Whereo < P1 < P2 < L.

As noted in [109], any privacy definition which quantifies firevzacy breach in terms
of principle 1 or 2, is known as the Bayes optimal privacy moHewever, thesg, —to—p,
privacy models are specific to a global model of privacy umifly accepted by all data

owners in the system. Below, we extend this definition to &ibisted computing scenario.

Definition 4.5.3. [Multi-party p;-to-p, privacy breach] Given data; at v;, privacy breach
oceurs ifP(X = z;) = 1, < puand P(X = z;|B) = f9 ... > pa. Multi-party

p1 — to — po privacy breach occurs when the constraints are violatedafoy peer in the

networki.e. 3i, such thatf\",, < pi; and f{) > pai, Wherel < py; < po; < 1.

prior osterior

Note that the above definition is per data of a peer. If a peemniare than one data
value, the multi-party definition needs to be satisfied fahedata value. Moreover, in Def-
inition 4.5.3, the posterior probabilities of each peeregimer be dependent or independent
of each other. If the peers share the extra informati®n their posterior distributions are
also related. Since in our framework each peer solves thenigation problem locally, the
dependence or the independence of the posterior prolbedbidibes not change the privacy
requirements.

In the next few sections we design a penalty mechanism fog@esee of secure sum
computations under the multi-party, — to — p2) privacy model. We will show that the
semi-honest assumption of the secure sum protocol is stimapand design a modified
secure sum computation algorithm that uses a penalizingnseho enforce convergence

to the desired Nash equilibrium.

4.5.2 Secure Sum Computation

Suppose there arenodes, each with avalug, j = 1,2,...,n. Itis known that the

n

sumz = ', z; (to be computed) takes an integer value in the rgfgd” — 1]. The
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nodes are arranged in a ring topology as defined below.
Definition 4.5.4(Ring Network). Given a collection of nodeg;, vy, . . ., v, }, a ring net-
work is a network topology in which each node connects totgxago other nodes, i.e.

Vi=2...n—1,T1(v;) = {vict,viz1 }, T1(n) = {vp_1,v1}, andl'y (1) = {v,, v}

The basic idea of secure sum is as follows. Assuming nodesotioatiude, node
1 generates a random numb®runiformly distributed in the rang®®, N — 1], which is
independent of its local value,. Then node 1 addg to its local valuer; and transmits
(R + z1) mod N to node 2. In general, far= 2,...,n, node: performs the following
operation: receive a valug_, from previous node — 1, add it to its own local value;

and compute its modulus. In other words,
zi = (zi-1+x;) mod N=(R+ Zx]) mod N,
j=1

wherez; is the perturbed version of local valugto be sent to the next noder 1. Node

n performs the same step and sends the resutt node 1. Then node 1, which knovigs
can subtract? from z,, to obtain the actual sum. This sum is then broadcast to adiroth
nodes.

The secure sum computation algorithm expects each pargrtormm some local com-
putation. This involves generating a random number (forinit&tor only), one addition,
and one modulo operation. The node may or may not choosefarethis computation.
This choice will define the strategy of a node for computatidbhe secure sum computa-
tion algorithm also expects a party to receive a value framéighbor and send out the
modified value after the local computation. This party maynaty not choose to do so.
This choice can be used to define the strategy for commuaitaliihe total cost incurred
by a peer is the sum of the costs of computations and comntioriggerformed and there-

fore choice of strategies in both these dimensions is amagation decision that each peer
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needs to make.

4.5.3 Threat to Data Privacy or Utility of Collusion

The secure sum computation algorithm assumes semi-hoaggtspwho are only
interested in the end result and do not indulge in collusi®his assumption is not re-
alistic since any dishonest participant may want to collwith others to gain additional
information. Similarly, an honest participant would estiie presence of such dishonest

participants and take measures to protect their data dogamaltheir estimated threat.

Definition 4.5.5. [Colluding group] Given a collection of nodes, ..., v,, arranged in
a ring topologyv; — v — -+ — v, — vy, letk > 2 be the number of nodes who are
interested in exchanging information among them to digclather nodes’ data. We call

such a group as a colluding group or simply colluders.

Let us assume that there are(k > 2) nodes acting together secretly to achieve a
fraudulent purpose. Let; be an honest node who is worried about privacy of its data
Letv;_; be the immediate predecessowpanduv; . ; be the immediate successorgf The

possible collusion that can arise are:
o If Kk =n — 1, then the exact value af will be disclosed.

e If £ > 2 and the colluding nodes include bath; andwv;;, then the exact value of

x; Will be disclosed.

e If n — 1> k > 2 and the colluding nodes contain neither; norwv; ., or only one

of them, then; is disguised by, — k£ — 1 other nodes’ values.

The first two cases need no explanation. Now let us investipatthird case. Without

loss of generality, we can arrange the nodes in an order satht, ...v,_,_; are the
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honest sitesy; is the node whose privacy is at stake and, . .. v;,, form the colluding

group. We have
i+k

n—k—1

Z x; + X; = r— Z x;

J=' denotedby =
denoted byX denoted by

wherelV is a constant and known to all the colluding nodes. Now, ilgaicthat the collud-
ing nodes will knowz; is not greater thahl’, which is some extra information contributing
to the utility of the collusion. To take a further look, thdlooing nodes can compute the
posterior probability of;; and further use that to launch a maximum a posterior proibabil
(MAP) estimate-based attack. The posterior probabilitgsfanction (PMF) ofr; is as

follows:

fposterior(xi) = fY(y) = PT{Y - y}v (43)

whereY = W — X. X is a random variable and it is defined &s= Z;‘:‘f‘l z;. The

constantV’ is defined a8l = = — E;’;’j.“ x;. BecauseX is a discrete random variable, it

is easy to prove that

fr(y) = fx(x), (4.4)

wherez = W — .
To computefx (=), we can make the following assumption about the advergaaial

ties’ prior knowledge.

Assumption 4.5.1.Eachz; (j = 1,...,n — k) is a discrete random variable independent
and uniformly taking non-negative integer values over titerval {0, 1, ..., m}. There-
fore, X is the sum ofn — k& — 1) independent and uniformly distributed discrete random

variables.
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Note that using uniform distribution as the prior belief issasonable assumption be-

cause it models the basic knowledge of the adversaries.abignption was also adopted
by [149] where a Bayes intruder model was proposed to askesseturity of additive

noise and multiplicative bias. Now let us compuftgx).

Theorem 4.5.2.Let A be a discrete random variable uniformly taking non-negaiiv-
teger values over the intervdD, 1,...,m}. Let© be the sum of independent\. The

probability mass function (PMF) @ is given by the following equations:

o= =g v () L)

whered € {0,1,...,ms},r = =45 ], andt = 0 — | L= |(m +1).

Proof. The probability generating function of is

1
Ga(z) = E["] = m+1(z0+zl+~-~+zm).

Therefore, the probability generating function®is

(242" -+ 27)°
(m+ 1)
(1 _ zm—i—l)s

(1—2)*(m+ 1)

Go(2) = (Ga(2))* =

The probability mass function (PMF) éf is computed by taking derivatives 6fy(z):

GO(2)
Q!

Pr{® =0} =

WhereGg’)(z) is thed-th derivative ofGg(2).

In practice, it is probably not easy to compﬂlg)(z). Instead, we can exparids; (z)
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into a polynomial function of degrees. The coefficient of each tersi, ¢ =0, ..., msin

the expanded polynomial gives the probability that ¢.
To expand=g(z), let us first leave out the fact%i—l)s. Newton’s generalized bino-

mial theorem tells us thaty: = 372, (*7;7')2". Hence,

t

<1(Ijn::)s _ (Z (j) Z(m+1)j(_1)j> (g (s +~i— 1) zt> |

=0

The above equation can be written as follows:

I G NG T

t=0

s\x~ (s+t—1 2(m+1)+t
RIOPM QY

t=0

Therefore, the coefficients of the above polynomial havddhewing properties: for =
0,1,...,m,we have

s+t—1)
)

e the coefficient of! is (**}

e the coefficient ot "+ is (") — (1) (7)),

e the coefficient of:2(m+1+t jg (s+2(m+1)+t—l) . (i) (s+(m+1)+t—1) + (;) (s-i-t—l),

2(mA+1)+t mA14t ¢
e etc.
In general, fot = 0,1,...,mandr =0, 1, ..., the coefficient of"(m+1)+ is
zr:(—l)j(s) <s+ (r—7i)(m+1)+t— 1)
g j (r—75)(m+1)+t

Given the above results, the probability mass function (Pdff© is:

prie -0y - LS () (Ao

(m+1 = J (r—jg)(m+1)+t



whered € {0,1,...,ms},r = |45 ], andt = 0 — | 25 | (m + 1). O

According to Theorem 4.5.2, the probability mass functieME) of X is

fx(z) = Pr{X =uxa}
1
(m + 1)n—k=1)

Zr:(_l)j ((n ~ k- 1)) <(n k=D 4+ (=) (m+1)+t— 1),(4.5)

2 j (r—j)(m+1) +1t

wherez € {0,1,...,m(n—k—1)},r = | 5], andt =2 — | 5

|(m+1). Combining
Eq. 4.3, 4.4 and 4.5, we get the posterior probability;of

1
(m + 1)

i(_l)j<<n—¢—1)) ((n—k—1)+(T—j)(m+1)+t_1)’

pr J (r—7)m+1)+t

fposterior (Uz) =

wherez = W—z; andz € {0,1,...,m(n—k-1)}.7 = | .55 |, andt = z—| 55 |(m+1).
Note that here we assume < W, otherwisef,,s.rio-(z;) = 0. This posterior can be used

to quantify the privacy breach:

y(z,;) = Posterior Probability- Prior Probability = f,sterior (i) — %H (4.6)

Note that, when computing this posterior probability, wedeldhe colluding nodes’ belief
of each unknowne; (j = 1,...,n — k — 1) as a uniform distribution over an interval
{0,1,...,m}. This assumption has its roots in the principle of maximurnagy, which
models all that is known and assumes nothing about what isawk, in that case, the only
reasonable distribution would be uniform.

Probability of the sum of discrete random variables can aksalerived using the

probability density function (PDF) for the Gaussian daition. Let© denote the sum of



98
independent discrete random variables, and assume tia&es consecutive integer values.

Let = E(©) ando? = Var(©). For sufficiently large values of, © is approximately

Gaussian. Using the standard continuity correction,
Pr{© =0} = Pr{f — 0.5 < N(u,0?) < s+ 0.5}.

Calculating a midpoint approximation using a single sulivdl, the Gaussian PDF ap-

proximation is obtained, which is

Pr{e =6} — %6_(9_“)2/%2.

2mo

In the settings of Theorem 4.5.2,= nm/2 ando? = nm(m + 2)/12.

The derived posterior probability can be used to quantiéuhlity of collusion (for
dishonest nodes) or the threat to data privacy (for honedts)o Figure 4.1 shows a plot
of the utility of multi-party secure sum as a function of thistdbution of the random
variableW — z; and the size of the colluding group It shows that the utility increases
with increase ink. This implies that in a realistic scenario for multi-pargcsre sum
computation, nodes will have a tendency to collude. Theeefioe no-collusionk = 1)
assumption of the classical secure sum protocol is sulbrajti

Figure 4.2 shows a plot of the modified objective functiondecure sum with penalty
(equation 4.2) a% increases. We have taken, = 1. It shows that the globally optimal
strategies are all fok = 1. Note that for the no penalty secure sum, the optimal strate-
gies are fork > 1, hence it naturally leads to collusion. In the next secti@ndescribe a
modified secure sum algorithm incorporating penalty foluzhbhg nodes. It can be noted
here that this approach is different from Shamir's secrerisly approach [144] or Be-
naloh’s secret sharing homomorphism [21] since these sebeaquire a maximum size of

the collusion group in order to guarantee a secret computa@hor and Kushilevitz [35]
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Utiliity function f(x)

Size of colluding group (k) Random variable (x)

FIG. 4.1. Overall utility for classical secure sum computatidhe optimal strategy takes
avalue ofk > 1
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Utility function f(x)

50
40

Size of colluding group (k) Random variable (x)

FIG. 4.2. Overall utility for secure sum computation with pumgent strategy. The
optimal strategy takes a value b= 1.
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also proposed an oblivious transfer protocol for computhgmodular sunx privately

amongn parties, usingu. [“"7“1 messages. Again, the privacy guarantee is with respect to
the semi-honest adversary model. We, on the other hand geap8ayes optimal privacy

preserving sum computation algorithm.

4.6 Secure Sum with Penalty Algorithm

Consider a network of nodes where a node is either honest (good) or colluding (bad)
Bad nodes collude to reveal other nodes’ information wHike good nodes follow the
protocol and work out a penalty mechanism to punish collgdiodes to protect the privacy
of their data. We can reasonably assume that honest nodest dane for their payoff
and are interested in protecting the privacy of their dat@retcheating nodes are only
interested in maximizing their payoffs. Here we descrileesiacure sum with penalty (SSP)
algorithm presented in Algorithm 3. The distributed enmiment consists of a registration
system which keeps track of the number of honest and dishonodss and helps sustain the
operations of the honest nodes. As discussed earlier, gbethim comprises of a number
of secure sum computations. The steps of the algorithm dimlaws:
Solution of the optimization problem to decide penaltyThe optimization problem for
this setup consists of the threat measure for data privaagetb on the Bayes optimal
model) and the total cost. Each honest node has a predefigederment of the value
of p; andp, for the multi-partyp; — to — p, privacy breach which is part of the optimiza-
tion problem. For node, the bounds arg,; andpy;. Each node solves the optimization
problem locally for each round of the secure sum based onales ofp; andp, for that
round wherep, for a round ismax;{po;} for that round. The algorithm guarantees that
the node with the highest privacy requirement is satisfieivaBy comes at a high cost —
the cost constraints for nodes with lesser privacy requergsimay be violated as a result.

Therefore, we make the assumption that there is a minimutrcoostraint that each node
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Algorithm 3: Secure Sum with Penaltyy 6 P)

Input of node v;: (i) Size of the networki(), (i) Complete ring overlay topology (previous and
next neighbors), (iii) Initial type (NODETYPE = ‘H’ or ‘C’)(iv) Data vectorz; ;, (v) Payoff
threshold;, (vi) Metrics for calculating personal payaff; (for NODETYPE = ‘H’) or F; (for
NODETYPE = ‘C’), (vii) Only one node with NODETYPE = ‘H’ desitated agnitiator and has
flag done, (viii) A registration system (system administrator) talibws honest nodes to register at
the beginning of the protocol or between rounds. It also idles/resources to honest nodes so that
they can sustain operations.
If NODETYPE="‘H’
Random shares of, (randSharesList) based on the estimate of colluding nddgs (
else if NODETYPE =‘C’
List of all other colluders in the system (colludeList)
Output of node v;: Correct vector sum
Initialization:
IF NODETYPE=‘C’
Initialize colludeList
Exchange sum of elements in colludeList
ELSE IF NODETYPE="H’
Split the local data;; into O(k") random shares
Initialize randSharesList
END IF
IF node isInitiator
Setdoneto FALSE
Send its data;; after adding a random number and performing a modulo operati
END IF
On receiving a message:
IF node islnitiator
IF sum from last round is same as current round
Send sum to all nodes
Setdoneto TRUE
ELSE
Proceed to next iteration of the same computation
END IF
ELSE IF randSharesList!=NULL
Select next data share from randSharesList
Forward received data and new share to next neighbor
END IF
On completion of every secure sum computation:
IF NODETYPE ='C’
Compute payoff [;) = Result utility - protocol cost + collusion utility - thrbseld utility -
penalty
IF F; <t
Verified = Registrationy;); /call to Registration algorithm
END IF
IF Verified = TRUE
Set NODETYPE = ‘H’;
END IF
ELSE IF NODETYPE = ‘H’
Compute payoff@;) = Result utility - protocol cost - collusion utility#; - penalty
Solve the optimization problem again to find a new
END IF
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Algorithm 4 : Registration SystemHegSys)

Input:
e Thresholds{y,...,t,,) of all nodes who report
e Metrics for calculating personal paydff; (for NODETYPE = ‘H’) or F; (for NODETYPE ='C’),
e A List of previously reported bad nodes.

Output: A verification of honest reporting for each of the m nodes
Steps:

e SetVerified to FALSE for each of then nodes.

e Each ofm nodes submits bid (their ows) for winning an auction where the lowest bidder wins
and earns a payment equal to the difference of the lowestenskeicond lowest bid.

e Sortthresholds,, ..., t,,.

e Without loss of generality let; , . . . , ¢, be the nodes whose thresholds are such that their utilities a
lessthan Q.e.t1,...,tp ={t; : t; < U, — Cp — Uém_h)}.

e Remove all nodes fromist which belong tay, . . ., ¢y, i.e. List « List \ {t1,...,t,} and set their
Verified to TRUE.

e Select nodes,,i, andtyi, +1 Whose bids are minimum and second minimum.

Give tyin +1 — tmin iNCentive to the winner.
END IF

e Add all dishonest nodes to current dishonest listst «— List U {tp41,...,tm}-

e ReturnVerified for each of then nodes.
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agrees to abide by before joining the protocol. Such an gssamis not unrealistic since

most nodes in a network will have the minimum amount of resesito execute a protocol.
The outcome of the solution to the optimization problem isatimate of the size of the
colluding groupi.e. k. This estimate is different for each node.

Registration of nodesThe distributed computing environment relies on an onleggstra-
tion system for keeping track of the number of good and baesauthe system. During
initialization, only good nodes register there since regt®on requires paying the regis-
tering system and the colluding nodes would not want to logertion of their payoff in
paying for the registration since registering during thidahzation phase does not offer
any incentives.

Privacy preserving sum computationTo penalize colluding nodes, each good node splits
its local data intoy;k; equal shares wherg > 1. The privacy preserving sum computation
follows the ring topology based secure sum algorithm, eixttegi every sum computation
now requiresmax;{n;k;} rounds of sum computation where each good node randomly
sends one of theiy;k; shares. After every complete sum computation, the cheatidgs
compute their payoffsH;). The ones for whichF; < 0, request to register as honest nodes
for getting an incentive in the next round.

Registration verification For any subsequent round of registration, the registratystem
verifies the requests sent to it by the nodes as genuine ar Tdke is done using a Vick-
ery auction mechanism [154] described in Algorithm 4. Trgggeation system makes the
requesting nodes bid for an incentive of more resourcesdie3 using their current thresh-
old utilities t;s. Arguably, the nodes that are falsely bidding for gettimg éxtra incentive

to increase their payoff in subsequent rounds will not oxkbecause the lowest bid will
make them the winner. They would also not underbid becaugeng nobody else under-
bids, they would be able to maximize their winnings by bidpirsing their true;s. Using

this mechanism the registration system makes sure evangségg node truly reports their
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t;s. Since all other metrics for calculating the payoff for amomge is common knowledge,

the registration system can verify which nodes are honestjyesting to change to good
due to their payoffs becoming 0 or negative in the currenhdourhe registration system
adds all these nodes to the list of honest nodes and givesdlecentive to sustain their
operation in subsequent rounds. It also keeps a note of mtlevs from all previous rounds
which deter them from coming back again to the registraty@tesn, unless turning good.
Subsequent sum computation#\fter all the above steps, a new sum computation starts
and all of the above steps are executed again, only with aieased penalty at every
iteration. The protocol works when there is a non-zero podita of a subsequent round
of sum computation. In our context, this implies that diéie nodes in the system have
varying lengths of data vectors and also the number of splitiata for any one entry in
the vector varies across the good nodes. In any round, if @ dods not have any more
data, it adds zero to the sum and sends it forward. At the erelefy complete sum
computation, if the initiator (ring leader) finds that thersis same as that of the last round,
then no further secure sum computations are started. Thep8®étol terminates after
max(length of data vectgrrounds of sum computation.

In this thesis we make the assumption that once a bad nodedood, it never turns
bad again. This can be explained using dhacentive received by the honest nodes from
the registration system. Thus, at the end of any round, smdesturn from bad to good.
For every new round the good nodes solve the optimizatiobleno based on their belief
of the threat and the cost to get a valuetf It then uses this new value &f to split its
data for this round. When the SSP algorithm stops aftex(length of data vectqr the
number of bad nodes in the system reduce although they méermmmpletely eliminated.

A detailed study of the analytical bounds is provided in tegtrsection.
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4.7 Analysis of the SSP Algorithm
In this section we analyze the performance of the secure stimpenalty algorithm.
We first show in the following proof that the algorithm conyes to the correct result at the
end of computation. Then we discuss the equilibrium statelly, we analyze the privacy

of the SSP algorithm based on our definition of privacy.

4.7.1 Correctness Analysis

Although the SSP algorithm constitutes of multiple secunas being executed se-
guentially, we analyze the correctness with respect to onky secure sum. Correctness
of one secure sum implies correctness of multiple secure sunth hence of the SSP algo-

rithm.

Lemma 4.7.1. For any single secure sum, SSP algorithm converges to threaasum in
O(nk') time. Heren is the total number of nodes in the network arid= max;{n;k;},

wherek; is the estimate of the size of the colluding grouppgndn > 1.

Proof. The basic idea behind this proof is that sum computationdsiagosable, and the

order of addition of individual shares does not change the. $tor computing one secure

sum, let the sequence of numbers for pegrss, ..., v, be:
ry , T2 ..., Tp
~—
m k| parts nz2klparts nn k!, parts

Since computation takes place in a ring— v, — --- — v, — vy, each round takes
O(n) time. Now based on SSP, nodesplits its data intoy;k; (k; > 1,7; > 1) shares and

requiresn;k; rounds of computation to compute the total sum. The sucan be written
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as:

S = o+ 4w,

- g
- 771k?'1 771k?'1 nnkg nnk;@

n1 K times nn K} times

Thus the sum is invariant under such decomposition and iogler
In each round, whenever a node receives a message, it adds itse; %, shares. If
all its shares have been added up, this node simply input®aEkis process will continue
k' = max;{n;k.} roundsi.e. as long as at least one of the nodes will have a share to add.

Therefore the total time required is given by:

n x max{nki} =n x k'

Therefore, the overall time required is boundedXy:.k’). O

Lemma 4.7.2.The Vickery auction ensures that the optimal payoff is agdenly if each

node reveals its correct threshold

Proof. Let b4, ...,b,, be the bids of then nodes going into the registration system. We
can write the payoff of any node as,

Payoff ofv; = S 7

0 otherwise

For any node, the following two cases can occur:

Overbid (b; > t;): No node will overbid since the lowest bidder wins. If it bigss$,i.e.
min,,; b; > b;, it wins. On the other hand ihin;4; b; < t; it loses. So the payoffs
in these two cases are the samet; Ik min;.; b; < b;, truthful strategy wins the

auction. Therefore, overbidding is dominated biddingrtfwily.
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Underbid b; < ¢;: If min;»; b; > ¢;, it wins the auction. linin;,; b; < b; it loses. So the

payoffs in these two cases are the same); K min;; b; < t; then underbidding
wins the auction. However, the payoff is less in this casepamed to truth telling.

Therefore, underbidding is dominated by truthful repaytas well.

4.7.2 Performance Analysis

In this section, we present two results: (1) the probabdftg bad node turning into a
good node, and (2) the probability that at the end wérations, colluding nodes remain

in the system.

Lemma 4.7.3. Let thresholds of the nodes be normally distributed withapagtersu, o.
Then the probability,;) of a nodei becoming good when currently there &rbad nodes

in roundj in the system is given by

g

_ (&) _p) _
hz’jzl—q)(UT CptUe “)

where®(-) is the area under the standard normal curvewapid the weight associated

with the utility of collusion as discussed before.

Proof. In order for a node to turn good we know that, its payoff shdudless than O.
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Therefore,

h;; = P(Nodei becomes good
= P(Payoff ofi < 0)
= P(B;+UY — P® <)
= P(U,-C,—t;,+UY — P® <)
= P(t;>U.—C,+UY — p®)
o

o

_ ®) _ pb) _
:1_®<Ur c,+U® - p M) “.7)

g

O

The next lemma bounds the probability of maximdmolluding nodes remaining in

the network at the end of round

Lemma 4.7.4. The probability that at the end ofiterations,? colluding nodes remain in
the system is given by,
k—19 r g—1
h=1] [Z hig [ J(1 - hm)]
i=1 Lg=1 /=1

whereh,, is given by Lemma 4.7.3 arids the initial number of colluding nodes.

Proof. Since initially the system started withcolluding nodes and the target is to reach
¥ number of colluding nodes, it must be true that ¢ number of hodes become good

in theser rounds. Now, all of thesé — ¢ nodes must have become good in one ofithe
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rounds. Therefore, for a fixed nodewe can write the probability that it becomes good as

h; = Probability that it becomes good either in routher round2 or ... roundr

= hit + (1 = hi)hio + (1 = hi)(1 = hi2)his + ... + (1 = ki) (1 = hig)...(1 = hie—1)) Py

r g—1
= Y hig [J(1 = hae)
g=1 =1

whereh;; = @ <U7“C”+Uj(:)"3(b)‘“) is the probability of the-th peer becoming good at

round; havingb bad nodes. Since the nodes execute independently, th@tobalbility

is given by

h = h1Xh2X...th_19

k—19 r g—1
= H [Z hig H(l — hié)] (4.8)
/=1

i=1 Lg=1
U

Lemma 4.7.5.Leth;; be the probability of the;-th node becoming good at round 1. Given
that the system started withbad nodes, and it converged tbbad nodes, the expected

number of rounds is given by,
1

1) ha

k—19 9 _ hil k—19 1
h2 - H h_21
1 (3

i=1

with variance

Proof. Assuming that at each round the penalty induced is the samgetthe probability

that nodev; becomes good in roundas,
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Therefore X; follows a geometric distribution with the following meandavariance:

L
hix
Now for k£ — ¢} bad nodes turning good, we can write their joint distribotas (assuming

independence of decision making by all nodes),
P(Xl :’I“,...,Xk_g:’l“):P(Xlz’l“) Xoeee XP(Xk_,g:’I“).

Therefore the expected number of roundseforek — ¥ nodes turn good can be written as,

1

E[X17 . '7Xk—19] = E[Xl] .. E[Xk—ﬁ] = —
[T ha

- (R) _p(k)
wherehy = 1 — @ (U=Cetle 0o

o

Similarly, the variance of the joint distribution can be ten as,

Var(Xi,..., Xes] = E*X1,..., Xs 9] — [E[XE, ..., X2 ]

= E’[X\]... E?’[Xy 9] — B[X7]... B[X}?_]

1-— hll 1 ) 1-— h(k_qg)l 1
= + — ] X -+ X —+
< h%l h%l h%k—ﬁ)l h%k—ﬂ)l

1 " " 1
hiy h%k—ﬁ)l

B k—19 9 _ hil k—19 1
B ) 11 h2
i—1 il i—1 il

1=

O

Note that in this derivation we have assumed that the peraityins the same for all
the iterations. This can be relaxed; however in that casdigttigbution no longer remains

geometric and there might not exist closed form expresdimnthe expected number of



Table 4.4. Payoff table for three-party secure sum comjauntat

A|lB|C Payoff Payoff Payoff
(No Penalty)| (Policy I) | (Policy II)
G|IG|G (5,6,7) (5,6,7) | (56,7
G| G |B (5,6,7) (4,5,0)| (3,8,5)
G| B |B (5,7,8) (0,0,0) | (2,7,8)
B/ B|B (0,0,0) (0,0,0) | (0,0,0)
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rounds in that case.

4.7.3 Equilibrium Analysis

In order to analyze the stability of the modified secure sugorithm, we will use the

concept of Nash equilibrium. An illustration is presentedhie next section.

Nash Equilibrium lllustration for a 3-node Network The idea described in the
last section can be further explained using a simple exantipigtrated in Table 4.4.

Consider a game with a mediator where each party first canthet mediator and
declares their intention to be a good node (follow protoaslbad party (intending to
collude). When there is no penalty for misbehavior, eveeywiil benefit by colluding
with others. This will result in all bad nodes colluding wigach other in order to violate
the privacy of the good nodes. Now, let us consider the sanathere the mediator will
penalize using either Policy | or Policy Il (Section 4.4.2he mediator can enforce Policy
| since everyone reports their intentions to the mediataarh also easily enforce Policy I
by simply countingk, the total number of colluding nodes. Table 4.4 shows thefisyjor
different penalty policies. For this table we assume thievahg values of the parameters:
B=281 =3t =2t =1,U" =0,PO =2 P® = 1,7V = 2. Also s for
row 2 is 4. This gives us the values as shown in the table. Where tis no penalty, all
scenarios with two bad parties and one good party offer thiedst payoff for the colluding

parties. Therefore, collusion with other nodes always bexthe highest paying strategy
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(the dominant strategy [70]) for any node in the network.cAlse observe that the payoff

for bad nodes always decreases if it becomes good, assunarsgatus of all other nodes
remain unchanged. So the Nash equilibrium in the classemlre sum computation is
the scenario where the participating nodes are likely ttudel Note that, the three-party
collusion is not very relevant in secure sum computationesthere are all together three
parties and there is always a node (the initiator) who wangsdtect the privacy of its data.
For both policies | and Il the Nash equilibrium corresporm#hie strategy where none of
the parties collude. For policy Il if any node deviates froeiny good, the communication
and computation cost increase(O(k)) fold due to the data being split into shares. This
acts as the penalty. The incurred penalty, in addition taytamount a good node gets by
becoming good, is not compensated by the benefit gained dl¢ @bllusion. For nod&

in the table, when it goes from row 3 to row 2, its payoff in@esfrom 7 to 8. So it changes
from bad to good, irrespective of the strategy of other piay€his result will trigger other
changes because in this case, the collusion utility of therdiad node will decrease while
the penalty will increase. Therefore its strategy will beéum good. Therefore all good

will be the Nash equilibrium.

Lemma 4.7.6.For the SSP algorithm, assuming that the benefit from chg&imore than
not cheating,i(e. F; > G;), and given an extra incentive > u® + Ul 4+ AP, to

the honest nodes,( H, H, ..., H) is the only NE, wher&\ P, , = P® — pt+1),

Proof. Using the same proof technique as Lemma 4.4.2, we can pravéHhH, ..., H)

is the only NE. O

We would like to point out here that in the absence of any faekllbegarding the num-
ber of dishonest nodes in the system, it is not possible igdegpenalty sufficiently higher
for forcing all bad nodes to change to good. In that case wlewilhave &7 (H, H, ..., H)
equilibrium state; rather number of bad nodes will remain in the system. We have demon-

strated this experimentally in Section 4.8. This is rewglisince, turning all nodes to good
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often cannot be achieved due to high cost constraints. Hemvewven in this case, the

multi-party p; — to — p, privacy is satisfied for every peer as we show next.

4.7.4 Privacy Analysis

The SSP algorithm framework presented in this chapter camsbd with many dif-
ferent privacy models. This is because the algorithmic &awrk is itself independent of
the privacy model. The only place where privacy model is uséal calculating the threat
to data privacy. In this thesis, we have used the Bayes optirvacy model or the multi-
party p; — to — p, privacy model, though we claim that many other models ofgaysuch
ask-anonymity,/-diversity, ore-differential privacy can be used.

In order to prove that the SSP algorithm is privacy presepvinis sufficient to show
that multi-partyp; — to — p privacy constraints are satisfied for every peer if the SSP

algorithm converges with all honest nodes.

Lemma4.7.7.The SSP algorithm is multi-parpy —to— p, privacy preserving if all nodes

become honest.

Proof. For peer;, let py; andp,; denote the upper bounds on the prior and posterior prob-
ability distributions respectively. When the algorithmneerges with all good nodes,
becomes 0. In this casgﬁ?sterm(o) = 0 < po;. Thus, independent of the initial number

of bad nodeg, in the termination state, multi-pargy — to — p, is guaranteed by the SSP

algorithm. O

As pointed out in the earlier section, in the absence of aegilfack, we cannot guar-
antee that all bad nodes will be purged from the system. Hgrsséfices to say that in
those cases whergbad nodes remairy‘;gf)ltmor(ﬂ) IS not guaranteed to be less tha.

As a consequence, multi-panty — to — p, might not hold in these situations.
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4.8 Experiments
In this section we describe the results obtained by simngatie SSP algorithm for

different network and collusion sizes.

4.8.1 Overview of the Simulation Set-Up

We have used the Distributed Data Mining Toolkit (DDMTeveloped by the DI-
ADIC research lab at UMBC. We set up a simulation environneentprised of a network
of n nodes where a node can either be good or bad. We have exptthwith an-node
network on which we have overlayed a ring topology. All expents reported here are
initiated with 50% k=n/2) colluding nodes. The nodes in the network have vectors of
different sizes. Therefore, a series of secure sum conmgpnsatake place and no node in
the system knows when the computation is going to stop. Hewéor our experiments
we have studied the performance of the algorithm for 50 reukidw many iterations each
secure sum computation requires, is determined by the fyetetided at the beginning
of each round. For every round of secure sum computatiomy ewale solves the opti-
mization problem locally and decides on a valug:odnd splits its data inté, parts. Each
round of secure sum requiresix{k;} number of iterations (assumimg= 1, ¥i). The bad
nodes in the system form one single colluding group. Thesttolel utility ¢; of any node
is selected as a random number betwieen,| wherec, andc, are two arbitrary constants

for each node.

4.8.2 Measurement Metrics

After every round of the secure sum protocoé( after every one of the 50 sum

computations), we measure the following quantities:

2http://www.umbc.edu/ddm/wiki/software/DDMT/
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e Utility of result (U,): This measures the utility that any node in the system gets b

computing the correct result.

e Cost for executing basic protocal’f): This includes messages sent and computa-
tional expense incurred by all nodes (such as addition andutocperation) for
executing the basic secure sum protocol. We assume thahezsgage transmission

and computation costs one unit.

e Utility of collusion (Uc(b)): This is the extra utility that any dishonest node gets as a
result of collusion withh — 1 other colluders. It is computed using the formula in

Egn. 4.3.

e Penalty P™®): This is the amount of penalty that is necessary for bad sitaléurn
good applied in the round in which there dréad nodes before the application of

the penalty.

The total utility of the basic protocadb; is,
B,=U,—-C,—1t

The utility of the bad nodes is given by,
F;=B;+ U

The utility of the good nodes is given by,

We do not use the penalty terff®) in these expressions since for the SSP algorithm
the penalty is given in terms of increased communication @mputation cost and is

therefore counted as part 6f.
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After every round each node measures the above utilitiesorder to bring these

utilities in the same range of values, we normalize the ngesstor both bad and good node
between 0 and 1. In our experiments since we know how manyagessre exchanged by
all peers, we can easily perform the normalization. In pcaceach peer can independently
do this normalization without any input from other peersth utility of a bad node falls
below 0, it changes to a good node from the next round onwatd.irBorder to do this

it needs to get an incentive such that its payoff in the nexhdobecomes better than the
current round. The registration system ensures (usingeviclkuctions) that all nodes
report their correct utility in order to get the added indeat The registration system also

keeps track of the cheating nodes who try to falsely reperigelves as honest.

4.8.3 Results

We have experimented with two different network sizes : 1608e3 and 500 nodes.
For each experiment we have assumed that 50% of the netwosist®of colluding nodes.
We plot the decreasing number of colluding nodes with sigieesounds of secure sum
computation.

In Figure 4.3 we have shown how the number of colluding no@esehses with suc-
cessive rounds of secure sum computation. We observe thedtih of decrease is gradual
though not uniform for both the sizes of the network. Thisesduse in every round we
increase the penalty and so a number of nodes change frorn gadd. Since in the exper-
iment we do not have any idea of the thresholds, we have obdémall our experiments
there are certain rounds in which no bad node changes whithars the change may be

by more than one. We have observed the same change profiletfothe network sizes.
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FIG. 4.3. Decrease in the number of colluding nodes in the nétweer successive
rounds of secure sum computation.

4.9 Conclusions

Many of the existing privacy preserving data mining aldons often assume that the
parties are well-behaved: they abide by the protocols asa@d and do not collude. Butin
reality most people involved in such computations are isgéfrested (rational) agents. In
this chapter we formulate the privacy preserving distediudata mining problem as a multi-
party game where each party tries to maximize its own olyjectWe consider the multi-
party secure sum computation problem for illustrating tpene theoretic formulation.
Using this framework, we show how the assumption of semiestnis sub-optimal for the
traditional secure sum computation algorithm. We thengarea variant of this algorithm
(SSP) that penalizes the violators in a decentralized dashWe provide mathematical
results for analyzing the performance of the algorithm. énivdng these results we have

made certain assumptions:

e First, we assume that the data distribution in the securemotocol is uniform in



118
order to derive an expression for the threat model that we haed throughout this

chapter. A different choice of the data distribution (suslgaussian, poisson, etc.)
is possible leading to a different threat model and as a tresdifferent objective

function.

e Secondly, we assume that the nodes work independently ilidgowhether to
change from bad to good. The only dependence among them s&doing data in
case of colluders. This assumption is used for deriving théability of ¥ number
of bad nodes remaining in the system afteounds (Lemma 4.7.4). Itis a reasonable
assumption to some extent for certain distributed apptinat however an alternative

expression involving joint decisions by colluders wouldtieresting to study.

e We have also assumed that nodes which turn from bad to goodtdorn bad again.
We have strengthened this assumption usingdtiecentive from the registration
system. However, in the lack of such a system, a deviatiom filuis assumption

might make our SSP algorithm vulnerable to collusions.

Although in this thesis we have used Bayes optimal privasgtdanulti-partyp; — to — po
model, this can be easily replaced by other privacy moddlstiterature. Finally, we have
simulated a ring topology and conducted experiments tdydre analytical results. Our
results corroborate the claim that the equilibrium, in taeecof secure sum with penalty
algorithm shifts to the more desirable statejafolluding nodes. In the next two chapters
we see how we can extend this framework to perform differéstriduted data mining

tasks in a privacy preserving manner.
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Chapter 5

PRIVACY PRESERVING DISTRIBUTED SUM
COMPUTATION AND ITS APPLICATIONS

5.1 Introduction

The privacy preserving sum computation algorithm desdrib&hapter 4 can be used
in variety of distributed data aggregation applicationstHhis chapter we propose a scal-
able, local privacy preserving algorithm for distribute2Fdata aggregation. Unlike most
multi-party privacy preserving data mining algorithmsistapproach works in an asyn-
chronous manner through local interactions and therefheghly scalable. It particularly
deals with the distributed computation of the sum of a setushipers stored at different
peers in a P2P network. We develop a distributed averagatmigue that uses secure sum
computation as a building block. The algorithm is provalagrect and asymptotically con-
verges to the globally correct result without the peerstiad communicate with every
other peer in the network and without having to discloseriiiévacy sensitive information
to other peers. The optimization-based privacy presen@aignique for computing the sum
allows different peers to specify different privacy regumirents without having to adhere to
a global set of parameters for the chosen privacy model. k&mtiost secure multi-party
computation protocols, our algorithm does not assume semest adversary. We prove

that this algorithm, though not secure, is privacy preseraccording to the Bayes optimal
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model of privacy. Since distributed sum computation is gdently used primitive, the

proposed approach is likely to have significant impact onyrdata mining tasks such as
multi-party privacy preserving clustering, frequent isghmining, and statistical aggre-
gate computation. We show how the algorithm can be adapted ¥eeb advertisement
popularity ranking application and also a distributed aciy preserving feature selection
algorithm.

The rest of this chapter is organized as follows. In Secti@we give a description of
our approach using some of the building blocks describeaararlier chapters. In Section
5.5 we formally describe the privacy preserving distribuseim computation algorithm
and analyze its performance in Section 5.6. We demonstnatempirical performance
of our approach in Section 5.7. Finally, in Section 5.8 wecaés two applications of
our algorithm: a web advertisement ranking applicatiotofeéd by a feature selection

application. We conclude the chapter in Section 5.9.

5.2 Algorithm Overview

To the best of the authors’ knowledge, there does not exisipamacy preserving
asynchronous algorithm for sum computation. The securepotocol [36] solves a sim-
ilar problem but is highly synchronous. There exist seveoditions to asynchronous dis-
tributed averaging, but are not privacy preserving suciid8,[143]. Also, the distributed
averaging techniques based on the Laplacian of the netwpdtdgy assume a symmetric
graph topology. However, in our framework we allow differandes in a network to spec-
ify their own privacy value bringing in the concepts of perabzed privacy as discussed
in Chapter 3. This leads to an asymmetric network topologgiscussed later. Therefore,
we propose a new variation of the distributed averagingréalgo described in Chapter 3.
Combining this newer variation of the distributed averggwith the secure sum protocol

in a small neighborhood of a peer, we propose a privacy pregesum computation al-
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gorithm which (1) asymptotically converges to the correstult and (2) being only locally

synchronous, scales well with the network size. Note theaatierage computation problem
can be converted to a sum computation problem by scalingaigdta of each peer by the
total number of peers.

Notations: It can be recalled from the previous discussion thatys, . . ., v, is the set of
peers connected to each other by an underlying communidafi@structure. The network
can be viewed as a gragh = (V, E), wherelV = {v,vs,...,v,} denotes the set of
vertices andE' denotes the set of edged.,(i) denotes the set of neighbors af at a
distance ofx from v; and|T",,(7)| denotes the size of this det. the number of neighbors in
the a-neighborhood. Further, 161,,..,, denote the connectivity matrix or topology matrix

of G representing the network where

(

_|F2,1| |f Z,jEE,Z:j

wij =941 ifi,jeli#j
0 otherwise
Let X, Xo, ..., X, denote the real-valued data vectors, each of gitae each peer.

For peerv;, x;; is the j-th, (j = 1,...p) element of the data vectof,. Let X be the
random variable for the distribution af;. Letz; denote the global sum of thjeth data
elementr;;. Finally, letr denote the size of the ring that peeforms for the secure sum
computation.

We now define the steps of the distributed privacy presersurg computation algo-
rithm.
Define Privacy Requirement: Our solution is based on the concept of personalized pri-
vacy in which each node is allowed to choose its own privacgehoAs an example, we
use the Bayes privacy model. We say that our algorithm isapyiypreserving if it satisfies
the multi-partyp; —to— p, privacy requirement as defined in Section 4.5.3. In the S§&* al

rithm discussed in Chapter 4, due to a single ring topologhénetwork, the multi-party



122
p1-t0-py became uniform for all nodes whepg was fixed (based on uniform distribution

assumption) ang, wasmax(py;). Therefore, for personalized privacy each peer in the
system decides how much threat it is willing to tolerate asfihes its own values of, for

the multi-partyp; — to — po privacy. In Section 5.3 we analyze how optimization can be
used to calculate the privacy requirement of each node awdim® threat changes in the
presence of multiple rings.

Ring Formation: After deciding on the privacy value, each node forms its fimgthe
secure sum protocol. This is done by sending invitationgheronodes in the network to
join its ring. Every node in the system is the initiator of @&n ring. It should be noted
here that if a node accepts an invitation to join someongeg, lit does not imply that this
node also invites that node to join its ring. This leads to symametric network topology
which means peaer; is the neighbor of; does not imply that, is also the neighbor af;.
Section 5.5.1 gives a detailed description of the ring fdromealgorithm.

Privacy Preserving Sum Computation in Local Ring: After the rings are formed, the
nodes then compute the sum in their own rings by following@ise sum computation-
like protocol which uses distributed averaging for an asytpconvergence to the global
sum. To address the issues of asymmetric network topologyedfy existing distributed
averaging techniques and propose a modified update ruldniddiscussed in details in
Section 5.4.

Therefore, our proposed algorithm uses multiple local semputation protocols
with different ring sizes, one for each node in the networkisTapproach addresses two
issues: (1) it proposes a solution to privacy preservatidreterogenous environments and
(2) it avoids creating a single large synchronous ring fon ssomputation which makes
the algorithm scalable for large-scale distributed systefihe sum computation does not
claim to be a secure protocol by getting rid of the semi-hbassumption, but still is

privacy preserving.
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The distributed averaging based sum computation can beinedhlwvith the penalty

mechanism described in Chapter 4 to reduce the number oidtodl nodes in the system.
However, since we already start with a ring size that is gefiicto guarantee,-to-p,

privacy for each peer, we leave out the penalty mechanism fnmst of our discussion in
this chapter except the L-PPSC algorithm description. dusthbe noted that the penalty

mechanism can be introduced in all the algorithms desciib#ds chapter, if required.

5.3 Privacy Preservation as Optimization

It can be recalled from Section 4.5.3 that for secure sum @athusion, the threat to

data privacy can be defined as:

1
threat = Posterior — Prior = fposterior(Tij) — ] (5.1)
m

where the posterior probability,,ste.io-(7:;) (also p2 for our model of privacy) can be

defined as

1 (T k-1
fposterior(xij) - (m_|_ 1)(T—k—1) Z(_l) ( )

p=0 p

y (T—l{:—1+(r—p)(m+1)+t—1)

(r—p)(m+1)+t (5-2)

where is the size of ring;n is the range of the;;, k£ is the number of colluders in

the systemz; = W —z;; andz € {0,1,...,m(r —k — 1)}. r = [;Z5], andt =

z; — Lmz—ilj (m + 1). Note that here we assumg < W, otherwisef,osterior (i) = 0.

It can be observed from this threat measure that (%)iasreases, the posterior prob-

ability increases, and (2) asincreases, the posterior probability decreases. Thisi@éspl
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that as the size of the network involved in the secure sum atetipn increases, the threat

decreases for a fixed size of the colluding group. Therefitve privacy of the data of
the users in the secure sum depends on the initiator’s clobitee size of the groupr.
The choice ofr can vary between 1 and the total number of node#\s the value ofr
increases, the threat to a user’s data due to collusion @sEseassuming a constant per-
centage of colluding nodes in the network. However, ingregs increases the overall
communication cost and synchronization requirements efalgorithm. Since the com-
munication cost increases linearly with the size of the sesum ring, the multi-objective

optimization scalarization can be written as:
max [wy; X threat(r) — we X cost(7)]

subject to the following constraintsovst < c¢; andthreat < t; wherethreat(r) is given
by Equation 5.1 andost(7) = w. X ¢ X 7. ¢ is the proportionality constant ang and
t; are constants for every peer and denote the cost threshdlgraracy threshold that
each peer is willing to withstand. This is a multi-objectmvgtimization problem where
the threat increases while the cost decreases with inaggasBelow is a solution to this

optimization problem.

Lemma 5.3.1.Given the thresholds for threatand cost:;, the solution to the optimization
problem

max [wy; X threat(r) — we X cost(7)]

is given by

IOg('LUtZ‘) — |Og(tz) <t < C;

1+k
T log(m + 1) Wei X ¢



Proof.

hm:z’":<_1)q<7—k—1)(T+t—k—2+(r—q)(m+1))

= q (r—q)(m+1)+t

Now, we know that fow > b, (§) > 1. Therefore,

h(t) > 1.

Using the constrainthreat < t; we know that

Wy

(m+ 1)1~ hir) <t
Using these results, we can write,
1 < h(r)
Wt; Wt;

= (m+1)—k=1) < (m+1)—k=1) X h(r) < ti
= Wi <t

(m‘l‘ 1)(T—k—1) — v
= (m+1)0FD > %

v

= (tr—k—=1)log(m+1) log(wy;) — log(t;)

log(wy;) — log(t;)

1+ k
e log(m + 1)

=T

v

Similarly, using the constraint on cost, we get

IA

Weg X g X T C;
Ci
=7 <

wcixg
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(5.3)

(5.4)

Using Equations 5.3 and 5.4, we get the optimal value @fenoted as;* in accor-
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dance with the rest of the chapter):

C;

1+k
T log(m + 1) Wei X g

(5.5)

O

Now, depending on its personal preference, each peer caselioe number of nodes
(r7) for computing the sum in a privacy preserving fashion, eamghe presence of collud-

ing parties.

5.3.1 Threat Measure in Presence of Multiple Rings

Equation 5.2 gives us a measure of the threat when there ysoo ring. In the
presence of multiple rings, a colluder can infer more knolgéeabout an honest node’s
data. In this section, we derive an expression for threataltiple intersecting rings. For
simplicity, we consider the situation of only two intersagtrings. The case for multiple
rings can be analogously derived.

Let there be:; nodes inring 1 and, nodes in ring 2. The values at the nodes for the

two rings be arranged as follows:

common not common

Rlng 1:1:17] T xC—l,j - xcvj - xavj - xa"_lvj T xgm]
common not common

RiNg 2:7y; — -+ — Ze1j = Tej = Ty = Tog1; — o0 — Ly

For ring 1, let the colluding nodes be_, ;, z. ;, z4 ;, Ta11,;- Similarly, for the other
rng, x._1,, Tc;, Tpj, Tp41,; are the colluding nodes. Let the number of common nodes be

c. Denoting the sum of the data values in the ring€hyandC5, we can write,

JJLJ’—'—"'—F.TCJ+.Ta7j—|—"'+$g,j:Cl

xl,j+"'+xc,j+xb,j+"'+xh,j:CZ
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Subtracting, we get

Taj+ -+ Tgj— (Tp;+ - +p ) =C1 = Co

Since the values of the colluders,(;, zq+1;, 21 j, Zp+1,;) are known to the colluding
group, we can even subtract these from the sum to be estimatedare left with the

following expression:
Tatoj + -+ Tgj— (Togoy + -+ any) = C1 — Cy = (Taj + Tagrj + Toj + Toi15)
LetCy — Cy — (24 + Tat1,; + Tb; + Tpr1,5) = C. We can now write,
Tatoj + -+ Tgj— (Togoy + - +ap;) =C

Without loss of generality, let the node whose value is aahbez, ;. Thus, we can

write,

Tg,j =04 | Togay+ - Tng | = | Taoy + o+ 20,
denoted by denoted byX denoted by

Note thatX andY are the sums ofi;, — ¢ — 2 andn; — ¢ — 3 (leaving out the one to be
estimated) iid random variables respectively. Now si@cis a constant, it can be shown

that,

P(Z=z2) = P(X-Y =2)
(n1—c—=3)m
= Z P(X =Y =z]Y =y)P(Y =y)

y=0
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Using the result of Theorem 4.5.2, we can write the expredsioP (Z = z) as,

(n1—c—3)m ry

1 (o —c—2
P(Z=2 = Y. (m—l—l)(m—c—?)z(_ly(? j >X

y=0 Jj=0
<(n2—c—2)+<ry—j)(m+1)+ty—1> "
(ry =) (m+1) +1,

qy

(m+ 1)1("1—6—3) > (=1 (”1 —jc - 3) .

j=0
((m —c=3)+(gy—)m+1)+sy— 1)
(ay — ) (m+1) + sy

wherey € {0,1,...,m(ny—c—3)},r, = Liflj, @ = |q)ty=y+z— g;flj(mjtl),

ands, =y — |45 /(m +1).

Next we generalize this expression in the case of multigiersecting rings having
colluders. Let there be intersecting rings in the system. Further, let there be ancom
node to all the rings;. We assume that; is honest and seek to determine the posterior
probability of its privacy breach. Our proof proceeds byiigkwo rings at a time and then
finding the probability of breach af; for those two rings. Led,, ,(v;) denote the posterior
probability of v; considering ringsn andn. In this case, since the posterior probabilities

are independent, we can write the overall posterior prdibpabs:

15
A= > Apn(v)
mn=1,m#n
From the discussion in this section we can evalustg,(v;). This expression can then
be summed over all the possible rings to evaluate the finaksgmn. Now that we have
analyzed the privacy implications of our multiple ring tépgy, we proceed to discuss the

distributed averaging technique that we have developed.



5.4 Distributed Averaging for Asymmetric Topologies 12
The distributed averaging technique that we are explorgygngtotically converges
to the global average. It can easily be used to compute theifseath peer multiplies
its data by the total number of peers in the network. Theegftor the given scenario,
each peep; contains a real number x z;; wheren is the size of the entire network and
the objective is to computd; = 23" n x z;; i.e. the sum of the numbers. There
exist several techniques in the literature to estimate #te/ork size. Examples include
the capture-recapture method proposed by Mara. [110] and aggregate computation as
proposed by Bawat al. [18]. Moreover at any time, the number of nodes in the network
can be estimated efficiently using heartbeat mechanisnmetransmissions as proposed in
[92]. From now on we assume that each entyyof the data has been multiplied by the
total number of peers so that distributed averaging givegtbbal sum and not the global

average.

T
[zf)zét?.. z(t)} denotes the estimate

Let z;; denote thej-th data of peep;. " V) .. 2

of the global sum\; = 13" | z;; by n peers at the-th iteration. The initialization is
(0)

Z.

= [Ty - .xnj]T. The proposed algorithm works as follows: at any iterateach

peerv; gets the estimate from all of its neighbors (ﬁ{m]tél)’s fori € I'; ) and then generates
the estimate for rount(i.e. zi(;-)) based on the received estimates and its local data. This
algorithm is asynchronous and local since each node getteifrddm its neighbors only.
The update rule used is first ordeﬁ’f) = Wz§t_1). Any choice ofW guarantees asymptotic
convergence i¥V satisfies the following properties: §iy.1=W?.1=1, wherel denotes a

n x 1 vector of all ones and (ii) the eigenvalues®f \; when arranged in descending order
are such thak, = 1 and|)\;| < 1for: > 1. In Section 5.6, we analyze the convergence and
correctness of this proposed distributed averaging dlgariSettingVvV = | + v satisfies
these conditions; whereis a small number which determines the stability of the sofut

and the convergence rate, dndenotes the identity matrix.
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From Section 5.3, it is clear that depending on the solutiotmé optimization prob-

lem, each peer can have a different value;gfi.e. number of nodes it wants to communi-
cate with. This means that if peerchooses peer; to be part of its sum computation, it is
not necessary that would choose; to be part of its sum computation ring. This implies
that even ifv; is a neighbor of;, v; need not be a neighbor of (in terms of adjacency
matrix). This implies that the resulting topology matrixaisymmetric, and therefore can-
not be used to generate the update mawixNow, an asymmetric topology matrix can be
converted to a symmetric one as follow3: = Q + QT, whereQ" is the transpose db.
Sincef? is a square matrix)”, by definition, is a symmetric matrix. In order f@¥ to sat-
isfy the properties stated above, it can be generated uséngansformatiohV = U + Q"

where each entry df,, ., is such that

n "
1 - VZj:l Wi

0 otherwise

Wi =

Based on the above transformation, every peer updatediitsaés of A; using an update
rule that depends on the ring it forms. The following lemmar{lma 5.4.1) states the

update rule for our proposed distributed averaging problem

Lemma 5.4.1. The update rule for any peer can be written as
t % t—1 t—1 =T _(t—1
Zi(j) ={1—-2v|ly| —v(r} — ‘FZD}ZZ(_] ) +2v Zeeri Zéj : v Zlgj )
Proof. At thet-th time step, the update for the next time instaheel can be written as:

) _ (t-1) _ 7 (t—1)
z/) =Wz, = U+ 00 }zj

SinceQ)” is symmetric, it will have the following structure:

2|1y 2 ... 02
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We can write:

1 0 0
U= 1|01-v 0 0
Thus, W matrix can be written as:
1 —2v || 2v o 2
W = 0 l—v—2vly] v 2w

Generalizing the above expression we can write the updedaneach peer as:

Ti*_‘r'|

A = 2w = = Db 2 Y e Y Y (56)

Lel;

5.5 Overall Algorithm

In this section we finally present the complete privacy pnéag distributed asyn-
chronous sum computation algorithm. The technique canefstwo separate algorithms:
namely, the local ring formation algorithrh-Ring) which is executed only once, offline.
The second algorithm is the iterative local privacy presgnsum computation algorithm

(L-PPSC) which is executed online and converges asymptotically.

5.5.1 Local Ring Formation Algorithm (L-Ring)

For distributed averaging, peey updates its current state based on the information

it gets from its7;” neighbors. In order to preserve privaey,does not get the raw data
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from its neighbors; rather a ring is formed amotjgneighbors and sum computation is

performed in that ring. We call this ring the local ring sire&ch ring is only formed in
a peer’s neighborhood. This has the advantage that (1) gloithim is only synchronous
in a peer’s local neighborhood and (2) the communicationoisnbled due to local peer
interactions.

L-Ring takes as input the predefined values of cost and threat thiceste. ¢; and
t;. When the algorithm starts, each peer solves a local opiimiz problem based on local
constraints:; andt¢; to choose a value of’, the size of the ring for sum computation. It
then launches; random walks in order to select nodes uniformly from the network to
participate in its ring. The random walk we have used is th&rdpolis-Hastings random
walk which gives uniform samples even for skewed networkfieéver a random walk
ends avy, it first checks ifr; < 7. If this is true, it poses a potential privacy breachdar
Hencev; may choose not to participate ifis call by sending &AC message along with
its 7. Otherwisev; sends alACK message to;. If v; has received anfAC message, it
computesnax(7;) and checks if it violates its cost constraint. If the constres violated,
v; chooses a different peey, by launching a different random walk. Otherwise, it then
sends out all of thenax(7}) invitations again which satisfies the privacy constrairiitalo
the participants. The pseudocode is presented in Algorithm

Once the rings are formed offline, the local sum computatsbaug.

5.5.2 Local Privacy Preserving Sum Computation Algorithm (-PPSC)

In the local privacy preserving distributed sum computatitgorithm (-PPSC), ini-
tially all peers in the network have a data vector of giz&\Ve discuss the algorithm with
respect to only one sum computation (a scalar quanti)z,; — the j-th data of peer
v;. In Chapter 4, we have shown how to penalize nodes to avoidstoh in secure sum.

In this chapter we leverage this tool to ensure that colludee sufficiently penalized for
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Algorithm 5: Ring Formation Algorithm [, — Ring)

Input of peer v;:
Threatt; and cost; that peem; is willing to tolerate
Initialization:
Find the optimal value of; usingt; andc;.
If v; initializes a ring:
Contact the neighbors as dictatedtyby launchingr;* parallel random walks
When a random walk ends in nodev;:
Fetch the value of;* as sent by,
IF (77 < 77) Send NAC,7}) to v,
ELSE SendACK to v;
ENDIF
On receiving NAC, 77 from v;:
IF replies received from everyone
IF 77 violates cost constraint
Contact different neighbar,
ELSE max = argmaz;{7;}; Setr; = max
Send invitation/ (7;*) to v; (V; that replied withNAC previously) withr*
value
ENDIF
ENDIF

the L-PPSC algorithm. As before, our penalty solution is based on thecept of data
partitioning. For;, let the estimate of the number of bad nodegbe; then splits its data

z;; into k" shares.e.

wherez!! is thek-th partition of thej-th data of peew;. Therefore, a separate privacy
preserving sum computation is initiated for each shéfé thus increasing the cost of
computation byk;-folds. Assuming that each peer has agreed on a ring in itd teigh-
borhood, each initiator peer starts a round of sum compmutdtased on the secure sum
computation. The message sent by the initiator node for any ®mputation contains:

(2) the ID of the initiator, (2) the data which needs to be allide the local sum, (3)



Algorithm 6 : Local Privacy Preserving Sum Computatian{ PPSC)

Input of peer v;:

Convergence rate, local datmgf) for the k-th partition ofz;;, numSplitround

set of;*-local neighbors arranged in a ring pring, ., }, random number, and

the max range of the su
Initialization:
Initialize {ring; .+ }, v, x;; Setround «— 1
Setl — first entry of{ring; - }
{ringir} — {ringi~}\ ¢
Send(R + ng), {ring; .}, round) to vy
On receiving a messagedata, {ring}, rnd, addNo, split N o) from v,,:
IF {ring} =0
Updatez*P/iNo)rownd) ysing @ata — R) and Lemma 5.4.1;
round < round + 1;
Set/ « first entry of{ring, ,- }
{ringi -} — {ringi}\ ¢
Send(zézzlﬁjovo)(mu"d), {ring; .} round, addNo, splz'tNo) to vy,
Check if any node is waiting on this peer
Send data to all such nodes
ELSE IF
round < rnd Wait
ELSE

IF (splitNo < numShplit)

Sety = (data + zé‘ff;lxivo)(md)) mod N;
ELSE
Sety = 0;

Setl — first entry of{ring}

{ring} «— {ring} \ ¢

Send(y, ring, rnd, addNo, split N o) to v,
END
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the size of the local ring that it has constructed for the sandl (4) which peers need to

multiply the data by 2 (according to Lemma 5.4.1).

This algorithm differs from traditional secure sum compiotaprotocol in the update
rule and the enforcement of the ring topology. In the traddil version, the initiator sends
its data masked by a random number while all others in theatddjtheir numbers as is
and pass the sum on. Here, however, the initiator specifies mmessage the parameters of
the update rule: the amount of scaling that some of the peigitst meed to do to their data
before adding them to the received sum. This is essentialdcagtee convergence of the
algorithm to the correct result, following Lemma 5.4.1.

These steps are executed by every peer in the system. Thélailgcs locally syn-
chronous since in every round of sum computation, the ioitiaas to wait for all peers in
its rings to complete their previous round. This is esséstne this algorithm is based on
the working of first order Linear Time Invariant (LTI) systerf107], in which, the update
in thet-th round uses data from all the neighboring nodes ir{thel )-st round. Algorithm
6 lists the steps in a pseudo-code format for computing threcflone partition of one entry

of the original vector.
(k)

The input to the algorithm are the convergence ratéhe input datar;;’, the ring
topology, the number of splits of;; numSplits, the random numbeR and maximum
range of the suniV. In the initialization phase, a peer send? + R to the next in the
ring. Whenv; gets a data message, one of the following things can happie data has
come back to the initiator, it updates its estiméf“é(round) using the data it has received
from all neighbors and its own estimate in earlier roundhért sends this information to
the next in the ring. If on the other hand, has received updates for a different round,
it simply waits. Finally, if has got a request of the data fquaatition which is less than
numSplit, it sends that data; otherwise it ignores this message.

As discussed in Chapter 4, the penalty mechanism works btitgiie is a non-zero
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FIG. 5.1. Figure showing how local rings are formed based.-®ting protocol. It shows
four rings with the initiators highlighted. Note that a giveode €.g. node 12) is part of
multiple rings.

probability that the algorithm will continue to the next ral InL-PPSC, each peer does
not know the number of shares of the other peers. Moreowvessitte of the data vectors
can be arbitrary for any peer and hence there is always a fioitezero probability that the

algorithm will continue to the next round.

5.5.3 lllustration

In this section we illustrate the working of theRing and theL-PPSC algorithm.
Figure 5.1 shows a small arbitrary peer-to-peer networle Aéxt sequence shows how the
rings are formed. The peers shown in bold are the initiatdeesdor the respective rings.
For example, for the two smaller rings, the initiators arerpe; andv, respectively. For
the two larger rings, the initiators are peesg andvs3. To illustrate, assume that,’s
privacy value is high#}, = 7). Hence there are 7 other peersuviig’'s ring. Now, if v,3
wants to includevy in its ring, it must satisfy the privacy requirements«f as well.
As a result, there are 7 other peers in the ring initiatedJfyalthough it is possible that
initially 755 < 7). For peervyg, I'ag = {vy, v12, Va1, Va2, 23} @nd so|l'y| = 5. Since
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Using Lemma 5.4.1, the update rule for pegycan be written as:

730 —|T20]
A9 = (2wl — vy — [T} b 420 30 2040 S0 oY
€Ty =1

= {1—2ux5-u(T-5))z " + 2w (zig;” + 250 4D 1Y ¢ zg*))
t—1 t—1
+v (zéj ) + z%Sj ))

1 1 1 1 1 1 —1 —1
= (- 120) 25 o (257 D+ 2 4 Y ) e (7 + 245G

The coefficients of the update rule are passed ompwt the beginning of any sum com-

putation.

5.6 Algorithm Analysis

In this section we analyze the properties thRing andL-PPSC algorithms.

5.6.1 L-Ring Running Time Analysis

Lemma 5.6.1. For any peerv;, and all neighbors); € T';, theL-Ring algorithm has a
running time ofO (max(7;", 7;')), wherer; is the optimal value for node; and 7 is the

value required by node; wherev; andv; belong to the same ring for the sum computation.
Proof. v;’s ring formation can have the following two cases:

1. For allv; € I';, if 77 > 77, then the running time is upper bounded by the maximum

time required by, to contact all its neighboiise. O(7}").

2. Without loss of generality, assume that
== {’Ul,...,’USZ.} Q Fz

be the set of nodes whosg, for all v; € = is greater tham;" i.e. Vv; € =, 77 > 7.

These are the number BMAC messages received byfrom all v; € I';. Computing
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the maximum of all entries ifx takesO(|=|). In order to accommodate all the

nodes in its neighborhood; increases its ring size tmax,,c={7;}. In this case,

computation on this ring takes tinge(7; ).
Therefore the overall running time @3(max(7;", 7;)). O

In theL-Ring algorithm, each node contacts other nodes to form ringseVany such
ring, there is one ring leader. Every such ring leader is edstacted by other nodes in the
network to participate in their rings. Below we first stateatts meant by deadlock in this

system and then prove that our algorithm is deadlock-free.

Definition 5.6.1 (Deadlock. A deadlock is a situation wherein two or more competing

actions are waiting for the other to finish, and thus neithegredoes.

In our context, a deadlock can occur if a nagéas sent invitations to other nodgs
to join its ring and these,’s may themselves be waiting on others to send them response
to their requests for forming rings. This process may bestedad to all the nodes in the
system and therefore, the entire system may become unsagpomelow we prove that

such a situation never arises in this context.
Lemma 5.6.2. The ring formation algorithm is deadlock-free.

Proof. Consider a node; whoser;* is the maximum of all the nodes in the network. Let
us also assume that < n, wheren is the total number of nodes in the network. In
other words, the maximuny" is such that a ring of size* can be formed in a network of
sizen. Consider any node; who sends a ring formation request message.tdiNow by
assumptiony; < 7/, for all v; # v;. Also since,r; < n, 77 < n as well for allv;. Thus

it is evident that ifv; converges for ring formation so would alls. Hence there can be no
deadlock. In the worst case, multiple large rings will benfed which will include all the
nodes in the network. Since there is no deadlockfpthere can be no deadlock for any of

the neighbors of;. Thus, by induction on the entire network, L-Ring is dealllvee. [
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5.6.2 L-PPSC Correctness Analysis

TheL-PPSC algorithm is guaranteed to converge to the correct restiieifnatrixw
satisfies the following three conditions: ().1=W?.1 =1 and (2) the eigenvalues W¥,
A: when arranged in descending order are suchthat 1 andl > |\o| > [A3| > -+ >

[An

Lemma 5.6.3. Let W=U+19", wherer denotes the convergence rafe, = Q + Q7

denotes the modified topology matrix and each entty & such that,

1 - VZ;'L:1 W;IJ(J # 1)

Uiy =

0 otherwise
ThenW.1=W7.1=1.
L-v30 Q/l/j + v, v o Y
v, 1= Q0+, ... VQ”n
Proof. W — 21 2371 2j 22 2
v Y, B I/Z?Zl Q;;j +uQ,
d " " "
vy, e v, 1
W.1l = "
" n " "
v, 1—v ijl Qy ++vQ2,,, 1

L= 30, Q) + vy + v, + - 4+ 0y,
v + 1= v Y0 Qi+ v, + - + 182,

Yy + Y+ 1= v 30 Oy + 0,

1
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Similarly, it can be shown that

T

L—vy 0, Qlllj + Q... v, 1

Wil — vy, e vy, 1

v l—v) i, Q;;j + 400 1
1— szzl Qlllj + VQ/1/1 + l/le + -+ IJQ;:l
vy + 1= v Y0 Qi+ v + - + 102,
l/Qllln + IJQ;n R — szzl Q;:j + IJQ;/m
1= w30, + vy + v, + -+ v,
VQ” +1_V T?I_ Q”'—i_VQ” +"'+VQ”TL " " "
= 21 218 2 | [sinceQ” is symmetric;; = Q]
Z QNN T szzl Q;;j + v
1
1
Hence W.1=W7T.1=1, O

Lemma 5.6.4. Let W=VDV? denote the eigen decompositionwif whereV denotes the
eigenvector matrix an® denotes the diagonal eigenvalue matrix. Let the entrié& tie

arranged ag\;| > --- > |\,|. Then\; = 1.

Proof. From Lemma5.6.3, itis clear thet.1 = 1. Therefore the vectd, is an eigenvector

of W. Using the eigenvector-eigenvalue equat@rv =V.D, we see that

W.1=1.D =1 (using Lemma 5.6.3)
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This means that the eigenvalue corresponding to the eigeandeis given by\; = 1. [

Lemma 5.6.3 and Lemma 5.6.4 prove thaPPSC algorithm we have proposed in

this chapter converges to the correct solution.

5.6.3 L-PPSC Convergence Analysis

We show that the rate of convergence of hBPSC algorithm is exponential in the

number of iterations. Our proof is similar to the argumemsgnted in [143].

T
Lemma 5.6.5.[143] For partition k, let zﬁ“ = VT [g:&’;)xgj) LWl = VTZE.’“)(O) where

Ty
V is the eigenvector matrix ¢t". The error incurred at each step decreases exponentially

as the number of steps increase.

Proof. The error at any stepcan be written as:

n

=> N

J=2

2

2
[0 14, 200) 57)

Now, since|\;| < 1, for2 < i < n, ast — oo, everyA\¥ — (. Hence the error goes to 0

exponentially. O

Since each\; can be upper bounded by max,, |\;|, the error can be rewritten as

2
zgk)(t) —1A;|| < nA%

max?

where ... 1S the maximum of the\;’'s 2 < i < n. This

|

lemma proves that each partition converges to the corrsattréNow since the number of

partitions are finite, it is obvious thatPPSC will also converge correctly.

5.6.4 L-PPSC Locality Analysis

In this section we prove that-PPSC is local. Intuitively, locality of an algorithm
ensures bounded message complexity in each peer’s nefgidzband hence is crucial for

the algorithm’s scalability (as discussed in Definition.2)2
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There are several definitions of locality proposed in thegditure. The locality concept

proposed by Dast al. [40] is characterized by two quantities — (&)— which is the
number of neighbors a peer contacts in order to find answeqtegy and (2)y — which is
the total size of the response which a peer receives as theatwsall the queries executed
throughout the lifetime of the algorithm. ThePPSC algorithm exhibit(«a, v)-locality in
the following sense. For any given peer, the choice @ guided by the optimal solution
of the objective function defined earlier. In the worst caspeer may chooseto be equal
to the size of the entire network. Therefore= O(n) in the worst case. The bound gn

is specified by the following lemmas.

Lemma 5.6.6.Lete be the error between the true sud)(and the node estimateék()(t))

for each partitionk as induced by.-PPSC algorithm aftert rounds of computation. Then

log(e)—log(n)
e T

Proof. From Lemma 5.6.5, we know that the error at tkth step is bounded byA\?t, i
2
k
‘ MO0 A=, a2

j
Now let the error be bounded lay

max ' "

2 2
(0)‘ (assuminézy“)(o)‘ =1)

log(e) —log(n)
2t

>

AN e < €=>12> log (02

max )

O

Lemma 5.6.7.The total size of the messages exchanggthy any peer is upper bounded
by lolgo(geTk’g [log(zmm) + 7 ] wherez{")., is the maximum of data values at any peer in

a ring at roundt.

Proof. At round ¢, the number of bits necessary to store the maximum ofz@IIis
log(zmax) While performing the secure sum at any rodndeerP,; with I'; = {v;_1,v;11}

does the following computatlor(z L+ z“)) mod N, whereN is the parameter of the
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sum computation protocol. Hence for every peer, the numbeit®required to represent

the new sum will increase by 1 at most. Therefore, the totailver of bits required for
each message is upper bounded[h)g(z%x) + Ti*] In each round of the sum compu-
tation, a peer exchanges only one message (due to ring tppoldlence, fort rounds,
we get the total number of bits exchangedte{h)g(zﬁﬁ)m) + Tz’*]- Using Lemma 5.6.6,

7 < PO llog(=lhe) + 77 O

Lemma 5.6.8.L-PPSC algorithm is (O(n), % [log(z,%m) + Tf} ) -local based on

the definition presented in Chapter 2, Definition 2.2.3.

Proof. As stated, for any node; the maximum size of ring is equal to the size of the
network. So according to the definition of locality,= O(n). Also as shown in Theorem

5.6.7,
log(e) — log(n)
= " log(0n,.)

max

[1Og(zr(r?a:v> + Ti*]

log(A2,ax)

. Therefore.-PPSC algorithm is (O(n), log(e)—log(n) [log(zﬁ,?m) + Ti*])-local. O

5.6.5 L-PPSC Privacy Analysis

Lemma 5.6.9. For anyv;, the multi-partyp,-to-p, privacy is satisfied in the-PPSC pro-

tocol.

Proof. In the optimization, the bound on threatvhich is satisfied for every peer is actually

the posterior probability,;. PeerP; is involved in two types of rings:

e v; initiates a ring — For this ringy;’s constraints are already satisfied (due to solution

of the optimization problem). Hencg, ;... < pa:-

e v; is part of rings initiated by peers (5 # i) — For this ring,v; only participates if

77 > 7. This implies that; Hencef; < po; as well.

< i
osterior — fposterior' osterior

Thusp,;-to-py; privacy is satisfied for any peey. O
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Lemma 5.6.9 proves that the privacy is satisfied for evenenodhe network. Hence,

using Definition 4.5.3, this protocol is privacy preservingthe entire network.

In the L-PPSC algorithm, it is assumed that each ring has fewer thgin{ 2) bad
nodes. If this condition is violated, then we know that peciwdoreach will surely occur.
Next we derive an expression for the probability of this h&ppg and show that it is very

low.

Lemma 5.6.10.Let# be the probability of a node being good. Then the probakitiat in

aring of sizer;, there are at mostr{ — 2) bad nodes is given by— (1 — 0)7 L.

Proof. For any ring initiaton;, the task of selecting and contacting nodes can be viewed as
collecting random samples from the distribution of all n@d®ethe network. The number

of bad nodes contacted can®e. . 7;". Since these samples are i.i.d, we can write:

P = Probability of contacting at mo$t;” — 2) bad nodes
= 1 — Probability(exactlyr; nodes are bafl— Probability(exactlyr” — 1 nodes are bad
= 1-(1-6)7 -1 -7

= 1-(1-6)7

O

The above expression shows that the probability of selgttss tham” —2 bad nodes
increases with increase in the (1) probability of a good rhaded (2) ring size;. Figure
5.2 shows how the probability varies as a functio @indr;*. As shown, the probability
increases with increasingy This is intuitive, since with increasing, there is a higher
chance that each contacted node is good. Also for a tixadr;", increases the probability
of contacting less than" — 2 bad nodes goes to 1 faster.

Now consider another scenario in which there is the podilaf a privacy breach.

Consider two intersecting rings which contains only onedsbmode. Now the probability
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FiG. 5.3. This figure demonstrates the variatiord¢f — 6)*7 " vs. 6, 77 andr;. The
probability is very low and decreases with increasing sfzé@ring. Also, for a fixed ring

size, a9l increases, the probability decreases.



146
of this occurring is given by(1 —6)7 *77 !, wherer; andr; are the sizes of the two rings.

Figure 5.3 demonstrates the variation of this expressidh fyir and7;. As seen in the
figure, the probability is very low and decreases with insieg size of the ring. Also, for

a fixed ring size, a8 increases, the probability decreases.

5.7 Experimental Results

To validate the performance of the proposeBPSC algorithm, we have conducted
experiments on a simulated network of peers. The topologgeierated using BRITE
We have used the Barabasi Albert (BA) model in BRITE sinces ibften considered a
reasonable model for the Internet. The data used for thaiex@ets is synthetically gener-
ated. The task is to compute the sum of all the data of all tkeespge a privacy preserving
fashion using a distributed algorithm. Our data set cossikteal vectors of sizg at each
peer in the network where the elements are generated frodomamlistributions. Thus,
there aren x p different distributions. This centralized data set is teplit amongn peers
such that each peer haseal numbers. In all our experiments, we have used the faligpw
default values of the system and algorithm parameters:ofittee network ) = 1000, the
maximum range of the sum for the secure computatioh=£ =; x n, v = max; m—l‘ and
p=5. Computing the vector sum requires a separate privasepreg sum algorithm to
be invoked for each element. For the rest of this section Wiepneésent our results with

respect to one sum computation only.

Convergence: In this section we show how thePPSC algorithm converges to the correct
result and the costincurred for it. As shown in Figure 5.4¢#& algorithm converges to the
correct sum with respect to a centralized algorithm, wheterdralized algorithm is one

which has access to all the data of all the peers. In this figierbave plotted the estimate

Ihttp://www.cs.bu.edu/brite/
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of all the peers at each time instance the z§t) values for each.
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FiG. 5.4. Convergence to global sum and communication costgest p

To start with, each peer is assigned a data value. Initia#yeistimate of each peer is close
to its local data. As time progresses, the peers slowly agevi® the correct sum. Figure
5.4(b) demonstrates the number of messages exchanged pnoitess. We have plotted

the number of messages per peer.
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Scalability: In Figure 5.5(a), we show the correctness result oL #HrPPSC algorithm (in
circles) when the number of peers vary from 100 to 2000. Alews in the figure are the
summation results computed by a centralized algorithm erséfime data (using the trian-
gles). The graph shows that our algorithm converges to thecoresult for varying sizes
of the network. The cost of the algorithm with increasingweek size is demonstrated in
Figure 5.5(b). It shows the cost both with and without pgnalt can be noted that the
number of messages per peer (without penalty) is almoststaoirand is, therefore, inde-
pendent of the size of the network. Hence, our algorithmgs$lyiscalable. The cost with
penalty is much higher. This is expected since more numb&umfcomputation is run per
entry of the data vector. The number of additional sum coatprts is actually a constant
(k;) times the original number of sum computations, dependintne number of parts into

which each entry of the vector is split.

5.8 Application

Privacy preserving distributed sum computation is a veqyartant primitive for many
distributed applications in P2P domain such as the Intetdnethis section we describe a
P2P web advertisement ranking application that can dyrest the algorithm descried so

far, followed by a privacy preserving feature selectioroalipm.

5.8.1 Privacy Preserving P2P Web Advertisement Ranking

Consider a car navigation system selling company that warngsudy the market in
South Asia before deciding on their web advertising styategthat geographical region.
In the current web advertisement setup, the company woyldoaph one of the leading
web service providers such as search engine companiesioe @elling portals for client

data on the subject. These web service providers use thkestlieam data collected at their
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FiG. 5.5. Figure showing the scalability of the algorithm asrnbenber of peers is

increased.



150
servers, sometimes link that data to other publicly avélalata sources and provide the

results to the company for a price. If popularity can be deddity the number of clicks
on an advertisement, then the problem can be formulated mputong the sum of the
number of clicks on each advertisement and linking the tegth publicly available IP in-
formation. An alternative decentralized technique for suggg advertisement popularity
would require doing privacy preserving distributed datainyg at the client-side for similar
information collection by the companies.

Since the Internet can be viewed as ad-hoc connections betugers, we pose this as
a data aggregation and ranking problem in a large P2P netioety user in the network
has a predefined vector of fixed size where ttth entry of the vector corresponds to the
number of clicks for the-th advertisement. In this computational environmentkiram
the advertisements can be framed as a global sum compupatiblem. As the network of
users converge to the global sum for every entry in the datgxehey can locally sort the
vectors to get the correct global popularity based rankéi@faidvertisements. Since web
browsing information can be privacy sensitive, it is impmittto do this sum computation
in a privacy preserving manner. This becomes particuldibllenging in heterogeneous
environments such as the Internet, since different useghtrhiave different requirements
of privacy. Therefore our algorithm for privacy preservidigtributed sum computation
can be directly applied to solve this web advertisementirgngroblem.

UsingL-PPSC algorithm, the peers can compute the sum of the number dfsclar
each advertisement in a privacy preserving fashion. Onaeishdone, ranking them by
popularity becomes a sorting problem which each peer care sotlependently. In the
next section we present our experimental results on thdifealeb advertisement click

data.

Experimental Results Volunteers at UMBC were asked to search for the following

five categories in the popular search engines: (1) digitadera, (2) auto insurance, (3)
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cars, (3) laptop, and (4) car navigation systems. They wise asked to store the web

urls (links) which they found as the closest match for eaclthete categories. In the
experimental setup, we list all these links in a single fit @ll categories) and for each
link, count the number of times it has been reported by a \telm In order to simulate
the P2P setup, we then divide this data file randomly among&@6s, such that each peer
contains only a fraction of the data — either links or coumtdfach link. If a peer does not
have a link, it may add a value of zero in order to participatthe L-PPSC protocol. In
total there are 1000 links. Once the rings are formed usiad¢.1{Ring protocol, we run
1000 sum computations in parallel.

Figure 5.6 shows the results of thePPSC protocol on this data set. Theaxis in
Figure 5.6(a) refers to the 1000 links grouped per categdhe y-axis shows the total
count per link for theL-PPSC protocol (circles). Also shown in the figure are the true
counts per link (diamonds) which we call the centralizedcetien scenario. As easily
verified, the counts of the links in the distributed experrsdas very close to those found
in the centralized situation. This once again corroborttedact that the accuracy of the
L-PPSC protocol is very high.

Similarly, Figure 5.6(b) shows the number of messages exgdthper peer per unit of
time. As shown, this varies between 0.5 and 1. A value of Ogbrticular time instance

means that onl$0% of all the peers send messages at that time instance.

5.8.2 Privacy Preserving Feature Selection

Feature selection plays an important role in many data miapplications. Feature
selection has been an active research area in pattern rgongaetatistics, and data min-
ing communities. In inductive function learning, the cahidea of feature selection is
to choose a subset of features which can correctly predicotitput (the target function)

and thereby remove the features with lesser predictivetiiiyaOverall, feature selection
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techniques usually make data mining techniques (e.g.ezlagt classification) stronger by

constructing an appropriate representation that corsldy the relevant features. In the
past, several techniques have been developed for featertiee from high dimensional
data. These include information gain, mutual informatiGimi index, y? statistic, corre-
lation coefficient, PCA analysis and more. In this sectionferenulate some information
theoretic metrics for feature selection as sum computationlems and adapt thePPSC

algorithm for distributed privacy preserving feature sétm.

Notations Let D denote a collection of data tuples with class labels wherk ggple
is ap + 1 dimensional vectof A;, A,. ..., A, C}, the firstp dimensions corresponding
to the features and the last corresponding to the class l&¥elassume that each feature
is categoricalj.e., A; takes a value from the finite s¢0,...,m; — 1} ¥i = 1...p and
the class is binary, i.eC’' € {0,1}. Letz; ,, denote the number of examples in the Bet
for which A; = a andC' = 0 wherea € [0...(m; — 1)]. Alsoz;,. denotes the number
of tuples with.4; = a, computed over all classes. Table 5.1 shows the differesgiple

combinations of values of an attributk.

Attribute value (4;) || Class=0 | Class=1 | (Class=0)+(Class=1)
0 X500 X501 T4 0
1 X410 Ti11 Xi 1
m; — 1 Ti(mi—1)0 | Ti,(m;—1)1 Ti (mi—1)-

Table 5.1. Number of entries of attribute and the class.

In our scenario, we do not assume the data to be at a centtblogather distributed

over a set of peers;, vy, . . ., v, connected to each other by an underlying communication
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infrastructure. More specifically is partitioned inton setsD; through D,, such that

each peer has the same set of features, but different otisesie. D = (J!" | D.. xﬁégo
denotes the number of examples in the Betfor which A; = ¢ andC' = 0 wherea €

0. (m; = 1)). Hencezion = 32 29, T = P> 2 anda;, = P> 9

Misclassification Gain For a categorical attributd;, the misclassification impurity

measure [148] for a particular valug = a is

max (xi,a07 xi,al)

MI(A) =1—

Li,a-

Theorem 5.8.1.Let {4, A,,...,A,,C} be the set of attributes and class label where
A; €{0,...,m; — 1} andC € {0, 1} respectively. The attribute with the highest misclas-

sification gainA,.; is the following:

m;—1
Abest = argimax § |xi,a0 - xi,al‘

Proof. The misclassification gain difference betweérand.A;, denoted by\/G(A;, A;),

is

wota 4y = 5 (T <) -

a=
m;—1 m;—1 mj—1
_ xza) _ Z mazx (T;a0, Tia1) _ Z (%_b)
D] | DI D]

a=0 a=0 b=0
mj—l
+ max (xj,bOa xi,bl)
— | D
mj—1 mi—l
_ (1 _ 1) + Z max (xj,bOwTi,bl) _ max (xi,ao,%,(n)
| D D]
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Since the maximum is the average plus half the absoluter€lifée, this is equal to

m]'—l m;—1
(%bo-i-%m \%b Tjp (%500 + Tia1)
MG AZ.7A. — A heh A bt
Aod) = > =5 Z D] 2 2D
m;—1
_ Z ‘xzao x2a1|
- 2[D]
mj— 1 m;—1
_ Z (@0 + Tjp1) B ($2a0+$za1 Z |$g b0 — L pi|
2|D| - 2D 2|D|
b=0 a=0
i Z |xza0 xzal|
2|D|
1 1 & |x Tjp1] ol | Ti a1l
1 b0 — Tjp1| 4,00 — Tiql
- 327327" bz:; 2|D)| ; 2|D|

Therefore, choosing the attribute with the highest mistfestion gain is equivalent to
maximizing this quantityZ?;gl |z a0 — ;41| fOr any attributeA;. Thus, according to the

misclassification gain function, the best attribute is tiéofving:

m;—1
Apest = arg max 5 | i a0 — Ti a1l

ie{l...p} a—0

O

Note that, for a distributed setup, selecting the bestoaitei according to the misclas-

sification gain is equivalent to distributed computationhaf following sum:

m;—1

a=0 |[/=1

{nggo—xgizl}\ 59

for each attributed,.
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Gini Index For a categorical attributd;, the Gini measure [148] for a particular

valueA; = ais

2 2
Ginig(A;) =1 — <u) - <u)
Lia Ziq
Theorem 5.8.2.Let { Ay, A,, ..., Ay, C'} be the set of attributes and class as defined in

the notations section wheré; andC takes the values betweé@, ..., m; — 1} and{0, 1}

respectively. The attribute with the highest Gini indgy,; is the following:

Apest = arg max [Z { (xz,ao) + ('Tz,al) }]
Li.a-

iell.p} |

Proof.

m;—1 2 m;—1 2
E ) £ )
— |D| Tia a—0 |D| Tia-

Therefore, the best attribute is the one which maximizesa@wving quantity:
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ie{l...p} Tia-

m;—1 2 9
Abest = argmax [ { (xi,aO) + (xi,al) }]

a=0

O

As before, for the distributed setup, the following quantieds to be evaluated across

all the peers for every attributé;:

n 4 2 n J4 2
mi 1 (Zé:lxz(,(zo) +( 6:1375,31)

d (0
a=0 =1 %ia

(5.9)

Therefore, two separate distributed sum computation mest® need to be invoked:

(L)Y, 2% and (), 41,

Entropy For a categorical attributd;, the entropy measure [148] for a particular

valueA; = ais

smoemi) =~ (2 oa (G) (52 oo (52

Theorem 5.8.3.Let {4, A,,...,A,,C} be the set of attributes and class as defined in

the notations section wheré; andC takes the values betweé®, ..., m;, — 1} and{0, 1}

respectively. The attribute with the highest entrahy,; is the following:

mi—l
L a0 Lial
Apest = arg max {(ﬂfi,ao) log < ’ ) + (4,01) log < ’ ) }
ic{l...p} ; Lia- Tiq-
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Proof.

Entropy(Ai, A;)) = mf (TD) x [Entropy.(A)] — <%—b) x [Entropys(A;)]

- D
vl x vl x
i,a0 i,a0 i,al i,al
- ) | R J | e
(|D|) °g<) 2 (\D\) °g(>

a a
mj—l mj—l
N T bO) log <xj,bo> N T, <x] bl)
b:0 ‘ ‘ ',’Ujvb' b:O ‘ x] b
1 mj—l . mJ—l "
= i (2;0) log (9—60) + 3 () Iog m
b=0 7,b b=0
1 m;—1 m;—1
- (7.a0) lOg (9:, "O) + (7.41)log (x’ “1)
| | a=0 Lia a—0 Tia

Therefore, the best attribute is the one which maximizesat@wving quantity:

m;—1
T a Lia
Apest = arg max Z {(%ao) log ( : 0) + (24,41) l0g ( ’ 1) }
ie{l...p} =0 L a- Li,a-

O

Therefore, the quantity that needs to be evaluated acrbfiseapeers for every at-

tribute A, is:

Z n (Z)
{(meo> Iog( = ”°> (me1> log( i T 1)} (5.10)
a=0 Zé 1xza l= 1xza

Two separate distributed sum computation instances ndelitvoked: (1), , :cf@o
and (2)2?21 wl The following figure (Figure 5.7) shows both the Gini indexdanis-
classification gain function for a binary class distribatfroblem.

Each of the misclassification gain, Gini index and entropgelafeature selection

techniques requires independent computation of one (assitication gain) or two (Gini
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index, entropy) sums on the count of the class labels for eattte p attributes of the data.
Thus, the distributed algorithm for P2P feature selecteguires computing distributed
summations on the data in an asynchronous privacy preggiashion and reach a globally

correct result. We can modify thePPSC framework for doing this feature selection.

Privacy Preserving Algorithm for Feature Selection (PAFS) The PAFS algorithm
using misclassification gain metric works by invoking + - - - + m, different privacy
preserving distributed sum protocols femttributes. For attributed,, peerv; initializes
m estimates at time 0z} = (x%o - x%1> e 2 ) = <x§f2mé_1)0 -~ xgzml_l)l),
wherezi(fga denotes the estimate of peBrat timet when attribute4, takes on a value of
a. This is done for all the attributed,, ..., .A4,. Now each peer launches, + - - - +m,
different distributed averaging computations in theirdilbgngs. Other than the initiator,
whenever a peer gets data from its neighbor, it adds its dataends it to the next one in
the ring following the secure sum protocol. When the entine $§masked by the random

number) comes back to the initiator, the latter updatesstisnate using Lemma 5.4.1. It

then sends the data again to the first member of the ring amutdleess continues.
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Algorithm 7 : Privacy Preserving Algorithm for Feature Selectiégh4F'S)

Input of peer v;:

Convergence rate, local dataD;, round, and set of--local neighbors arranged in a ring or

{ring; -~}

Initialization:
Initialize {ring; -« }, v
Setround «— 1
Setj « first entry of{ring; .~ }

Compute:

e For attributeA;: Zi(,01)o = (I%o — :z:%l) cey Zi(.,ol)(mlfl) = (:cgf)(mlfl)o

. . 0 7 7 0 7
e For attributeAs: 2572)0 = (xé,éo — xé,él), . Zi(.,z)(mrn = (xé,)(mrl)o —

[ ]
. . (0 i i 0 i
e For attributeA,,: 257130 = (:C;}JO - x;(),)m)’ ce zz.(,p)(mp_l) = (961(),)(7%_1)0
{ringin-} — {ringi -} \j
Send({zi(f)l)o, ... ’Z'L'(.,Op)(mpfl)} Aringi -} ,round) toj
On receiving a message{:, - - - » Ymi +mo+--+m, }» 17ing}, rnd) from v;:
IF {ring} =0
round round
Update{zi10 ) Zi(,p(mpzl)}

round < round + 1
Setj — first entry of{ring; -~}
{ringir+} — {ringi--} \ j
Send({zi(ﬁ%u"d), ce zi(;o(zlpdzl)}, {ring; -} round) to j
Check if any node is waiting on this peer
Send data to all such nodes
ELSE

IF round < rnd

Wait
ELSE
Setret; = y1 + zl-(ﬁ%d), cor Tty gotm, = Ymytetm, T zi(;:zizp_l)

Setj « first entry of {ring}
{ring} — {ring}\ j
Send({retl, oy Tty iy, ), TN, rnd) to v,
END
END

(1)
- Il,(m171)1)'

(i)
- $p7<mp—1)1)'
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Once the sums converge (say at tileeach peer does the following computation

with the localz’s (following Equation 5.8):

mp—1
L

2,pa

ey Sp

mi1—1
_ } : ()
- ‘Zi,la
a=0

The best attributes are the ones with the highgst Algorithm 7 presents the pseudo

code.

In order to use gini index and entropy the following modifioas are made:

e Instead of invokingn, number of distributed sum for each attribute, we need
to invoke2 x m, number of private averaging computations. For any geand
attribute A, = a, initialize 2., ; = (xé’()lo) Ay = <x§’il> The third sum is

simply the sum of the first two computations. zfog)a 95 = (m%o + :cgl()ﬂ)

¢ Once the sums converge at timheach peer computes the following quantities with

its local estimates only,

(t) (t) 2
.. — +
— Gini |ndeX: s, = ZZZOI (ZZ 1ao)(t) (ZZ la, 1) }'”.’

Zzla2

() (t) 2
_ mp—l ( i,pa, 0) +(Zz ,pa, 1)
Sp = D uo { NO)

'Lpa2

2(®)
. mi—1 i,la, %,la,
- Entropy' 1= 2 :azlo { 2 la Olog (tl) : + ZZ la llog (tl) - }l' T

L1a2 L1a2

N O
o mp—1 i,pa,0 ( 1,pa,l
Sp = Ea:po { i,pa, Olog (tl; + 2 ,pa, llog (tz; }

zpa2 'Lpa2

¢ As before, the best attributes are the ones with the higlases ofs,, ... s, once

sorted.

We avoid presenting the pseudo-code for Gini and entropgdschniques here due
to their similarity with the misclassification gain basedaithm.
The PAFS algorithm asymptotically converges to the correct sum pretelent of the

number of tuples or features. This is because the local steranputed based on a peer’s
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data and then the averaging proceeds. So quality is nottedfdxy either the number of

attributes or tuples. For the communication cost, congluefollowing:

Variation with number of attributes For p attributes, where attributd; € {0, ..., m; —
1}, total number of distributed averaging computations atited area " m;
wherea = 1 for misclassification gain and = 2 for gini and entropy. Thus the
communication complexity oPAFS is > 7 m;x the time required for each dis-
tributed averaging to converge. It has been shown in [39}, tte time required for
the distributed averaging to converge is bounded by Idgardf the number of nodes

in the network.

Variation with number of tuples There is no effect of the communication complexity on
the number of tuples since each peer locally computes thetednased on all its

local tuples and then uses these counts in the distribueragwng.

In the PAFS algorithm we have not considered colluding entities. Haosvevhe
penalty scheme described in Chapter 4 and earlier in thipteh@an be used to force
nodes to behave honestly. To achieve this, each node $@it$atta in each sum computa-
tion s; into k" parts. This will increase the communication cbstolds, thereby decreasing
the overall utility of the colluders. For simplicity, we dotdiscuss the collusion scheme

further for PAFS.

Experimental Results We have experimented with two publicly available data
sets at the UCI KDD archive The first is the mushroom data set downloadable from
http://archive.ics.uci.edu/ml/datasets/Mushroom . This data set has
been previously used for classification and predictiongask our experiments, we have
not used any semantics of the data; rather we have choseatathiset because of the pres-

ence of categorical attributes with binary class labels flitl data set has approximately

2http://kdd.ics.uci.edu/
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8000 tuples and 23 attributes. Of these attributes, 22 catey attributes are used to de-

scribe the mushroom and the class attribute is binary degidtthis is edible or not. We
convert the numerical attributes to categorical (integéne@d). The maximum value of any
categorical attribute is 12. The second data set that we Uise@ is the forest cover data
sef. This data set has 54 attributes — 44 binary and the restadtay) It has a total of
581012 rows. The last column is the class label which canvakees between 1 to 7. Since
our algorithm can only handle binary class labels, we craatee-vs.-all class distribution
by re-assigning all tuples which have a class label of 2 (lepidde Pine) as 1 and the rest
as 0. Our goal is to identify the set of attributes which argontant for identifying the
Lodgepole Pine forest type. Although this data set is latate single location, but many
high-dimensional earth science data sets are distribideddoon geographical locations.
OncePAFS can identify the most important features in a distributesthfan, only the data
corresponding to these attributes can be centralized ko @giassifier. The cost of this two
step process will be much less compared to centralizingrihieealata set with comparable
accuracy.

In order to apply our distributed feature selection aldont the total number of tuples
is equally split into non-overlapping blocks sequentiallich that each block becomes the
data of a peer. Note that such a data distribution is knowroagdntal partitioning in the
distributed data mining literature. In all our experimewss measure two quantities: the
quality of our results and the cost incurred by our algoritWie compare these quantities
to the centralized execution of the same algorithms. Nexingsent the performance anal-

ysis of each of the variants of tRAFS algorithms on these two data sets.

Distributed Misclassification Gain: The PAFS algorithm is provably correct. In all our

experiments oPAFS using misclassification gain, we have seen that it genetiadesame

3http://kdd.ics.uci.edu/databases/covertype/covertyp e.html
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FIG. 5.8. Plot of the number of messages transferred vs. nunfilpereos
(misclassification gain).

ordering of attributes when compared to the centralizedréhgn.

Figure 5.8 shows the variation of the cost of the featurectele algorithm using mis-
classification gain when the number of nodes increases ffbta 5000. The results are on
the mushroom data set. As seen in Figure 5.8yth&is refers to the number of messages
sent by each peer per unit of time. It varies between 0.98 aamithe number of peers is
increased from 50 to 1000. As pointed out in Section 5.6,dte humber of messages ex-
changed per round Ejzl m;. In this caser:1 m; = 60. Assuming 4-bytes per integer,
the size of a message per roundisx 4 = 240 bytes. Hence we claim that our algorithm

shows excellent scalability in terms of the number of messaigansferred.

Distributed Gini Index: In our distributed experiment using the Gini measure on the
same mushroom data set, tRAFS algorithm do not report the same ordering compared
to centralized scenario. One pair of attributes are intmgled compared to the centralized
ordering. This can be explained by the fact that for compgutive gini index, we need

to find the ratio of two sums. Since these sums are correct asyynptotically, there is
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always a small deviation from the true gini index. This caal¢o error in the distributed
algorithm.

The cost of the algorithm is shown in Figure 5.9. The numbene$sages vary be-
tween 1.97 and 2.0. Note that for Gini index, for each attelband each possible value
of an attribute, we need to execute 2 distributed sum prédo€@r the same scenario, we
need only 1 sum computation for misclassification gain. Assalt, the number of mes-
sages per peer per unit of time doubles in this scenario. Agdyethe size of a message

perround i2 37 m; x 4 = 2 x 60 x 4 = 480 bytes.

Distributed Entropy: In our last experiment with the mushroom data set, we test the
entropy based distributd®AFS algorithm. The quality results are similar to the distramlit
Gini algorithm and can be attributed to the fact that in ttasecwe need to compute the
logarithm of sums. This introduces some error in the valukle@nce some features may
be ordered differently compared to centralized executionour empirical analysis, we
noticed three attributes mis-ordered by the distributgdrhm.

The number of messages per peer per unit of time varies betiv@8 and 2.0. In this
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case as well, the size of a message per roudds_, m; x 4 = 2 x 60 x 4 = 480 bytes.

Experiments with Forest Cover data setn this set of experiments our focus is to identify
the set of attributes which contribute highly towards diggsy the Lodgepole Pine forest
type. We have run all three variantsPAFS. Figure 5.11 shows the attributes alongxis
along with the measurement metric on thaxis. Note that ordering of the attributes is not
the same for all three measurements. In all these casesweeuraa centralized algorithm
which produced the same results. We do not present any gospbsmmunication com-
plexity because they are similar to what has been preseotedd mushroom data set. In
this caseri1 m; = 19746. Thus, per round?AFS exchanged9746 « 4 = 78984 bytes

compared to 1974600 bytes needed for centralization.

5.9 Conclusions

In this chapter we have presented a local privacy presenistgbuted data mining

algorithm for computing the sum in a large P2P setting. Duedarly constant commu-
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nication complexity and locally synchronous nature of tlgpathm, it is highly scalable.

To the best of our knowledge, this is one of the first solutmhgch blends in the concept
of local asynchronous distributed averaging with secune grotocol to develop a scalable
privacy preserving sum computation algorithm tailoreddocenmodate every participant’s
privacy and cost constraints. In our analysis we have asstina¢ the initiation of ring by
one node is independent of the other nodes. Also we have asstimat the data at each
node is from a uniform distribution. many of our analysisgeneted in this chapter depends
on these assumptions.

The proposed algorithms are applicable for large scaledg@eous distributed sys-
tems such as the Internet and has various applicationsefaire privacy preserving data
aggregation. We have adapted this sum computation algotdhvork in a web application
for a P2P advertisement ranking problem. Finally we alsoalestrate how it can be used
for information theoretic feature selection. In the nexdgter we discuss another P2P data

mining privacy sensitive application and discuss possblations.
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Chapter 6

PRIVACY PRESERVING INNER PRODUCT
APPLICATION IN P2P NETWORKS

6.1 Introduction

The inner product between two vectors measures how similatose they are to
each other. It is a very important primitive for many data imgntasks such as clustering,
classification, correlation computation and decision teestruction [63]. In many appli-
cation scenarios, it is often desirable to know only the ®p $ignificant inner products
for drawing important conclusions about the data distidsut If the entire data can be
conveniently accessed, it is easy to compute the inner ptodatrix and determine the
top ones. However, for P2P applications, the data is digedover a multitude of peers
connected by communications channels of varying capa&isp, P2P networks are large,
dynamic, asynchronous, and have little central contralks tery difficult, if not impossi-
ble, to transfer all the data to a single peer to do the contipautaince no one would have
such extensive storage and computational capabilitiealdae the enormous communica-
tion overhead. In this chapter we solve a topner product identification problem. For
using our distributed privacy preserving sum computatiamiework, we formulate the
distributed inner product problem as a series of sum coniputa

We propose an order statistics-based approximate loaaiitdg for solving the prob-
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lem. Here the local algorithm is one where a peer commursaatéy with its neighbors

(formal definition given later). At the heart of our algorithare the ordinal approximation
based on theories from order statistics [44] and the cdrdiproximation using Hoeffd-

ing bound [76]. We present experimental results to show tleeterzeness and scalability
of the algorithm. We then demonstrate an application of tdtfinique for interest-based
community formation in a P2P environment.

This chapter is organized as follows. In the next sectioct{Be 6.2) we present work
related to this area of research. We discuss the notatiahtharproblem definition in Sec-
tion 6.3. In Section 6.4 we present the building blocks ofttie!l inner product algorithm
followed by the details in Section 6.5. We analyze the gualitd message complexity of
this algorithm in Section 6.7. We demonstrate the perfocaani the algorithm in Section
6.8. As an application of this algorithm, we discuss a P2Rabotative decision problem

in the financial domain in Section 6.9. Finally we conclude tthapter in Section 6.10.

6.2 Related Work on Distributed Inner Product Computation

Fourier and wavelet transforms can be used for efficienttpymating inner product
when feature vectors are distributed between two partieesd transformations project the
data to a new low-dimensional space where the inner produyreserved. The dominant
Fourier and/or wavelet coefficients are transmitted to roffaties and the inner product
can still be computed from those coefficients with high aacyur Random projection [11]
is another communication-efficient approach for inner pgd@omputation in a two-party
scenario. This technique has been used by Gianat# [63] for decision tree construc-
tion over distributed data. These techniques work wellviar parties, but do not scale well

to large asynchronous network.
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6.2.1 Identifying top-k items

Several techniques exist in the literature for ranking gesha data set. Wolfét al.
[161] present a local algorithm that can be used for momigptihe entries in a certain per-
centile of the population. In their paper, the authors dbea majority voting algorithm,
where each peev;, has a real number;, and a threshold > 0 (the same threshold at all
peers). The goal is for the peers to collectively determihetier) . z; is aboven{ where
n is the number of peers in the network. This technique can bengially used to find all
the entries of the inner product matrix that belong tojtitepercentile of the population.
However, the major disadvantage is the communication cexityl— a separate majority
voting problem needs to be invoked for every inner produtityeand thus the system will
not scale well for large number of features. In the worst céds® communication com-
plexity of the majority voting algorithm may become equathe order of the size of the
network.

Distributed topk monitoring by Babcock et al. [13] presents a way of monitgrin
the answers to continuous queries over data streams prbaigehysically distributed
locations. In their paper, the authors assume a central andehe topk set is always
determined by the central node. The coordinator node firelariewers to the top-queries
and distributes it to all the monitor agents. Along withlitetcentral node also distributes a
set of constraints. These constraints allow a monitor nodalidate if the current top-set
matches with what it finds from the local stream. If the vdiidlaresults are true, nothing
needs to be done. Otherwise, the monitor agent sends amncetleet coordinator node. The
coordinator node recomputes the tbget based on the current data distribution and sends
out both the new top-and new set of constraints to be validated by each monitartage
Since the paper assumes that there is a central node, thigdae is not directly applicable
to many asynchronous large-scale networks such as Mobit®almetworks, vehicular ad

hoc networks and P2P networks which is the focus of this wieakin [57] presents a way
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of combining query results derived from multiple system$fte@ disparate databases and

type of the query run on them return different types of resufagin’s paper talks about
combining them. It also proposes techniques to retrieveitefements from distributed
databases.

In the area of information retrieval, several techniquastdrr top+ object identifi-
cation. Balkeet al. [15] propose a super-peer approach for finding the top ahjethe
top queries are handled by the super peers and any othempter metwork can contact
these super peers to get the answers to these queries. Hoeglistuss ways to select
these super-peers so that any peer can find its closest segreefficiently. There are also
techniques which explore the retrieval algorithms takimg iaccount the relative rankings
of objects. Many of these algorithms depend on gossip-b@skdiques for spreading the
ranks of its objects [37]. The major problems with gossipgeols are that they are slow
(convergence can take a long time) and not very scalableadgielbal communication.

In the next section, we present a high-level overview of dgorithm to identify the
top inner product entries from the inner product matricasstmicted out of horizontally

partitioned data.

6.3 Notations, Problem Definition and Overview of the Algorihm

We first introduce the notations used in the rest of the chayte then formally define

the distributed inner product problem before describirggatgorithm.

6.3.1 Notations

As discussed in earlier chapters, assume that there a@lesuv,, v,, ..., v, In the
network. Since we are dealing with horizontally partitidnéata, let there be global
features, common to all peers. The local data set for pees denoted byD, havingr,

rows andc columns. The union of the data sets of all the peetsjis D, = D, which is
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the global data set. The inner product matrix at peedenoted by7,, is ac x ¢ matrix

whose(i, j)!* entry is the inner product between tie and j** feature vector inD,. In
matrix notation,Z, can be computed a8, = D}Dd. The global inner product matrix,
denoted by7, can be formed by pointwise addition of all the inner produetrices of all
the peers. In other words, tlig )" entry of Z is Z[i, j] = >_,_, Zali, j]. Since the inner
product matrix is symmetric about the diagonal and the diagelements are the inner
product of the feature vectors with themselves, we considigrthe upper triangular matrix
excluding the diagonal. Thus we haﬁfg—C distinct entries in the set of inner products that
we consider at each site. Henceforth, any reference(tr Z,;'s) would indicate the upper
triangular inner product matrix excluding the diagonahedats. We also assume that the
entries of all the inner product matriceg or Z;'s) are labeled with a single index. For
example, thei, j)" entry of Z, Z[i, j] is now denoted by [(i — 1) x (c — %) + (j — i)],

; : 2—c
I<i<j< =,

6.3.2 Problem definition

Without loss of generality we assume thétl] > Z[2] > ... > Z[(i — 1) x

(c—=8)+G -9 = - > Z[CZ‘C] is the non-increasing ordering of the values of
the global inner product matri¥. Given such an ordering and a valpgbetween 1

and 100), the top- percentile of the inner product entries consist of the feligy set

100 2

F = {Z[l],Z[2],...,Z[ B x CQ‘C]} such that|/7| = k. Now, given a connected and
undirected grapld:(V, E') where each node has its local inner product maftjxas de-
fined in the previous section), our goal is to identify soh@ements fromF using local

inner product matrice&,; and some locally exchanged information among the peers.
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6.3.3 Overview of the algorithm

Order statistics provides a lower bound on the number of &ssmwpquired to identify
the top percentile of a data distribution with a user-spegitionfidence level. Therefore,
it can be used to compute the number of samples (the numbdolodlgnner products)
required to determine the tdpnner product entries. We call thagdinal samplingsince
we are primarily interested in estimating the relative ortgin this case. However, since
the value of each sample (i.e., the global value of eachbat&iwise inner product) is
distributed at different sites, we have to estimate it bynda second round of sampling.
We call this thecardinal sampling These random samplings are done in the network using
random walks. A node in the network that wants to identify sooh the highest inner
product entries of the global inner product matrix, laurscrendom walks to collect the
ordinal and cardinal samples. Once the initiator node gatk the estimates of the ordinal
samples, it can then arrange the elements in a non-inceeasiter. Then, depending on
thethresholddetermined by applying ordinal decision theory, the nodernake decisions
about the tog-inner product entries in the global data set. Thus, theaitwtinode could
conclude about the globally most related features in tha det without actually getting

every other nodes’ data.

6.4 Building Blocks

This section elaborates on some building blocks that aressaey to understand our

distributed algorithm for identifying significant innerqatuct entries.
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6.4.1 Decomposable inner product computation

Let x andy be twor,;-dimensional feature vectors. The inner product betweand

y is defined as:
Td
<xy> = >z
=1

Now in our scenario, the values xfandy are distributed over the network. The inner

product of those two vectors are:

Td n Td n
cxy> = ZZ[Z]ZZ
=1 j=1

i=1 Lj=1

where peew, has anr,-dimensional vector, which is;’s contribution towards the inner
product betweex andy. Z; is the local inner product of the;-th peer. Visiting all the
peers is infeasible especially in large systems and henceseet to sampling from a subset

of peers in order to estimate x,y >.

6.4.2 Ordinal approximation

Given a data set horizontally partitioned among peers, wet wafind some top-
[ entries which are in the top-percentile of the population. A trivial approach to this
problem would be to collect the entire data set from all paexscompare all the pairwise
inner products among the features. This simple approachever, does not work in a
large-scale distributed P2P environment because the eaerbf communication would be
extremely high. Order statistics is an excellent choicéhia tase, since, by considering
only a small set of samples from the entire population, westdinproduce a reasonably
good solution with probabilistic performance guarantees.

Let X be a continuous random variable with a strictly increasimgglative density

function (CDF) Fx(z). Let¢, be the population percentile of order i.e. Fx(&,) =
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Priz < &} = u, e.g. & is called the median of the distribution. Suppose we take

independent samples from the given populaoand write the ordered samplesas<

ro < --- < x,.. We are interested in computing the value-@hat guarantees

Pr{z, > &,} > v, for a given constant.

Lemma 6.4.1(Ordinal Approximation) Let zq, x5, ..., z, ber i.i.d. samples drawn from
an underlying distribution. They are arranged such that< z, < --- < z,. Then

P(x, > &,) =1 —u", where¢, is theu' percentile of the population.

Proof.

Pz, >&)=1—Pz, <&)=1—-F, (&) =1—-u".

O

Now if the above probability is bounded by a confideh¢eve can rewrite the above

eguation as

1—u’”>h:>r2[w—‘. (6.1)
log(u)

For example, forh = 0.95 andu = 0.80, the value ofr obtained from the above
expression is 14. That is, if we took 14 independent sampten finy distribution, we
can be95% confident thaB0% of the population would be below the largest order statistic
x14. In other words, any sample with value greater or equal tovould be in the toR0
percentile of the population with5% confidence. Note that, the value oflecreases by
decreasing:. For detailed treatment of this subject we refer the reaolédavid’s book

[44].
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WhenX is discrete, the equatiofix () = u does not have a unique solution. How-

ever,¢, can still be defined byr{z < &} < v < Pr{z < ¢,}. This givest, uniquely
unlessFx (&,) equalsu, in which case, again lies in an interval. It can be shown that in
this case,Pr{z, < &,} < I,(a,1) = u", wherel,(a, 1) is the incomplete beta function.

Therefore, in the discrete scenario, we have

Priz, > &} = 1—Pr{z, <&}

> 1—u" > h.
This does not change the conclusion in Equation 6.1.

6.4.3 Cardinal approximation

Ordinal decision theory, as presented in the previous@ggbrovides a bound on the
number of samples that needs to be drawn from any populabidimas the highest-valued
sample is in the tope percentile of the population. However, in order to applyioad
approximation, we need to estimate each of these ordingblsamising another round of
sampling. We refer to this asardinal sampling In our distributed scenario, the samples
are the inner product entry at each node. Therefore we neasita number of nodes for
estimating each ordinal sample. In order to derive bounde@number of peers to sample
(s) for estimating each of these ordinal samples, we have iseHdbeffding Bound [76]

which bounds the tail probability of a distribution.

Lemma 6.4.2(Hoeffding Bound) Let x;, i € {1,...,s} bes independent samples of a

random variableX with values in the rangé:, b]. Let the sample mean lig, = 1 >~ ;.
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Then for anyy > 0, we have

Next, we show how the Hoeffding bound can be used to derivgppenbound on the

value ofs.

Lemma 6.4.3(Cardinal Approximation)Letz;, i € {1,..., s} besindependent samples

drawn from a populatioX with values in the rangg:, b]. LetQ, = £ 3, z; be the sample

2 /
mean. Then, when> % we have

PriQ, — E(X) = x} < I,
Pr{E(X)-Qs > x} <1
Proof. Following Lemma 6.4.2, we have

Pr{Qs — E(X) > x} < exp (— 2 ) <N

(b—a)?
Therefore,
252 , (b—a)’ln (%)
(b—a)Q_ln(h):>s_ % (6.2)
|

Note that0 < /' < 1,0 < xy < 1 and both are parameters determined by the user.
For example, ifb —a = 5, K’ = 0.05 andy = 0.5, we haves > 150. In other words,

if we take at least 150 samples for estimating the mean of doranvariable having a
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range 5, the probability that the difference between the tnean and the mean of the

population is greater than 0.5 is less than by 0i@ fr (Q; — F[X] > 0.5) < 0.05 and
Pr(E[X] — Qs > 0.5) < 0.05). Note that, as botly and/’ decreases; increases.

In a distributed scenario, the peer which initiates the oamavalk needs to estimate
this value ofs. For each attribute;, it can compute the value &f using only the range
of each attribute. Therm can be set to the maximum of all the individugk i.e. s =

max{_,{s;}, wherec is the number of attributes as defined in Section 6.3.1.

6.4.4 Random sampling and random walk

The cardinal sampling process that we just discussed exjaailecting samples from
the peers. Random walk is a popular technique for random lgagrfpom the network. It
can be performed by modeling the network as an undirectgahgréth transition probabil-
ity on each edge, and defining a corresponding Markov chaandBm walks of prescribed
length on this graph produce a stationary state probahiéttor and the corresponding
random sample. The simplest random walk algorithm choosesiggoing edge at every
node with equal probabilitye.g. if a node has degree five, each of the edges is traversed
with a probability 0.2. However, it can be shown that thisrapgh does not yield a uniform
sample of the network unless the degrees of all nodes are pea[106] for example).
Since typical large-scale P2P network tends to have nadieumidegree distribution, this
approach will generate a biased sample in most practicabsios. Figure 6.1(a) shows
the non-uniform selection probability using a power-lawggr of 5000 nodes.

Fortunately, the elegant Metropolis-Hastings algoritiirt4],[73] implies a simple
way to modify the transition probability so that it leads tar@form stationary state dis-
tribution, and therefore results in uniform sample. Hereuse an adaptation [12] of this
classical algorithm. Next we briefly introduce the Metrapdflastings algorithm for ran-

dom walk.
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Let G(V, E) be a connected undirected graph witf] = n nodes andE| = e edges.

Let deg; denote the degree of a node The set of neighbors of nodes given byI'(7)
whereV; € I'(i), edge(i, j) € E. LetT = {p;;} represent the x n transition probability
matrix, wherep;; is the probability of walking from nodéto nodej in one message hop
0<p; <1 andzj pi; = 1). Algorithm 8 gives the basic protocol for generating this
in a distributed fashion using the Metropolis Hastings pcot. Note that peers need not
know the entire matri¥” in order to a random walk. All that peef needs is one row of

this matrix7;, which gives the transition from nodegto all other nodes if’;.

Algorithm 8 : Distributed Metropolis-Hastingd{M H) [12, 73]

Input of peer v;: Its degreeley;
Output of peer v;: A row (7;) of transition matrixi’
On initialization: v; sends out @egree message to atl; € I'(7)
On receiving a messagelfegree): If it has received the degree information from
all v; € I'(7) it can compute,; as follows:
1/ max(deg;, deg;) if i # jandj € I'(4)
Pij = 1—- Ejel"(i) Dij ifi=
0 otherwise
Termination: Once thep;;'s have been populated sEt«— [p;1 pi2 - -+ Dinl-
Terminate DHM.

This algorithm generates a symmetric transition probigtihiatrix and has proven to
produce uniform sampling via random walk. Lovasz [106]wé&d that the length of ran-
dom walk \) necessary to reach to stationary state is of the ordéx(bfg n). Empirical
results show that when the length of walki isx log n, this algorithm converges to uniform
distribution. Figure 6.1(b) shows the probability of s¢iea using the Metropolis-Hastings
algorithm over a simulated network with 5000 nodes. As caadsly seen, the probabil-
ity of selection is near uniform for nodes with different degs. We also compared this
technique with the Degree Balanced Random Walk (DRW) pregds/ Orponen et al.
[125]. Experiments (Figure 6.1(c)) shows that the proligbis nearly uniform in this
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case as well. However, this technique requires a relatidgly walk length in order to

achieve stationarity. Therefore, we choose the MH algoritbr collecting samples from

the network.

6.5 P2P Algorithm for Identifying the Significant Inner Prod uct Entries

Using the building blocks discussed in the previous sectw® now describe our
algorithm for doing distributed selection of sorhelements from the top-percentile of
the population when there akeelements in the top-percentile { < k).

The process is started by the initiator node in the netwaak diecides to find the top
few entries in the distributed inner product matrix. Ouraaithm needs to know three
parameters — (1) number of ordinal samples to collegt(@) the number of peers to visit
for estimating each sample)( and (3)r indices of the inner product matrix corresponding
to ther samples to collect. Based on the desired level of confidelgele percentile
(u) of the population to monitor, the range the accuracy andh’ (Section 6.4.3), the
initiator knows the values of these parameters using thétsesf Section 6.4. It launches
r x s random walks and after all these walks terminate, the savge sent back to the
initiator node. The initiator then needs to add all the samplaving the same index. It
then orders the samples and the highest one is theeshold. Any inner product value
greater than this threshold is expected to be in theutpprcentile of the population with

the chosen confidence. Hence the overall approach conbisis fmllowing tasks:

1. sample size computation,
2. sample collection,
3. threshold detection, and

4. some top-inner product elements identification

Each of these steps is further discussed below.
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6.5.1 Sample size computation

The initiatory, first selects a confidence levehnd the order of population percentile
u it would tolerate. Based on the bound derived in Sectior26 #e initiator calculates
the number of sampleg)required to compute the threshold such that any inner mtodu
that is greater than this threshold is among the«tqgercentile of the population of inner
products. It also randomly generatesdices (each between< i < %) which will be
sampled for the set of all the inner product entries. Theaittt also uses the Hoeffding
bound (Section 6.4.3) to find the valueraf or the number of peers to visit for estimating
each of these ordinal samples. Thus, after this step, the initiator peews the value of

r, s and the actual indices of the inner product entries to be Eaimp

6.5.2 Sample collection

Given the sample size ofand the number of peers to visitthe initiator invokes: x s
random walks using the protocols described in Section oAHhoose independent samples
from the network. Since estimating one single inner produntty requires sampling
peers for the same indexed entry, each random walk carrtstwhe index number of the
element to be sampled. Also each random walk carries thedrRessl and port number of
the initiator node so that the terminal node of a random walk send its inner product
entry directly to the initiator node. At the end of these mdwvalksv, hasr x s samples
where there are different indices and inner product values for every index of the inner

product.

6.5.3 Threshold detection

Once the initiator node gets all the samples, its next tagk identify the threshold.
Since inner product is decomposable, for every ind@eerv, sums up the all the entries

corresponding to the same indext then finds the largest of thisaggregated set of inner
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product entries and this is the threshold.

6.5.4 Some top-inner product elements identification

The above technique would give the peer a way to identify dneitems in the
top-k, where there arg elements in the top-percentile of the population. We can extend
this to find somé of the top4 elements/(< k). All that a peen, needs to do is to launch
r x s x [ random walks. Now after aggregating the results we hdeégements and for every
r element we can find a threshold. Thus we will hateresholds. The ordinal framework
guarantees that each of théghresholds are in the toppercentile of the population.

OrdSamp(Algorithm 9) presents the sample collection techniqueafeingle random
walk using the ordinal framework. The initiator sends a tokaitialized to a value equal
to the length of the random walk), its IP address, port numbdnitiatorNodeNun and
the index of the elemensS@mplelndexto sample for this random walk. When a node gets
this token, it decrements its value by 1. If the value of theetobecomes 0, the inner
product entry indexed bgamplelndexs selected from the local data set and sent back to

the initiator node.

6.6 Local Algorithm

In this section we prove that the algorithm that we have daged is local.

Lemma 6.6.1(Locality). TheOrdSamp algorithm is(O(logn), rsl)-local wheren is the

number of nodes in the network and the other items are as dédfirfeection 6.4.

Proof. We prove this using the property of random walks. The irotiatode, launches
O(rsl) independent random walks. Each random walk has a walk leofgth(logn).
So the maximum number of hops that a query can propagate ftingireach samples is

O(logn). While returning these samples, back to the initiator, & is-hop process. Note
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Algorithm 9: Distributed selection of sample®{dSamp)

Input of peer v;: D, - the local databasé)(d) - set of immediate neighbors of,
a row 7, of the transition matrix’
Output of peer v;: Sends the sample if the random walk terminates at this peer
On receiving a messag€l(oken):
Token =Token -1
FetchSamplelndex
Fetchinitiator Node Num IP Address and Port number of the initiator node
IF Token =0
Pick the element whose index$simpleIndex from Dy
SendSamplelndex to the Initiator Node Num.
Wait for newT oken messages for other random walks
ELSE
SendSamplelndex, Initiator Node Num to a neighbor selected according
to the transition matrix
ENDIF

that in the sample collection process, all the random walkdaunched using the same
walk length. Hence the entire algorithm is &f(logn), rsl)-local since the number of

queries igsl. O

Note that theDrdSamp algorithm is efficient sincee = O(logn) is a slowly growing
polynomial compared to the network sizeand~ = rsl is a small number, independent
of the network size. We have given typical example values, of and/ in Sections 6.4.2,
6.4.3 and 6.5.4 respectively. Similarly we can show thattimaing time of our algorithm
isO(rsl x logn).

The algorithm we have developed is boi(logn), rsi)-local and ¢, ) correct,
wherel — § = h, as defined in Section 6.4.2 amdcorresponds to the error discussed

in the next section.
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6.7 Error Bound and Message Complexity
In this section we analyze the error bound and the messagplexity of our dis-

tributed algorithm.

6.7.1 Error bound

In our distributed algorithm there are two sources of errgi)-error due to ordinal
sampling and (2) due to cardinal sampling. ketz-, ..., z, denote the samples as found
by the distributed algorithm (the subscripts corresponthéoindexing scheme defined in
6.3.1). Note that each of the$g-s are estimated by aggregating the values ofithentry
of the inner product matrix froms peers. The value of thé" entry for thei'" peer is
given by Z;[d]. Thereforei, = >°;_, Zi[d]. Let Z[d] = w denote the mean of the
estimatesyd € {1,...,r}. Lemma 6.7.1 derives the probability that the thresh@dz,

is greater than the'” percentile of the population.

Lemma 6.7.1(Error). Let 71,7,,...,%, be ther samples found by the distributed al-
gorithm. They are ordered such that < 7, < --- < Z,. Then,P(z, > &) =

11—, @ <[% — Md] %f) where i, and o, are the mean and standard deviation of
the feature of the population correspondingitg &, is the population percentile of order

uand®(.) is the area under the standard normal curve.
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Proof.

P(i’r>£u> = 1_P(jr§£u>

- 1—EP<§:Zz[d]<fu>

_ 1_HP<ZZ}1ZM<@>

= 1EP<Z[d]<i“)

- 1—§P<Z[déﬂd<§:%ud>
Sl (= [2on] )
-l ([F)

O

Step 2 follows directly from step 1. Now singg is a sum of all the elements obtained
by visiting s peers, we must have, = >7_, Z;[d] V d. Finally, sinced "’ | Z;[d] is a sum
of random variables we have used Central Limit Theorem tveld¢ne final expression.

Hence the probability of error if[},_, ® ([% — Ha) ;/—f) This shows that as in-
creases, the error decreases since each term of the preduycy,iwhich is the area under
a unit Normal variable and is less than or equal to 1. Alse axreases, the expression
inside® decreases and thus the overall probability of error deesed=or a special case in
which all they,’s ando,’s are equal to say ando, the error becomes ([% — fa) j—f)r

— hence as increases, the error decreases exponentially.
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6.7.2 Message complexity

The distributed algorithm that we just described launchess x [ parallel random
walks each of length\ such that each random walk will return a single element. The
coordinator node can then aggregates these samples, asthithresholds. We will use
this model to analyze the message complexity.

For each such a random walk, the initiator node needs to dendbtlowing four

information in the message:

1. Token Number - Integer 32 bits

N

. Index of the inner product entry to sample - Integer 32 bits

w

. IP Address - Integer 32 bits

4. Port Number - Integer 32 bits

The message complexity for this step I28 x r x s x [ x A = 128rsl\ bits. Since
at the end of each random walk, the terminal node needs tatkersimpled element back
to the initiator node, it would need 64 bits (assuming thaheantry of the inner product
matrix can be represented as a double number). Thus, thallovessage complexity for
the entire sample collection process 1€8rsi\ + 64rsl = O(rsl\) bits. Substituting the
values ofr ands from equations 6.1 and 6.2 respectively, and usiing log n as the value

of )\, the message complexity can be rewritten as,

(b—a)?In(1/v")log(1 — v)
2x2logu

[1+20logn] |64 bits,

where the symbols are defined in the respective section® tNat this expression is inde-
pendent of the number of featureshe number of rows; and is logarithmic with respect

to the number of nodes.
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Now, considering the centralized algorithm, if each peardndata set of size x ¢ =

O(r;c), then the total message complexity for the centralizedreehean be written as :
64 x r; x ¢ x n = O(r;cn) bits. Hence, the communication complexity of the cerzeddi

algorithm is dependent linearly on the size of the datassetr(dc) and network ).

6.8 Experiments and Performance Evaluation

In this section, we study the performance of the proposeeriproduct identification

algorithm.

6.8.1 Network topology, simulator and data generation

Our network topology is generated using the ASWaxman MaaehfBRITE [112],

a universal topology generator. The generator initialsigiss node degrees from a power-
law distribution and then proceeds to interconnect the sadeng Waxman'’s probability
model. Power-law random graph is often used in the liteeatioimodel large non-uniform
network topologies. Itis believed that P2P networks canfto such power law topologies
[141]. We use the Distributed Data Mining Toolkit (DDMT) [Uéeveloped by the DIADIC
research lab at UMBC to simulate the distributed computmgrenment.

The experimental data consists of tuples generated frofarelift random distribu-
tions. Each column of the data is generated from a fixed umiftistribution (with a fixed
range). Thus, there are as many different distributione@stimber of features. The cen-
tralized data set is then uniformly split (so that each pesrthe same number of tuples)

among all the peers to simulate a horizontally partitioressghario.

6.8.2 Performance

We study the applicability of the ordinal approximation dhes in our distributed

environment by comparing the results produced by the dergdbalgorithm. By a central-
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ized algorithm we mean centralizing the entire data setlgfesdrs and running the ordinal

approximation on this data set. Our measurement metridstedsof two quantities — (1)
Quality and (2)Cost. By quality we measure the thresholds detected both in gtalalited
and centralized scenario as compared to the actual pdecehthe population. Cost refers
to the message exchanged in Kilobytes (KB) for doing the agatmn with reference to a
centralized scheme.

We report here three sets of experiments - (1) performandbeolgorithm when
monitoring increasing percentile of population, (2) thalability of our algorithm, and (3)
the effect of increasing the cardinal sampling (We have reported both the quality and
cost whenever appropriate. Unless otherwise noted we havioowing default values
for the different parameters: (1)=500, (2)¢=100, (3)r=19 w=85% andh=95%), (4)
s=35(R=5,h=0.5x=0.5), (5)I=1, (6)\ = 10 x logn, and (7)r; (number of data
rows for each peer) = 500. Each random experiment was rurOfdtrials and the we plot

both the average and the standard deviation.

Experiments with different percentile of population In this experiment we com-
pared the accuracy of the distributed algorithm with thetredized one. We have exper-
imented with three different percentile)(values of 95, 90 and 85 for which the number
of samples ) required are 59, 29 and 19 respectively. Figures 6.2(a)6a?{h) shows
the effect on quality and cost with changes in populatiorcgatile. In Figure 6.2(a),
the circular points represent the actuath percentile of the population, whereas the blue
square error bars and the red star error bars representdés@did for the same confidence
and percentile for the distributed and centralized scenaspectively using ordinal ap-
proximation. The distance between the red (stars) erras &ad the green circular dots
represents the error due to ordinal approximation wheiteaslifference between the red
(stars) error bars and the blue (squares) error bars in #phgran be attributed to the car-

dinal approximation introduced in the distributed enviramt. We notice that in both the
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centralized and distributed scenario, the threshold iatgreahan the actual-th percentile

of the population. This means that there will be no falsetpes in ordinal estimation.
Figure 6.2(b) compares the communication of our algorithith tihat of the central-
ized version for monitoring different percentiles of pagtidn () plotted in the log-scale.
Since the number of features= 100, r; = 500 andn = 500 remain constant, messages
for the centralized experiments for different percentiless not change. In the distributed
scenario, the expression in Section 6.7.2 is used for finti@gumber of messages. In all

cases, our algorithm outperforms the centralizing schenberins of message complexity.

Scalability We test the scalability of our algorithm both with respectite number
of nodes and number of features of the data set. In both cas@soithe quality and cost
of the algorithm.

For the scalability with respect to the number of peers, wepkifie number of data
points per peer constant (500). Figure 6.2(c) shows thetaffe the threshold detected as
the size of the network is changed (all the other parameterataheir default values). As
can be seen from the figure, the threshold detected by bottetitealized and distributed
experiments using order statistics are greater thanttkepercentile of the population.
Moreover, the centralized and distributed estimates aite giose for different sizes of
the network. This shows that our proposed distributed élyorhas good accuracy with
respect to scalability.

Figure 6.2(d) shows the cost of the algorithm (plotted in-$ogle) with increasing
number of nodes. For the centralized algorithm, the effettt@number of nodes is lin-
ear. On the other hand, it is logarithmic for the distribuaégbrithm (refer to Section 6.7.2
for details). This means that the proposed distributedrdtgua is far more communication
efficient than the centralized counterpart as corroborayetie experiments here.

In the other scalability experiment, we varied the numbdeafures ¢). The results

are shown in Figures 6.3(a) and 6.3(b). Figure 6.3(a) shbatghe quality of our estimate
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is quite good — in all cases, the highest order statisticaatgr than the actual percentile of

the population. Also, the centralized and distributednestes are very close. Since there
is a large difference in the scale, the points are close (gtlimo top of each other). The
number of features has no effect on the cost of the distribatgorithm, while the same

for the centralized algorithm increases linearly as shawFigure 6.3(b).

Experiments with increasing s This section presents the quality and cost of the
algorithm as the percentage of cardinal samplisjgirficreases. Figure 6.4(a) shows the
effect on the highest threshold detected with increasimypfiag s. The trend is clear
- as we increase the percentage of network sampled, thédistal threshold (red stars)
approaches the centralized threshold (blue squares).glré-6.4(b), plotted in the log-
scale, the messages transmitted increase as the percehtagf@/ork sampled increases.
On the other hand, for the centralized version the messageplegity is a constant.

Overall, this experiment shows that the estimation of ogoathm is comparable
to the corresponding centralized version at a cost whiclaidess than its centralized
counterpart.

In the next section we show how this distributed inner prodlgorithm can be ap-

plied to a P2P collaborative decision problem.

6.9 Interest based P2P Community Formation

The problem that we want to address is from the financial don@@onsider an online
forum in which each user has some virtual holdings in stosksres or equities. Now
imagine a novice investor who has bought some stocks of a@aoydpand is interested to
know other similar companies to invest in. One way of soluimg problem is to collect
all user portfolio at a central location, compute a similamneasure such as inner product

or correlation among the equities, and then output the ontfs high similarity score.
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However, such a setup is not attractive due to the follonssges:

e Itis extremely inefficient and costly to centralize all tregalat one location.
e Due to sensitivity of the information, nobody would like toege all their data.

To address the first issue, we use our toprer product identification framework which
allows us to determine the top few inner product entries wéty low communication. It
can be noted that using our ordinal statistics based fotionlave have reduced the tdp-
inner product identification problem to a series of sum cotafons. Therefore, we can
now apply the privacy preserving sum computation frameworkolve our community

formation problem where privacy is an important issue.

6.9.1 Notations, Data Description and Problem Definition

We reuse the notations defined in Section 6.3.1. The datd sseov, can be rep-
resented as a matri®, in which each row ... r] corresponds to a time windove Q.
a week or day) and each columnh.[ . c] corresponds to a global set of predefined equi-
ties, same across all the peers. Any eriixy(i, j) of D, refers to the number of equities
of company; held by usen, for thei-th time window. The global data set of all peers
is denoted a® = |J),_, Dy. The local inner product matri<,; = DY D, measures the
similarity between the equities locally held by usgr The global inner product matrix
Z =D'D=3"1_, Z,,is the point-wise summation across the matrix entriesCLiet the
attribute whose closest we are interested in finding@nte the row ofZ corresponding
to C. Our goal is to find the topinner product entries of .
Problem Definition: Given D, and an attribut€, for any user, find a set of highly corre-

lated attributes witlt.



198
6.9.2 Approach

In our computing model, any usey, called initiator, invokes a computation for find-
ing the top few inner product entries ®.. The computation consists of the following
tasks: sample size computation, percentile estimatiaestiold detection, and attribute

identification.

Sample Size Computation: The initiatoruv, first selects a confidence leveland
the order of population percentileit would tolerate. It can then find the sample sizas
discussed in Section 6.4.2. The initiator also uses Hagffiound (Section 6.4.3) to find
the value ofs, or the number of users to visit for estimating each of theselinal samples.
Thus, after this step, the initiator knows the value of and the actual indices of the inner

product entries to be sampled frovia.

Percentile Estimation: Given the sample size of the number of users to visit
and the row of the inner product matrix to focus its seair@h the row id corresponding
to companyC), the initiator invokes" x s random walks using the protocols described
in Section 6.4.4 to choose independent samples from theonketiwcusing only on the
attributeC. Since estimating one single inner product entry requiaaspding s users for
the same indexed entry, each random walk carries with itrttiex number of the element
to be sampled fronV.. Also each random walk carries the IP address and port number
of the initiator so that the terminal node of a random walk sand its inner product entry
directly to the initiator node. At the end of these randomksal;, hasr x s samples where

there are- different indices and inner product values for every index of the inner product.

Threshold Detection: Once the initiator gets all the samples, its next task is¢a-id
tify the threshold. Since inner product is decomposableg¥ery indexi, userv, sums up

the all thes entries corresponding to the same indext then finds the largest of this
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aggregated set of inner product entries and this is thethtbles

Attribute Identification:  The initiatorv; composes a discovery message containing
a time-to-live (TTL) parameter defining the maximum numb&hops allowed for the
discovery propagation and the attribdte Then the discovery message is sent to all its
neighbors. When a user receives this message, it creates a list of all the entrié& of
which are greater than the threshold. It returns null, ifeaench exists. If TTL> 0, v;
forwards the discovery message to all its neighbors, exieghe peer from which the
message has been received. Each peer discards duplicaés obphe same discovery
message possibly received.

At the end of this computation the initiator will have a lidt features (names of
companies) whose inner product withis guaranteed to be in the tappercentile of the

population of all inner product entries W.

6.9.3 Privacy Preservation

We use the SSP protocol for solving this problem in a privagserving manner.
Note that, for this to be applicable it requires the existenia ring topology. In the ordinal
framework this can be imposed easily using random walk. Nattthere are in total x s
random walks. In order to apply SSP mechanism, we arrangatid®m walks as follows.
For each index of ordinal sample)( we have to select samples from different users. We
have seen in Section 4.5 that whenever a random walk teresirzta peer, the sample is
sent to the initiator. Here we modify this protocol slighsiych that each random walk for
collectings samples are sequential. After each random walk termin&tes (particular
ordinal sample), a new one is started from the same locatidnhee previous sample value
is added to the current one. This process is continued uséimples are collected. Finally
the sample sum is sent back to the initiator.

The SSP framework can be applied to this technique for preggdata privacy. Note
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that for each ordinal sample, a user is only interested irstine of s sample estimates. We

can therefore use the secure sum protocol, whereby thatorikdds a random number and
then the random walk runs fé?(log ) steps before picking up another sample. Whenever
a userv; adds its sample to the random walk, it does a modulo operadiamiformly
distributed the data. This is following the secure sum prokoOnce the sum of all the
samples have been calculated, the initiator can subtracatidom number to get the sum.
To protect against possible collusion, all that a user neézds is divide its data into
many shares. This will increase the cost of computatiomiteato lowering of the utility
for collusion. Since no user knows the valuesqiexcept the initiator), we also guarantee
that there is a non-zero probability that the sum computatiti continue to the next round.
Thereforey separate SSP protocols will be executed one for each oshngble. Once all
the sums are reported back to the initiator node, the locdkiimg can be done in order to

identify the threshold.

6.9.4 Privacy Preserving Inner Product Computation using SP Framework

The inner product algorithm discussed in this section coexbithe ordinal ranking
algorithm along with the SSP framework discussed in Chaftdfor ease of exposition,
we separate the ordinal sampling method from the privacggovation technique.

The first protocol that we discuss is the candidate identifingorotocol DiCat). The
pseudo-code is shown in Alg. 10. Instead of using the randaiik-bvased ordinal algo-
rithm to collect the data directly, we use it only for idegiifg the nodes that need to be
visited by a second algorithm. As shown, the main operatanfiopmed is populating the
List data structure. For every ordinal sample: 1...r, the task is to identify the set of
nodes according to the random walk. In the initializatiomg# the initiator sets a token
for each separate random walks. Since each ordinal samgtts ne be estimated from

cardinal samples, the token is setstx log n. Whenever a node gets a token message, it
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checks if the value is a multiple of the length of the randontkwa& his identifies if this

node needs to be putin the list. If the token becomes 0, this listurned to the initiator.
Other than these two conditions, a node simply forwardsigted the next node selected

according to the transition matrix.

Algorithm 10: Distributed Candidate Identificatio®¢C'at)

Input of peer v;: T'(d) - set of immediate neighbors of, a rowT}, of the
transition matrixI’, ordinal samples, and cardinal samples
Data Structure of peerv,: A list of nodesList;, Vi=1...r
Output of peer v,: List;
Initialization:
IF v, is initiator,
FORi=1...r
SetToken; = s x 10logn
Select a node randomly basedBrand send T oken;, List;) to it
END
END
On receiving a messag@ oken;, List;):
Token; = Token; - 1
IF (T'oken; mod 10logn) =0
SetList; «— List; Uy,

IF T'oken; = 0
SendList; to initiator
ELSE
Select a node randomly basedBrand sendT'oken;, List;) to it
END
ELSE
Forward (Coken;, List;) to a node based dh
ENDIF

Once the nodes that need to be visited for sample collect®mantified, the initiator
starts the actual process of collecting the samples. Any tioalt receives a data request
message, first splits its data intbparts depending on its privacy requirement. It then adds

its data (or a part of it), takes a modulus and forwards it ®@rbxt in entry in the list
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sequence. Once the sample sum is collected, the initiatmkshf all the shares of all the

nodes have been collected. If not, it restarts the procésstlee protocol stops. Once the
protocol stops for all the ordinal samples, the initiator can order these samplesddlfie
threshold. The protocol is presented asEemSehllgorithm (Algorithm 11).

In the next section we demonstrate the performance of tlwitllgh on various data

sets.

6.9.5 Experimental Evaluation

In the absence of real P2P data set supporting our applicatie have generated a
synthetic data set simulating the financial domain probleenario. The simulated data
set consists of 250000 rows and 100 attributes. Each entandomly generated from a
uniform distribution. The data set is then split into 500ali®t parts and each part of size
500 x 100 is assigned to a user (Di). We have used the same setup astionS&8: » =
29, 19, 14 for percentile values varying from 90%, 85%, 80%as 35. We have run the
DiCat andElemSehlgorithms to identify the top-percentile of the population.

Figure 6.5 shows the quality of the estimation using therihisted algorithm. As
shown earlier for the results of the tépaner product identification algorithm, the results
here also are accurate and never produce false positives tia estimated percentile is
always higher than the actual percentile of the populatikigure 6.6 shows the commu-
nication overhead for thBicat and ElemSeklgorithms combined. As can be seen from
the graph, the centralized message complexity is alwayastaot independent of the pop-
ulation percentile. It should be noted here that, unlikeabemunication costs reported
earlier, the message complexity in this case is quite highiswomparable with central-
ization. This is because the advantage obtained by randawplisey is compensated by the
data splitting. For each ordinal sample collection, oneloam walk of length\ is followed

by max{’) rounds of communication each of sizewvhere s is the number of nodes needed



203

1600 ‘ ‘
~& Centralized scenario
| Distributed scenario
@ 1550 ® Actual Quantile value| |
I
>
2 1
§ 1500+ il 1
(@4 =4 °
o
1450+ 1
q‘ Il Il
0.8 0.85 0.9
Percentile

FIG. 6.5. Quality value w.r.t. the order of percentile.

to be sampled for estimating each ordinal sample.

6.10 Conclusion

In this chapter we have discussed a distributed algorithmefficiently identifying
topd inner products from horizontally partitioned data. To @&eki low communication
overhead, we use an order statistics-based approach ¢éogéth cardinal sampling. Or-
dinal statistics provides a general framework for estingatlistribution free confidence
intervals for population percentiles. Cardinal samplietps to combine the inner product
values that are distributed among the peers. Experimesgalts substantiate our claims
regarding accuracy and message complexity of our algorithinally, we demonstrate the
performance of a privacy preserving version of our algomithased on the SSP protocol

described earlier in the dissertation.
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Algorithm 11: Distributed Element Selectio{emSel)

Input of peer v;: Dy - the local database, the attribute of intek@ést
Output of peer v,: Sends the sampleif, € List;
Initialization:
IF v, is initiator,
FORi=1...r
Select and remove the first entry frabast;
Setcurrval; < 0
SendDataReques{Samplelndex, List;, currval;, false) message to it
END
END
On receiving a message DataRequdStamplelndex, List;, currval;,
recvd_status):
Select the first sharg, of Vo (Samplelndex)
Setval «+— 5
IF there are more shares
status = true
ELSE
status = recvd_status
END
IF this is the first node in the sequence to get the message
currval; « (val + R)

ELSE

currval; < (currval; +val) mod N
END
IF List; =0

Sendcurrval;, status to initiator
ELSE

Select and remove the first entry frabast;
SendDataReques(Samplelndex, List;, currval;, status) message to it
END
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Chapter 7

CONCLUSION AND FUTURE WORK

The field of distributed data mining has seen consideralleareh in the last decade.
Usually, the primary focus of research on distributed systés the development of good
distributed algorithmg,e., algorithms with low computational complexity and communi
cation requirements. However, most of these distributéd daning applications run on
computers at many different locations, owned and operatetl\Wide assortment of enti-
ties ranging from individual users to governmental andsnational organizations. This
makes data privacy a primary concern in the deployment di spplications in the real
world. Cryptographic techniques for secure computatiB6§iave been traditionally used
for dealing with privacy issues in distributed computingiemnments. The robustness of
cryptographic protocols depends on the mutual trust placethe parties involved in the
joint function computation. The cryptography literatussames two types of participant
behavior. A semi-honest party is curious and attempts tmlabout other’s private infor-
mation during the computation, but never deviates from timeogol. Malicious partici-
pants deviate from the protocol, collude with others to sgmarious messages to reveal
others’ private data. Protocols that are secure againstimad adversaries are computa-
tionally extremely expensive and therefore cannot be usedal-life for large scale data
mining applications. Therefore, considerable effort haiseginto developing secure proto-

cols in the semi-honest adversary model [36, 85]. Hower@rmation integration in such
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multi-party distributed environments is often an interaeprocess guided by the dynamics

of cooperation and competition among the parties. The hehatthese parties usually
depend on their own objectives and their behavior is usgaliged by whatever maximizes
their personal benefits. If getting to know someone’s pewatormation is beneficial, then
every self-interested party in the computation will try & that information. Therefore, the
assumption of semi-honest behavior falls apart in mostifeadistributed data mining ap-
plications [87]. Another important shortcoming of exisgtiprivacy preserving distributed
data mining applications is the definition of a monolithiovpcy model for all participants.
Privacy is a social concept and, therefore, the privacy eorscof the different participating
entities vary, as does their ability to protect their prévelata due to varying availability of
resources. Existing work in distributed privacy presegvitata mining does not give the
parties the freedom to define their own privacy requirement.

This dissertation develops a novel framework for privacyserving data mining in
distributed environments to address efficiency and realdataptability. The novelties of

this framework, as described in Chapter 3 and Chapter 4, esatmmarized as follows:

e This framework acknowledges the importance of persoriadizan large heteroge-
neous distributed computing environments and proposesotieept of personalized
privacy for every participating entity in the distributegstem. The personalization
is achieved by multi-objective optimization of the the malty conflicting variables,
viz. cost and threat to data privacy. Each party optimizes its alyactive to define
the privacy model parameter that satisfies its privacy astl emuirements. There-
fore, the framework developed in this dissertation sudadgdrees the participants
in a distributed computing environment from a monolithitvacy model and allows
them to choose their own model of privacy and specify pararsatf the privacy

model in accordance to their individual privacy and costements.

e This framework also addresses the issue of modeling adiessa a distributed
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function computation environment as semi-honest or n@ligi Since, in most real

life scenarios, the parties are merely self-interesteditagacting to maximize their
personal benefits, this framework formulates privacy presg distributed data min-
ing as games where the participating entities are the agmal the strategies they
adopt in communicating their data, doing necessary cortipataand attacking oth-
ers data to reveal personal information, decide the regultedogame in terms of
the quality of the data mining results. The framework pribss the design of a
penalizing mechanism tied to the distributed data minigg@aihm for getting a self-
correcting system that forces parties to follow the protacal not cheat. This frame-

work specifically addresses the problem of collusion amaents.

The framework developed in this dissertation is indepehdéthe distributed data
mining task at hand and the model of privacy chosen for makiagprivacy preserving
data mining application. The generic framework can be athiat work with any model of
privacy. The choice of the model of privacy will affect thetua of the objective function
and the multi-objective optimization solution. Similarlige data mining task at hand would
require specific cryptographic protocols and the penaltghrarism needs to be designed
to blend with the secure protocol leading to the desiredamut of the task. Chapter 5
and Chapter 6 shows how the framework can be adapted for somputation and inner

product computation applications:

e Chapter 5 takes the secure sum protocol and designs a lsgaklaonous privacy
preserving sum computation mechanism based on the myéicidlee optimization
and game theory framework. Web advertisement ranking astdhiited feature se-
lection have been shown as two P2P applications of this newcsunputation based

algorithm.

e Chapter 6 explores a distributed, local asynchronousgyigeeserving inner product

computation algorithm for similarity identification in P2fe¢tworks. The version of
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the inner product computation problem, that is addresseg] has been decomposed

into a distributed sum computation protocol and the pemaétghanism for the secure
sum protocol has been adapted to make this distributed pmoeluct computation

algorithm privacy preserving.

The definition of privacy is still very much an open question &ociologists, com-
puter scientists, and legal experts have different viemgsaabout the concept of data pri-
vacy and how the problem of privacy preservation needs t@lved. Privacy preservation
in distributed environments complicate matters even maeetd the size and heterogene-
ity of real-life distributed systems. However, for harnagghe vast amount of information
hidden in large distributed systems, it is important to mpkeacy preserving distributed
data mining efficient and real-world adaptable. This disgem is the first step in this
direction and has limitations and challenges that need toveecome in the future. As
an extension of this dissertation, we propose the followingsible directions of future

research:

e Multi-objective optimization for any model of privacy : The current distributed
multi-objective optimization problem solution uses scaktion of convex optimiza-
tion functions for reaching the individual solutions to trespective optimization
problem. However, the nature of the optimization functidepend on the choice
of the privacy model and the data mining task at hand. An efiicsolution tech-
nique for combination of such arbitrary functions in theiopzation problem needs
to be explored in the future. This will get rid of any restiocts that currently exist
in the use of this framework for different privacy presegytistributed data mining

applications.

e Mechanism design for other multi-party secure protocols Sum computation and

inner product computation are two very important primiifer many data mining
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algorithms. In this dissertation we have shown how to desigehanisms for pri-

vacy preserving sum computation and similarity measurémsing inner product
computation. However, these two protocols can only servib@basis of a subset
of distributed data mining algorithms. Therefore, we needlentify other multi-
party secure function evaluation protocols and designieffidocal mechanisms for
other distributed data mining tasks such as classificategression, clustering and

association rule mining.

Mechanism design for penalizing undesirable behavior othethan collusion: In
this dissertation we have only addressed one form of clgeahavior, that is col-
lusion. However, there can be other such behavior which hed# addressed as
well for a distributed data mining protocol to execute gat®rily. Some of these
include free-loading or ‘leeching” where the participaméser perform their share of
the responsibilities and rely on the data and effort of offagticipants to get results.
Such behavior can also be addressed by introducing sufficieentives for a party

to perform their duties.



Notations

Appendix A

Notation Description

G Graph or distributed network

V,E Peers or nodes or machines or users, edges connecting

Viyeo.,Un Nodes or peers

n Number of nodes
T; Set of immediate neighbors of € V

Ty(v) Set ofa neighbors oy € V
@ Size of neighborhood over which a query is computed
~ Upper bound of the size of all queries
€ Error of local algorithm
0 1 - Probability of correctness of local algorithm

f(x) Objective function
H Hessian matrix
S Set of solutions for a multi-objective optimization proile
F Scalarized multi-objective optimization
w Weight vector for multi-objective optimization

zi(t) Estimate of the averagk by nodev; at timet
q Query of a statistical database

San(t,q) Sanitizer acting on databasand query
Lap()) Laplacian with variance)\?
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Notation Description
A Action profile of a player
U; Utility of playeri
o Strategy of playef
M Mechanism
o Set of outcomes
M;, R;, D; Strategy for computation, communication and collusiopeesively

Wi,d, Wi,m, Wi,r
kK
B
F
L

p
N

7
N(p,0)

Weight for computation, communication and collusion respely
Actual and estimate of bad nodes
Payoff when a player does not cheat
Payoff when a player cheats
Loss of utility for a honest node
Parameter of privacy breach
Maximum range of secure sum protocol
Number of splits of a node’s local data for SSP protocol
Normal distribution with meap and variance?
Area under standard normal distribution
Number of bad nodes remaining in the system after SSP protocq
Connectivity matrix
1,j-th entry of connectivity matrix
Optimal size of ring that peer; forms
Range of possible values of attribute
Local dataset at peet
Number of rows and columns of
Inner product matrix (BT D) atv;
Population percentile of order
Confidence that the last sample is in thh percentile of the populatio
Number of ordinal samples
Number of cardinal samples

Transition matrix of random walk
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