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Abstract— Consider a scenario in which the data owner has
some private/sensitive data and wants a data miner to accessit
for studying important patterns without revealing the sensitive
information. Privacy preserving data mining aims to solve this
problem by randomly transforming the data prior to its relea se
to data miners. Previous work only considered the case of linear
data perturbations — additive, multiplicative or a combination
of both for studying the usefulness of the perturbed output.In
this paper, we discuss nonlinear datadistortion using potentially
nonlinear random data transformation and show how it can be
useful for privacy preserving anomaly detection from sensitive
datasets. We develop bounds on the expected accuracy of the
nonlinear distortion and also quantify privacy by using standard
definitions. The highlight of this approach is to allow a user
to control the amount of privacy by varying the degree of
nonlinearity. We show how our general transformation can be
used for anomaly detection in practice for two specific problem
instances: a linear model and a popular nonlinear model using
the sigmoid function. We also analyze the proposed nonlinear
transformation in full generality and then show that for specific
cases it is distance preserving. A main contribution of thispaper
is the discussion between the invertibility of a transformation
and privacy preservation and the application of these techniques
to outlier detection. Experiments conducted on real-life datasets
demonstrate the effectiveness of the approach.

I. I NTRODUCTION

Privacy preservation is a critical need for a variety of data
mining applications where there exists a repository of data
which needs to be analyzed without the analyst obtaining
the data directly. To solve this problem, researchers have
developed many techniques to mask or anonymize the data in
order to allow for the analysis to occur. In the simplest case,
de-identification (or anonymization) of the data is performed,
whereby sensitive information is either obfuscated, redacted,
or eliminated from the data records, while only transmitting
those attributes of the data that are nonsensitive. However,
anonymization techniques can be defeated using the fact that
idiosyncratic data can lead to unexpected re-identification of
data [1][2][3]. Approaches based on anonymization techniques
[4] have been employed in the field by Netflix and various
government agencies such as HIPAA1.
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Another approach that can be taken is to allow sensitive data
to be analyzed where the data is obfuscated through additive
or multiplicative noise. These approaches rely on the fact that
a given datasetD can be passed through an operation (or
set of operations) defined by a functionT . The mapping is
often chosen to be linear an affine transformation. The output
of the system,T (D), is then transmitted with the hope that
the original data cannot be reconstructed using the image of
T (D) alone. Many researchers have shown that under certain
situations these operations can be reverse engineered, thereby
revealing the original data without any information about
the nature of the operations or any additional information
[2][3]. Essentially, each attack strategy attempts to find an
inverse mappingT −1 such that, when applied toT (D), the
original data (within a trivial translation or rotation) can be
re-identified,viz., D ≈ T −1(T (D)).

In this paper we show a third technique for preserving
privacy using functions which cannot be inverted. Specifically,
we discuss the situation whereT is a nonlinear mapping
parameterized by a set of weights�. We discuss the situation
where the distribution of the weights is known and also study
situations where the properties ofD can be observed. We show
a method to quantify the probability that a mappingT can be
inverted and show a situation where it cannot be inverted.
We refer to this method of data obfuscation asnonlinear
distortion.

We demonstrate our techniques of nonlinear distortion on
the problem of anomaly detection, which is prevalent in
a variety of application domains where privacy must be
preserved. We discuss the application of these techniques
to the realm of aviation safety, where data from multiple
air carriers must be kept private to the airline to protect
proprietary information. In this situation, it is not possible
for the data to be disclosed to the public for analysis or
anomaly detection. Moreover, anomalies often tend to provide
unique characteristics, thereby identifying a specific airline.
However, with an appropriate privacy-preserving data mining
approach, it may be possible to apply anomaly detection
methods to the data after it has been nonlinearly distorted.
For this approach to work, the nonlinear distortion method
must preserve the important statistical properties of the data.
Thus, if the anomaly detection method is based on Euclidean
distance, or the inner product distance, those distances must
be preserved through the nonlinear distortion. This paper
quantifies the degree of distortion injected by the nonlinear
transformation and shows how it affects the ability of the
algorithms to detect anomalies using Euclidean distance as
the measure of an anomaly. In this paper we:

∙ Present a new technique which we call the datadistortion
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scheme for preserving data privacy. The framework uses
non-invertible non-linear functions for mapping the data
to a different space. Mathematically, we show that this
transformation cannot be reverse engineered and thereby
the original data cannot be recovered due to the condition
of non-invertibility.

∙ Analyze the transformation in its full generality and show
that, for specific cases, the transformation is distance
preserving, thereby proving useful to the data mining
algorithm. Our results generalize all of the previous work
on perturbation-based data privacy such as in [5][2][3][6].

∙ Finally, we show how our technique is particularly useful
for a specific data mining techniqueviz. anomaly detec-
tion.

The rest of this paper is organized as follows. Section II
discusses the motivation for this research. Section III presents
the related work. Section IV introduces the notations and
discusses the formal problem definition followed by the non-
linear distortion technique in Section V. Bounds on the quality
of the distortion are discussed in Section VI while some
special cases of the distortion are presented in Section VII. A
discussion of privacy of the technique follows in Section VIII.
Section IX demonstrates the performance of the technique on
real-world data for a commercial air carrier. Finally the paper
is concluded in Section X with future research plans.

II. M OTIVATION AND BACKGROUND

Outlier or anomaly detection [7] refers to the technique
of finding patterns from a dataset that are inconsistent or
considerably dissimilar from the rest of the dataset. Outlier
detection has been studied in the statistics community for
a long time [8][9]. Data mining researchers have developed
a number of solutions for outlier detection in various do-
mains: fraud detection, network intrusion detection, climate
and ocean current change modeling using wireless sensor
networks, engineering systems, and more. Since in most of
these domains the data is not sensitive, privacy is not an
issue for these applications. For a more detailed literature on
anomaly detection and its different application areas, interested
readers are referred to a recent survey by Chandolaet al. [10].

The problem that we aim to solve in this paper can be
informally stated as follows: consider a number of different
airline companies each having their own aircrafts’ systems
health and flight operation data commonly referred to as
a Flight Operational Quality Assurance (FOQA) archive. In
order to analyze operational characteristics and safety issues
from a large set of data encompassing multiple air carriers,the
Distributed National FOQA Archive (DNFA) [11] has been
developed jointly by NASA and FAA with collaboration by
different air carriers. Figure 1 shows the architecture. Note
that the connections between different FOQA archives and a
central node use dedicated and secure T1 lines. As shown in
Figure 1, when an analyst executes a query about the data, it is
disseminated across the FOQA archive of each air carrier. The
computations are done locally at each site and an anonymized
and de-identified result set of the query is sent back through
the secure lines to the central node. In this architecture, there is
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Fig. 1. Distributed National FOQA Archive architecture showing how the
analysts can post query and get results for further analysis. Image source:
www.faa.gov/library/reports/medical/oamtechreports/2000s/media/200707.pdf

no way of accessing the raw data for a more in-depth analysis
due to its proprietary nature. Also, anonymization may not
be an effective method of privacy preservation since it can
be broken with sufficient background information [12][13].
We aim to develop a privacy preserving technique which will
enable us to detect distance-based outliers from such global
datasets while preserving their privacy in a strict sense since
outliers often contain uniquely identifiable information linking
a data point to a data repository. We assume that the privacy
requirements of the normal operating points are less, because
most of the airlines have similar operational characteristics.

The privacy technique proposed in this paper essentially
uses a random non-linear map to transform the input data.
The mapping or the function satisfies two properties: (1)
for all points in the normal operating region, the mapping
approximatelypreserves the distance between those points in
the transformed space, and (2) it maps all outliers to a finite
set of discrete values. We show that if this transformation
is non-invertible, then it is virtually impossible to breakthis
transformation and uncover the original data. As a result of
this transformation, most of the outliers will remain such even
after transformation. Also note that the privacy of the non-
outlier points are also protected since we apply a combination
of additive and multiplicative perturbation to these points as
done in [5][3][14]. However, as stated before, our main aim is
to protect the privacy of the outliers. There are several other
places where our technique can be applied such as detecting
fraud across multiple financial institutions and finding unusual
patterns in medical records.

III. R ELATED WORK

The research in privacy preserving data mining spans many
areas: data perturbation techniques [15][5], cryptographic (se-
cure multi-party) techniques [16][17][18] and output perturba-
tion techniques [19]. In this paper we only discuss the data
perturbation techniques since they are most closely related to
this area of research.
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Data perturbation-based privacy preserving techniques per-
turb data elements or attributes directly by additive noise,
multiplicative noise or a combination of both. They all rely
on the fundamental property that the randomized dataset may
not reveal private data while still allowing data analysis to be
performed on them. We discuss each of the techniques in more
detail in this section.

Given a data setD, Agrawal and Srikant [15] proposed
a technique of generating a perturbed datasetD∗ by using
additive noisei.e.D∗ = D+ℛ, where the entries ofℛ are i.i.d.
samples from a zero mean unit variance Gaussian distribution.
Karguptaet al. [20] questioned the use of random additive
noise and pointed out that additive noise can be easily filtered
out using spectral filtering techniques causing a privacy breach
of the data.

Due to the potential drawback of additive perturbations,
several types of multiplicative perturbation techniques have
been proposed. Kim and Winkler [14] proposed one such
perturbation technique which multiplies a random number
generated from a truncated Gaussian distribution of mean one
and small variance to each data pointi.e.D∗ = D×ℛ, where
the matrix multiplication is the Hadamard product, which
means that it is carried out element-wise. An appropriate attack
strategy would be to estimate the matrixℛ given the data.
One such attack technique has been discussed by Liuet al.
[2] which uses a sample of the input and output to derive
approximations on the estimate of the matrixℛ.

A closely related but different technique uses random data
projection to preserve privacy. In this technique, the data
is projected into a random subspace using either orthogonal
matrices (e.g.DCT/DFT as done by Mukherjeeet al. [6]) or
pseudo-random matrices (as done by Liuet al. [5], Teoh and
Yuang [21]). It can be shown that using such transformations,
the Euclidean distance among any pairs of tuples is preserved
and thus, many distance-based data mining techniques can be
applied. Moreover, the privacy of the projection scheme can
be quantified using the number of columns of the projection
matrix. Figure 2 shows the distribution of the error as a
function of the output dimension for simulated data with
the hyperbolic tangent(tanh) nonlinearity. In the graph, the
input datasetD consists of two column vectorsx1 and x2

each of dimension 50. The output is generated according to
y1 = f(ℛx1) and y2 = f(ℛx2), whereℛ is a random
projection matrix(m×50) with m varying from 5 to 100, and
f refers to thetanh function. In the graph,

∣

∣x1
Tx1 − y1

Ty1

∣

∣

is plotted in they-axis for different values ofm. As expected,
increasingm reduces the error due to projection in a larger
subspace. More about this nonlinearity and its role in privacy
preservation will be discussed in subsequent sections.

In a more recent study, Chenet al. [3] proposed a combi-
nation of these techniques:D∗ = A+ℛ×D +N , whereA
is a random translation matrix,ℛ is a random rotation matrix
and N is a noise matrix. The paper further shows how to
break this transformation in practice using a linear regression
technique when the attacker knows a set of input-output pairs.
However, the success of this attack depends on the variance
of the matrices. The paper further defines a privacy measure
known asvariance of difference(VoD) which measures the
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Fig. 2. This graph shows the variation of error in estimatingthe inner
product between two arbitrary vectors vs. the dimension of the output vector.
The output is generated by first randomly projecting the input in the subspace
shown by points on thex-axis and then transforming it by a hyperbolic tangent
(tanh) function. The dimension of the input vectors are 50 as shownby dotted
line. They-axis refers to the error. The squares to the left of this linerefers
to dimensionality reduction and to the right refers to dimensionality inflation.
Each point in the graph is an average of 100 independent trials.

difference of the covariance matrix between each column of
D∗ andD. We discuss this in more detail later.

Data perturbation techniques for categorical attributes have
also been proposed by Warner [22] and [23]. Evfimevskiet al.
proposed the
-amplification model [24] to bound the amount
of privacy breach in categorical datasets.

In this section and the next we introduce the notations and
discuss in detail about the non-linear data distortion scheme
for privacy preserving outlier detection.

IV. N OTATIONS AND PROBLEM DEFINITION

A. Notations

Let x = [x1x2 . . . xn]
T be ann-dimensional input data

vector where eachxi ∈ ℝ. Let x∗ = [x∗
1x

∗
2 . . . x

∗
p]

T be the
corresponding output generated according to some transfor-
mationT : ℝn → ℝ

p, where againx∗
i ∈ ℝ. In this paper we

study a very general form ofT :

x∗ = T (x) = B +Q× f (A +Wx) (1)

wheref : ℝm → ℝ
m is a function which2

1) acts element-wise on its argument,
2) is continuous over the real lineℝ,
3) bounded on all bounded intervals onℝ, and
4) f(x) = O

(

e∣x∣
�
)

as∣x∣ → ∞ where� ∈ ℝ is a constant
and� < 2.

[B]p×1, [Q]p×m, [A]m×1, and [W]m×n are matrices (with
dimensions shown) whose entriesbij , qij , aij , andwij are each
independently drawn from normal distributions with mean
zero and standard deviations�b, �q , �a, and�w respectively
e.g.wij ∼ N(0, �w). The normal distribution assumption for
generating random matrices is not new and has been proposed
by several authors [3][5]. The transformationT was chosen for
three principal reasons: (i) the transformation is flexiblein that
one can choosef from a large class of functions, (ii) one can
set the variances of the Gaussian-distributed matrix entries to

2These are sufficient but by no means necessary conditions, which are in
place to ensure the existence of the improper integrals thatwe later derive.
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any value, and eliminate the bias matricesB andA by setting
�b = 0 and �a = 0, respectively; (iii) and, intuitively, this
randomized and potentially non-linear transformation should
perturb data better than the simple projection- or rotation-
based transformations considered so far in the literature and
should thus be less susceptible to attack for wise choices off

and parameter values. Special cases ofT can be instantiated
by choosing specific instances off , two of which we discuss
in Section VII.E(⋅) denotes the mean of a random variable
and�2(⋅) denotes its variance. The inner product between two
vectorsx andy is denoted byx ⋅ y.

B. Problem Definition

In this paper we analyze the relationship between the input
data vectors and their corresponding outputs under the trans-
formationT . While such a relationship can be studied in many
different ways, we focus on theinner productbetween the
input and the output. Inner product is an important primitive
which can be used for many advanced data mining tasks such
as distance computation, clustering, classification and more.
Specifically, we try to gain insight into the following problem.

Given two vectors x = [x1x2 . . . xn]
T and y =

[y1y2 . . . yn]
T, let x∗ = T (x) = [x∗

1x
∗
2 . . . x

∗
p]

T and y∗ =
T (y) = [y∗1y

∗
2 . . . y

∗
p]

T be the corresponding output vectors.
Sincex∗ andy∗ are random transformations of their parent
vectors, we analyze the relationship betweenx ⋅y andx∗ ⋅y∗.
Our study in this paper focuses on:

1) understanding theaccuracyof T in preserving distances
i.e. studying the properties ofE [x∗ ⋅ y∗], and

2) analyzing theprivacy-preserving properties ofT i.e.
under what conditions isT −1(T (D)) ∕= D in the
absence of auxiliary information?

C. Overview of Approach

In order to illustrate the idea behind our approach, consider
a situation where a single scalar variablex is passed through
a nonlinear functionT . Figure 3 shows the hyperbolic func-
tion as an example nonlinearity. In this figure, the slope is
parameterized by a single number� which sets the slope of
the function near the origin. Notice that for moderate values
of � the function is invertible. Thus, a value ofx outside of
the neighborhood of the origin will be mapped to a number
close to -1 or 1 depending on its sign. As the slope becomes
steeper, corresponding to a larger value of�, the invertibility
of the function diminishes because the range of the function
becomes binary, thus producing a many-to-one mapping. As
the function converges to a step function (with infinite slope
at the origin), the values ofx get mapped directly to 0 or 1
depending on the sign of the variable. In this situation, the
function is no longer invertible because given an image of the
input, it is impossible to determine the input itself even ifthe
non-invertible function is known.

Figure 4 (left) shows a synthetic data set in which the
input space is a helical coil with two outliers. This data set
is transformed via thetanh nonlinear mapping. The output
is shown in the right subplot and indicates that under this
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Fig. 3. This figure shows an example nonlinearity, the hyperbolic tangent
(tanh) function shown in bold. As the slope of the nonlinearity increases, the
function becomes less invertible. In the limit, as the function’s slope becomes
infinite, it becomes a non-invertible step function (dottedline). Ψ(x) is an
approximation totanh(x) that we use to bound the expected distortion due
to this nonlinearity.
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Fig. 4. This synthetic data set is used to show the effect of the nonlinear
transformation. The helical coil (left) represents nominal data and the two
outlying points represent off-nominal or anomalous data points. The right
graph shows the output after non-linear transformation as described in Equa-
tion (2) usingf = tanh. Notice that the outlying points are far away from
the majority of the data, thus validating the distance preservation property of
this nonlinear distortion scheme.

transformation, the outliers in the input space are still outliers
in the output space of the system.

The following sections derive the quantityE[x∗ ⋅ y∗] which
is the expected value of the distance between output vectors
of the system using Gaussian assumptions about the input
distribution. We compute rigorous bounds on this quantity
as well as the second moment of the output distribution.
These bounds demonstrate that under certain conditions, the
nonlinear mapping is distance preserving for all the data
points which are close to the origin and highly private for all
outliers (since they all get mapped to the same output value).
However, as the system becomes more nonlinear, the bounds
increase to unity. This reduces the probability of inverting
the mapping, and increases the privacy of the overall system,
even for points which are non-outliers. The degree to which
distances are preserved decreases as a consequence. It is
important to note that the example of a singletanh function is
given only as an example. For real-world applications, a full
neural network based architecture can be used with multiple
weights and nonlinearities, thus providing a more complex
nonlinear mapping. Even in this significantly more complex
case, however, our derivation ofE[x∗ ⋅ y∗] is valid.
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V. NONLINEAR DATA DISTORTION

In this section we present our data distortion method using a
potentially nonlinear transformation. Later we will analyze two
special cases of this method: (1) thef = tanh function that
corresponds to the nonlinear function used in neural networks,
and (2)f as the identity function. We study the second case in
order to demonstrate that our results lead to those obtainedby
other authors that have studied random projections for privacy
preservation.

In the next subsection we introduce the mechanism of this
transformation and then show its distance-preserving proper-
ties.

A. Mechanism

Let [D]n×m be a data set owned by Alice in which there
arem instances (columns) each of dimensionality (rows)n.
Alice wants to grant Mark (a data miner) access to this dataset.
However, she does not want Mark to look at the raw data. So
for every vectorx ∈ ℝ

n, Alice generates a new tuplex∗ ∈ ℝ
p

according to the following transformation:

x∗ = B+Q× f(A +Wx) (2)

whereB,Q,A andW are all mean zero and constant variance
Gaussian i.i.d. random matrices as defined in Section IV-
A. Figure 4 shows sample input data and the perturbation
achieved by the transformationf = tanh.

In the next subsection we discuss how the inner product
between two input vectors is related to their transformed
counterpart.

B. Derivation ofE[x∗ ⋅ y∗]

In this section we show howE[x∗ ⋅ y∗] can be evaluated.
Note that,

E[x∗ ⋅ y∗] = E[x∗
1y

∗
1 + x∗

2y
∗
2 + . . .+ x∗

py
∗
p]

= E [x∗
1y

∗
1 ] + E [x∗

2y
∗
2 ] + . . .+ E

[

x∗
py

∗
p

]

= pE [x∗
i y

∗
i ] (3)

wherei is arbitrary. The last equality follows from the fact that
the entries of each of the matrices are i.i.d. Gaussian variables.
Further, lettingwi ∈ ℝ

n denote thei-th row of W, we have

x∗

i y
∗

i =

[

bi +
m
∑

ℓ=1

qiℓf(aℓ +wℓ ⋅ x)

]

⋅

[

bi +
m
∑

ℓ=1

qiℓf(aℓ +wℓ ⋅ y)

]

In taking the expected value of the above expression, one
need only consider those terms that are not linear in both
qiℓ andbi. All other terms evaluate to zero under the expected
value operator due to the independence of the random variables
concerned and their property of having a mean of zero. Thus,

E [x∗

i y
∗

i ] = E

[

b2i +

m
∑

ℓ=1

q2iℓf(aℓ +wℓ ⋅ x)f(aℓ +wℓ ⋅ y)

]

= E
[

b2i
]

+mE
[

q2iℓ
]

E [f(aℓ +wℓ ⋅ x)f(aℓ +wℓ ⋅ y)]

= �2

b +m�2

qE[f(ai +wi ⋅ x)f(ai +wi ⋅ y)] (4)

where i and ℓ are interchangeable. So it suffices to find
E[f(ai+wi ⋅x)f(ai+wi ⋅y)] wherei is arbitrary. Below we
define two vectorŝx and ŷ which aid in finding the expected
value.

Definition 5.1: [Linear Combination of random variables]
Let x̂ andŷ be(n+1)-dimensional vectors defined as follows:

x̂ = [�wx �a]
T = [�wx1 . . . �wxn �a]

T (5)

ŷ = [�wy �a]
T = [�wy1 . . . �wyn �a]

T (6)

where�w and�a are the variances ofW andA respectively
and,x andy are then-dimensional inputs.
Now let

X = ai +wi ⋅ x (7)

Y = ai +wi ⋅ y (8)

be two random variables. The following lemma shows the
distribution ofX andY .

Lemma 5.1:X andY , as defined above, are distributed as

X ∼ N(0, ∥x̂∥2)
Y ∼ N(0, ∥ŷ∥2)

Proof: X andY are linear combinations of normally dis-
tributed independent random variables; hence they themselves
are Gaussian random vectors.

Combining Equations (3), (4), (7), and (8), we can write:

E[x∗ ⋅ y∗] = p
{

�2
b +m�2

qE [f(X)f(Y )]
}

(9)

The last equation shows that the expected inner product can
be evaluated using the joint probability distribution between
X andY . Further, sinceX andY are Gaussian random vari-
ables, the joint probability distribution is a bivariate Gaussian
distributiongX,Y (x, y):

gX,Y (x, y) =
1

2� ∥x̂∥ ∥ŷ∥
√

1− �2X,Y

(10)

exp

(

− 1

2(1− �2X,Y )

(

x2

∥x̂∥2
+

y2

∥ŷ∥2
− 2�X,Y xy

∥x̂∥ ∥ŷ∥

))

where for this form to be valid∥x̂∥ and∥ŷ∥ must be nonzero
and �X,Y , the correlation coefficient ofX and Y , must not
be±1. Unless otherwise stated, from now on we will assume
that

∙ ∥x̂∥ > 0, ∥ŷ∥ > 0, and
∙ �X,Y ∕= ±1

Note that these conditions are equivalent to∣x̂ ⋅ ŷ∣ < ∥x̂∥ ∥ŷ∥.
We make these assumptions so thatgX,Y has a consistent, ex-
plicit, bivariate Gaussian expression. When these assumptions
are not satisfiedgX,Y is degenerate, so these assumptions leave
us with the most general form of the problem.�X,Y can be
defined in terms of̂x and ŷ as:

�X,Y =
x̂ ⋅ ŷ

∥x̂∥ ∥ŷ∥ (11)

Finally, we can write,

E[f(X)f(Y )] =

∫ ∞

−∞

∫ ∞

−∞

f(x)f(y)gX,Y (x, y)dxdy

Note thatE[f(X)f(Y )] can be difficult if not impossible
to solve explicitly and in full generality, depending on the
choice off because the anti-derivative might be impossible
or extremely difficult to evaluate. However, givenf , the
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above integrals can be approximated numerically [25] for
instances ofx and y in such a way that scales very well
computationally with the input dimension,n, which enters into
the (trivial) computations of∥x̂∥, ∥ŷ∥, andx̂ ⋅ ŷ alone. Using
such an approximation,E[f(X)f(Y )]approx, one can obtain a
numerical approximation ofE[x∗ ⋅y∗] (refer to Equation (9)).
However, the approximation becomes less accurate the larger
p, m, and�q are. The conditions we imposed onf in Section
IV-A ensure the existence of the improper integrals. Putting it
all together, we can write:

E[x∗ ⋅ y∗] = p�2
b + pm�2

qE[f(X)f(Y )] (12)

Next, we state some interesting properties ofE[f(X)f(Y )].

C. Properties ofE[f(X)f(Y )]

∙ Case 1: if x̂ ⋅ ŷ = 0:

– This implies that X and Y are independent
(since X and Y are Gaussian vectors). Hence
E[f(X)f(Y )] = E[f(X)]E[f(Y )].

∙ Case 2: if f is an odd function and̂x ⋅ ŷ > 0 or x̂ ⋅ ŷ < 0:

– It can be shown using the expression forgX,Y (x, y)
that:
Lemma 5.2: x̂ ⋅ ŷ > 0 ⇒ E[f(X)f(Y )] > 0
Lemma 5.3: x̂ ⋅ ŷ < 0 ⇒ E[f(X)f(Y )] < 0
The proofs follow from the symmetry of the Gaus-
sian distribution.

Since computationE[f(X)f(Y )] is difficult in full general-
ity, in the next section we develop a bound onE[f(X)f(Y )]
and analyze its properties.

VI. B OUNDS ONE[f(X)f(Y )]

In order to develop a bound onE[f(X)f(Y )], we use the
following lemma.

Lemma 6.1:∣E[f(X)f(Y )]∣ ≤
√

E[f2(X)]E[f2(Y )]

Proof: For any� ∈ ℝ,

0 ≤ E[(�f(X)− f(Y ))2]

= �2E[f(X)2]− 2�E[f(X)f(Y )] + E[f(Y )2]

The above is quadratic in� and because it is always non-
negative, it has one root or imaginary roots. Thus, the dis-
criminant

(−2E[f(X)f(Y )])2 − 4E[f(X)2]E[f(Y )2] ≤ 0

which upon rearranging terms and taking the (positive) square
root of both sides becomes

∣E[f(X)f(Y )]∣ ≤
√

E[f(X)2]E[f(Y )2]

The following lemma (Lemma 6.2) shows the bound on
E[f(X)f(Y )].

Lemma 6.2:Let X , Y , x̂ and ŷ be as defined in the

previous sections. It can be shown that,

∣E[f(X)f(Y )]∣ ≤
√

(
∫ ∞

−∞

f2(x) ⋅ e
−x2/(2∥x̂∥2)

√
2� ∥x̂∥

dx

)

√

(
∫ ∞

−∞

f2(y) ⋅ e
−y2/(2∥ŷ∥2)

√
2� ∥ŷ∥

dy

)

Proof: This can be easily proved using the definitions of
E[f2(X)], E[f2(Y )] and Lemma 6.1.

A. Variance Analysis

In practice, given two input vectors, it is difficult to run the
transformation for many independent trials and then take the
average inner products of the output vectors. In this section we
derive bounds on the variance of the estimated inner product,
in order to quantify the error injected for a single run of the
transformation.

Lemma 6.3:Let X and Y be two random variables as
defined earlier. The variance of the inner product between the
output vectorsx∗ andy∗ can be written as:

�2
(x∗⋅y∗) = 2p�4

b + pm�2
b�

2
q (E[f(Y )2] + E[f(X)2])

+pm�4
q{3pE[f(X)2f(Y )2]− pE[f(X)f(Y )]2

+(m− 1)E[f(X)2]E[f(Y )2]}
Proof: The proof is algebra intensive, so we omit it here.

We plan to put it as a supplementary material.
The expression for the variance of the inner product between
the two output vectorsx∗ and y∗ has several interesting
properties. It is an increasing function of the dimensionality of
the input space and the number of hidden units (m) for a neural
network implementation. These quantities are user-definedand
thus can be changed depending on the application. In many
situations it may be advantageous to choosep > m thus
increasing the expected variance in the distribution. Situations
wherem = 1 or p = m may be suited for applications where
the expected variance needs to be reduced. These parameters
provide a mechanism to tune the degree of distortion in the
output signal while maintaining control over the bound on
∣E(f(X)f(Y )∣. We discuss these tradeoffs more in the next
section.

VII. SPECIAL CASES

In this section we study two special cases of the general
transformationT , when: (1)f is a sigmoid ortanh function (a
popular choice for nonlinear mapping), and (2)f is an identity
function making the resultingT linear.

A. f = tanh function

In this section we analyze the properties ofE[x∗ ⋅y∗] when
f is a sigmoid or hyperbolic tangent (tanh) function. Our
choice off = tanh is not arbitrary; it makes transformationT
resemble that of a two-layer neural network, a tool widely used
in data mining and machine learning for learning nonlinear
relationships from the data. With such a substitution,T takes
the following form:

H(x) = tanh(A +Wx)

x∗ = T (x) = B +QH(x)
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However, for the results here to describe such a trained neural
network, one must assume that the weights are indeed indepen-
dent and normally distributed with a mean of zero. Weights are
assumed to be normal in much research in this area as shown
in [26] and [27]. Other researchers have shown empirically
that learning neural networks in high noise situations can lead
to nearly linear networks [28].

Even with the substitutionf(x) = tanh(x) in Equa-
tion (12), evaluation ofE[tanh(X) tanh(Y )] in closed form
is still intractable due to the absence of anti-derivatives. Hence
we use the bound presented in Lemma 6.2 to gain insight into
E[tanh(X) tanh(Y )]. Let us first evaluateE[tanh2(X)]. By
definition,

E[tanh2(X)] =

∫ ∞

−∞

tanh2(x) ⋅ e
−x2/(2∥x̂∥2)

√
2� ∥x̂∥

dx

Unfortunately, an anti-derivative does not exist even for this
function. We approximate thetanh function with a linear
function that takes on the values−1 and1 far to the left and
right of the origin, respectively, and has a slope of constant,
positive value in between. For simplicity we make this slope
tangent to the slope of thef function at the origin, which
means the slope of our approximation to be 1 over[−1, 1]
and zero otherwise. LettingΨ(X) denote the approximating
function,

tanh(X) ≈ Ψ(X) = −1 ⋅ �(−∞,−1) + x ⋅ �[−1,1] + 1 ⋅ �(1,∞)

where� is the indicator function. Figure 3 shows the original
tanh function, the approximation to it and the step function.
It is easy to see that,

Ψ(X)2 = 1 ⋅ �(−∞,−1) + x2 ⋅ �[−1,1] + 1 ⋅ �(1,∞)

DenotinggX(x) as the marginal distribution ofX we get,

E[tanh2(X)] =

∫

∞

−∞

tanh2(x) ⋅ gX(x)dx <

∫

∞

−∞

Ψ(X)2 ⋅ gX(x)dx

= 2

∫

−1

−∞

gX(x)dx+

∫

1

−1

x2 ⋅ gX(x)dx

Term 1= 2

∫ −1

−∞

e−x2/(2∥x̂∥2)

√
2� ∥x̂∥

dx = 2Φ

(

− 1

∥x̂∥

)

whereΦ(⋅) is the CDF of a standard normal distribution. For
evaluating Term 2, we evaluate the following integral.

∫

xe−x2/(2∥x̂∥2)dx = −∥x̂∥2 e−x2/(2∥x̂∥2) + c

Term 2 =
1√

2� ∥x̂∥

[
∫ 1

−1

x2 ⋅ e−x2/(2∥x̂∥2)dx

]

=
−∥x̂∥√

2�

(

e−1/(2∥x̂∥2) + e−1/(2∥x̂∥2)
)

+ ∥x̂∥2
[

Φ

(

1

∥x̂∥

)

− Φ

(

− 1

∥x̂∥

)]

Combining the results,

E[tanh2(X)] < 2Φ

(

−
1

∥x̂∥

)

+ ∥x̂∥2
[

Φ

(

1

∥x̂∥

)

− Φ

(

−
1

∥x̂∥

)]

Using a similar argument, it can be shown that,

E[tanh2(Y )] < 2Φ

(

−
1

∥ŷ∥

)

+ ∥ŷ∥2
[

Φ

(

1

∥ŷ∥

)

−Φ

(

−
1

∥ŷ∥

)]

These results can now be combined to get the fi-
nal bound of ∣E[x∗y∗]∣ = ∣E[tanh(X) tanh(Y )]∣ <

E[tanh2(X)]E[tanh2(Y )] using Lemma 6.2 and the expres-
sions forE[tanh2(X)] andE[tanh2(Y )].

∣∣x̂∣∣∣∣ŷ∣∣

∣E
[t
a
n
h
(X

)
ta
n
h
(Y

)]
∣
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Fig. 5. Plot of the bound on∣E[tanh(X) tanh(Y )]∣ vs. ∥x̂∥ and∥ŷ∥.

Figure 5 shows the bound on∣E[tanh(X) tanh(Y )]∣ with
variation of∥x̂∥ and∥ŷ∥. By taking appropriate limits, it can
be shown that the bound lies between 0 and 1. When both
∥x̂∥ and∥ŷ∥ are smalli.e. close to the origin, we know that
the expected inner product of their output should be close
to 0 as well. The bound is a good approximation when we
are close to the origin but becomes crude as we move further
away from the origin. This bound gives a quantitative measure
of privacy and is related to the probability of a successful
attack given the data with no additional information. When we
operate in a region far from the origin, the bound tells us that
the maximum expected value of the output distribution is close
to 1. This situation is the generalized version of the intuition
described in Section IV-C and Figure 3. In that simplified
example, the higher the slope, the less invertible the function,
and therefore the higher degree of privacy. Note that with a
finite (but large slope) with enough samples of inputs and
corresponding outputs and under low-noise conditions, it will
be possible to invert the map. However, the complexity of
this inversion increases dramatically with the use of a full
neural network architecture as discussed here. We therefore
take the probability of a successful attack given the data tobe
proportional to∣E[tanh(X) tanh(Y )]∣.

B. Linear Transformation

The second transformation that we study is a linear trans-
formation. Linear transformations have been widely studied
in the form of random projection, multiplicative perturbation
[5][20][3] where the output is linearly dependent on the input:

x∗ = T+Rx

whereT andR are random translation and rotation matrices.
In order for our transformationT to be linear, we assume
that f is an identity functioni.e. f(x) = x, ∀x ∈ ℝ. Unlike
the previous section, in this section we show how a closed
form expression forE[x∗ ⋅ y∗] can be developed for such a
transformation.
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Using the definition ofX andY , it is easy to show that,

E[f(X)f(Y )] = E[XY ] = x̂ ⋅ ŷ
Sincex̂ = [�wx �a]

T and ŷ = [�wy �a]
T,

x̂ ⋅ ŷ = �2
w(x ⋅ y) + �2

a

Combining these results, we have:

E[x∗ ⋅ y∗] = p�2
b + pm�2

qE[XY ]

= p�2
b + pm�2

q (x̂ ⋅ ŷ)
= p�2

b + pm�2
a�

2
q + pm�2

q�
2
w (x ⋅ y)

This equation shows that for a linear transformation, the inner
product of the output vectors is proportional to the inner
product of the input vectors. In other words, the distances
are preserved on average (up to scaling and translation). This
result is in-line with what some other authors have reported
elsewhere [3][5].

Let us investigate the quality of the bound for this transfor-
mation. Substitutingf(X) = X and f(Y ) = Y , in Lemma
6.2, we see that the integrals areE[X2] andE[Y 2] respec-
tively. Now, sinceX ∼ N(0, ∥x̂∥2) and Y ∼ N(0, ∥ŷ∥2),
E[X2] = ∥x̂∥2 andE[Y 2] = ∥ŷ∥2. Thus,

Eest[XY ] ≤ ∥x̂∥ ∥ŷ∥
whereEest denotes the estimated value of the expectation.
Therefore we can write the following expression for the bound:

E[x∗ ⋅ y∗] ≤ p�2
b + pm�2

q ∥x̂∥ ∥ŷ∥
where,

∥x̂∥ =

√

�2
w(∥x∥2) + �2

a

∥ŷ∥ =

√

�2
w(∥y∥2) + �2

a

Note that the true value ofE[x∗ ⋅ y∗] and the estimated
value differ only in�, the angle between̂x and ŷ. Figure 6
shows a plot ofE[x∗ ⋅ y∗] as � varies. For all the figures,
the circles show the true variation ofE[x∗ ⋅ y∗] vs. �. The
squares represent the bound. Note that for all the figures, the
bound correctly represent the inner-product only when� =
0,±2�,±4�, . . . . The three figures demonstrate the effect on
the output for three values of∥x̂∥ and∥ŷ∥. As can be seen,
the bound is a good approximation of the true value when∥x̂∥
and∥ŷ∥ are small.

VIII. P RIVACY ANALYSIS AND DISTANCE PRESERVATION

FOR ANOMALY DETECTION

The essence of perturbation-based privacy preservation in
the context of data mining is that if a transformed dataset
or query result is provided to a user it should be difficult or
impossible to reconstruct the original, untransformed dataset.
While several methods have been used to address this issue, the
notion of function invertibility has not been used in this context
in the past. Essentially, if one produces a set ofN operations
O1, O2, ..., ON , and passes a data set through those operations,
privacy will be preserved if the chainON (ON−1...(O1)) is not

invertible either functionally, due to randomization of the out-
put, or because of prohibitively high computation cost. In the
past, researchers have analyzed the effects of randomization as
a means of privacy protection and developed several sophisti-
cated schemes to undo the randomization thereby recovering
either the original data or a distribution. We present a general
methodology explaining why randomization is breakable and
propose a stronger functional privacy guarantee based on non-
invertibility of functions. Note that the privacy guarantees of
any linear orthogonal transformation (such as in [5] and [6])
holds true for our transformation as well.

Since our privacy model is related to the concept of function
invertibility, we first define an invertible function.

Definition 8.1 (Invertible function):A function f : D → ℛ
is invertible iff (i) it is one-to-one(injective) i.e. ∀(d1, d2) ∈
D, f(d1) = f(d2) ⇒ d1 = d2, and (ii) it is onto (surjective)
i.e. ∀r ∈ ℛ, ∃d ∈ D, such thatr = f(d).

In order to diminish the probability of inverting a function
and thus attack a privacy preservation scheme, the function
must be such that there exists a many-to-one mapping from
the domain of the function to the range of the function. In this
situation, given the output, it would be difficult or impossible
to map back to the original data space. In the event that
only the outputs are provided without the inputs this reverse
mapping would be made more difficult. Below we formally
define this notion of privacy.

Definition 8.2 (Privacy preserving transformation):A
transformation (or a function)T is privacy preserving if, for
any datasetD, the composition transformationT −1(T (D))
does not giveD back i.e. T −1(T (D)) ∕= D.

Therefore given the outputT (D) andT it is impossible to
getD back.

The idea of using non-invertible functions for privacy
preservation is not new; it has been used successfully thus far
in the field of security and cryptography [17][29]. The Hash
functions such as SHA and MD-5 were developed with the
basic idea that no polynomial time algorithm exists for finding
the reverse mapping which will break the encryption. To the
best of our knowledge, this concept has not yet been explored
in the context of privacy preserving data mining. In the past,
researchers have only analyzed the situations in which the
transformationT is either random multiplicative or additive
noise or both. Mathematically, both of these transformations
are invertible and thus are not privacy preserving. This claim
has been bolstered in recent years by the development of
sophisticated techniques for thwarting these transformations
such as in [2] and [3]. It is fairly straightforward to show that
our non-linear non-invertible distortion technique is resilient
to such attacks. Of course, privacy comes at a price — higher
privacy decreases the accuracy.

Data privacy usually comes at a price. Utility or usefulness
of the data is often lost during privacy preservation using
perturbation or distortion schemes. For example, considerthe
transformation:

f : ℝ → {0, 1}.
By Definition 8.2, this transformation is privacy preserving.
However, since all the data is mapped to a single bit, it is
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(b) ∥x̂∥ = ∥ŷ∥ = 0.5
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(c) ∥x̂∥ = ∥ŷ∥ = 0.25

Fig. 6. Variation of the outputE[x∗ ⋅y∗] with respect to� (in radians), the angle between̂x and ŷ. Circles represent the true output and squares represent
the bound. For all figures, the bound is independent of�. For a fixed∥x̂∥ and∥ŷ∥, actual output oscillates and equals the bound only at� = 0,±2�, . . . ,.
As ∥x̂∥ → 0 and∥ŷ∥ → 0, the actual value approaches the estimated value. The boundis very tight whenx̂ and ŷ are close to the origin.

not directly clear how important the data will be for data
mining purposes. This tradeoff can be controlled easily in our
framework by changing the slope (�) of the non-linear function
used. In the remainder of this section we discuss how our
data distortion scheme offers data utility in the case of outlier
detection.

In this paper we have used the definition of outliers as in
[30] and [31]. By definition, distance based outliers are those
for which:

∙ there are fewer thanp other points at a distance ofd
∙ the distance (or the average distance) to thek nearest

neighbors are the greatest.
Note that the crux of all these computations use a distance
metric defined on the input space. Specifically, let

dist : ℝn × ℝ
n → ℝ, dist∗ : ℝp × ℝ

p → ℝ

be a distance measure on the input and output space re-
spectively, which computes the Euclidean distance between
two vectorsx and y. Now three cases can occur after the
transformation (usingtanh as the non-linearity):

1) x andy are not outliers
∙ In this case,

dist∗(T (x), T (y)) ≈ dist(x,y)

assumingx and y lie close to the origin and the
tanh function is linear in this region. In this case,
the distances are approximately preserved. The pri-
vacy protection is typically based on linear random-
ization (rotation and translation) and therefore less.
In our scenario this is acceptable since the normal
operating conditions are similar for many airline
companies and hence the lesser privacy guarantee
for these data points may be acceptable.

2) x is an outlier whiley is not
∙ In this case,

dist∗(T (x), T (y)) ≈ dist(c,y).

where c is a constant. Note that the distances are
not preserved. However, with a proper choice of
threshold, we can distinguish betweenc andy. In
this case, givenc, it is impossible to findx. This
is because the transformation is non-invertible since,
x, being an outlier, is far away from the origin. Thus

the privacy guarantee is high for all outliers. This
is important since outliers may be specific to an
airline company, and mapping all outliers to a single
entity may preserve privacy while still allowing their
detection as long as they are away from the non-
outlier data points.

3) x andy are outliers

∙ In this case,

dist∗(T (x), T (y)) ≈ dist(c, c) ≈ 0

which implies that all outliers approximately get
mapped to the same points. Since we are not in-
terested in distinguishing the outliers, this mapping
is acceptable. Moreover, this ensures that givenc, it
is impossible for an attacker to figure out if it came
from x or y (one-to-many mapping).

Referring back to Figure 6 we see that for a linear trans-
formation, the quantityE[x∗ ⋅ y∗] easily bounds the relative
positions of the original input vectors, particularly whenthey
are close to the origin. This implies, regardless of the nature
of the linear transformation, it will always be possible to re-
identify some important properties of the data set if those vec-
tors lie close to the origin. However, as they move away from
the origin, the actual variation in the expectation sinusoidally
oscillate under the bound. Because the integral needed to
computeE[x∗ ⋅y∗] is intractable for nonlinear transformations,
we can only analyze the bound given in Figure 5 and see
that the transformation becomes highly nonlinear and therefore
highly private in the situation whereE[x∗ ⋅y∗] is close to unity.

IX. EXPERIMENTAL RESULTS

In this section we demonstrate the quality of our non-linear
transformation in preserving the inner-product among the
feature vectors. We provide experimental results on a publicly
available high-fidelity aircraft engine simulation dataset (C-
MAPSS) and a proprietary aviation dataset (CarrierX).

A. Simulation Environment and Dataset

Our experimental setup uses a distance-based outlier detec-
tion algorithm Orca developed by Bay and Schwabacher [32]
to test the quality of distance-preservation of our transforma-
tion. Orca assigns an anomaly score (between 0 and 1) to



10

each point in the dataset based on its distance to its nearest
neighbors. The higher the distance, the higher the score. Our
data distortion technique preserves distances if the data is
close to the origin, and distorts them otherwise. Thereforea
distance-based outlier detection technique should be ableto
detect outliers under our potential non-linear transformation.
Orca is written in C++ with a wrapper written in Matlab. The
default value for the distance computation was chosen as the
average distance to five nearest neighbors. All our simulations
were run on a 64-bit 2.33 GHz quad core dell precision 690
desktop running Red Hat Enterprise Linux version 5.4 having
2GB of physical memory.

In our experiments we report thedetection rate. By detec-
tion rate we mean the percentage of outliers which are pre-
served even after the transformation. We repeat this experiment
several times and report the mean and the standard deviation
of the detection rate.

The first dataset is simulated commercial aircraft engine
data. This data has been generated using the Commercial Mod-
ular Aero-Propulsion System Simulation (C-MAPSS) [33].
The dataset contains 6,875 full flight recordings sampled at
1 Hz with 29 engine and flight condition parameters recorded
over a 90 minute flight that includes ascent to cruise at
35000 feet and descent back to sea level. This dataset has
32,640,967 tuples. Interested readers can refer to this dataset
at DASHlink3.

The second dataset is a real life commercial aviation dataset
of a US regional carrier (CarrierX) consisting of 3,573 flights4.
Each flight contains 47 variables. Out of these 39 are real-
valued (continuous) attributes while the remaining 7 are dis-
crete (binary). In our previous study (not reported in this paper)
we have seen that there are several anomalies in this dataset
detectable by Orca. We hope to detect a high percentage
of those outliers even after our non-linear distortion. Unlike
C-MAPSS dataset which is public, the CarrierX dataset is
proprietary and hence there is strong motivation to protect
data privacy. Note that our technique only distorts the real-
valued attributes. However the code works even if we include
discrete attributes.

B. Performance Results

In this section we show the quality of outlier detection
before and after the transformation. For all the experiments, we
have preprocessed the datasets by transforming each variable
independently to lie between 0 and 1.

1) CMAPSS Dataset:Figure 7 shows the effect of linear
distortion on the outcome of the anomaly scores. For this
experiment, we ran Orca with the default parameters on the
CMAPSS dataset. The output of the algorithm is a set of
anomaly scores for each point. We then sort these points and
select the top 500 among them. The stars in Figure 7 show
the scores output by Orca on the original dataset after they
have been normalized between 0 and 1. In order to distort the

3https://dashlink.arc.nasa.gov/data/
c-mapss-aircraft-engine-simulator-data/

4We cannot release the name of the carrier due to the data sharing agreement
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Fig. 7. Plot of anomaly scores of original CMAPSS dataset (star) and
transformed datasets using linear (diamond) transformation as produced by
a distance-based outlier detection technique Orca[32]. The x-axis shows the
indices of the top 500 anomalies as found by Orca. The diamondmarkers
show the anomaly scores of the same 500 indices after the transformation.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Indices
A

no
m

al
y 

sc
or

e

 

 

Original
Non−linear (tanh) distortion

Fig. 8. Plot of anomaly scores of original CMAPSS dataset (star) and
transformed datasets usingtanh (diamond) transformation as produced by
a distance-based outlier detection technique Orca[32]. The x-axis shows the
indices of the top 500 anomalies as found by Orca. The diamondmarkers
show the anomaly scores of the same 500 indices after the transformation.
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Fig. 9. Plot of anomaly scores of original CMAPSS dataset (star) and
transformed datasets using squared (diamond) transformation as produced by
a distance-based outlier detection technique Orca[32]. The x-axis shows the
indices of the top 500 anomalies as found by Orca. The diamondmarkers
show the anomaly scores of the same 500 indices after the transformation.

dataset, we used the following transformation:

T (x) = B +Q× (A +Wx)

Using this transformation, we again run Orca on this distorted
dataset. The diamond markers in Figure 7 show the normalized
anomaly scores of the same 500 outliers in the distorted
dataset. As can be seen in the figure, there is a high degree of
correlation among the two scores. Since linear transformation
preserves distances, for any outlier point, distance to itsk-
nearest neighbors are also preserved. This is why we see
very similar anomaly scores for the two experiments. Notice
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Fig. 10. Plot of detection rate of CMAPSS vs. different parameters. The reference set is the top 500 outliers assigned by Orca. We refer to detection rate
as the percentage of outliers in that list which are correctly identified after the transformation. The results are an average of 50 independent trials.

that the variation in the anomaly scores is higher than that
of the original data due to the random linear projection.
These variations become more emphasized under nonlinear
transformations.

Figure 8 shows the effect of nonlinear distortion on the
CMAPSS dataset using thetanh function. As before, the star
markers represent the outlier scores of the top 500 anomalies
on the original dataset. For the distortion, we have used the
following transformation:

T (x) = B +Q× tanh(A +Wx)

The diamond markers show the anomaly scores of the same
500 outliers after distortion. In this case, there is more devi-
ation in the anomaly scores compared to the linear distortion
case. Notice that although the transformation provides a high
degree of privacy compared to the linear transformation, the
highest scoring anomalies are still discovered by the anomaly
detection algorithm. This result supports the intuition and the
derivations shown earlier:nonlinear transformation can allow
anomalies to pass through a privacy preserving transforma-
tion.

We have also tested a quadratic nonlinearity:i.e.f(x) = x2:
T (x) = B+Q×(A+Wx)2. Figure 9 shows the effect of this
transformation. In this case as well, there is a good correlation
among the true and transformed outliers. Notice that the
overall variation is lower than that of thetanh transformation.
In this case the privacy preservation is high compared to linear
distortion due to the fact that the nonlinear function is non-
invertible.

Our next experiments analyze the variation of the detection
rate and privacy preservation using this dataset and thetanh
function. First, we have experimented with an increasing slope
of the transformation (similar to Figure 3). As shown in Figure
10(a), the detection rate is very sensitive to the slope — it
drops to approximately 4% for a slope of 1.43. This is as
expected since with increasing slope, more of the data gets
mapped to the constant regions, making it extremely difficult
for the outlier detection algorithm to extract the anomalous
patterns. The privacy using such high slope transformationis
expected to be very high.

For this dataset we also show the detection rate when
different types of distortion are used. As shown in Figure
10(b), for linear distortion, the mean detection rate is 91.28%
with a standard deviation of 2.36%. Similar results for square
distortion, are 87.48% and 2.11%. Finally, usingtanh func-

tion, we get a mean detection rate of 78.72% and with 5.82%
variation. Figure 10(b) gives a plot of the mean and one
standard deviation estimate of the variation in detection rate.

Finally, in Figure 10(c) we give an idea of the amount of
privacy that is preserved as the range of the data is varied.
Using our bound in Lemma 6.2, we see that if the data lies
close to the origin (range of 0 to 0.1), the privacy is very low.
As the range of the data is increased, the privacy is increased.
This explains our hypothesis that the nearer the data is to the
origin, the lower the data privacy and vice-versa. Therefore, in
order to have more privacy, one might map the data to a large
range in which case, as argued, non-invertibility preserves data
privacy.

2) CarrierX Dataset: We applied two types of transfor-
mation on this dataset. Figure 11 shows the outlier detection
results using a linear transformation. As before, the blue stars
refer to the actual top 500 anomalies while the red diamonds
refer to the scores of the same 500 points after transformation.
We noticed, that on average the detection rate is 88% with
a standard deviation of 1.3% for this linear transformation.
Similarly, Figure 12 shows the anomalies detected whentanh
non-linearity is used. In this case, we have observed a mean
detection rate of 68% with a standard deviation of 1.7%.

Therefore for all these experiments we see that our dis-
tortion technique provides a good detection rate for different
types of non-linearity used.
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Fig. 11. Plot of anomaly scores of original CarrierX dataset(star) and
transformed datasets using linear (diamond) transformation as produced by
a distance-based outlier detection technique Orca[32]. The x-axis shows the
indices of the top 500 anomalies as found by Orca. The diamondmarkers
show the anomaly scores of the same 500 indices after the transformation.
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Fig. 12. Plot of anomaly scores of original CarrierX dataset(star) and
transformed datasets usingtanh (diamond) transformation as produced by
a distance-based outlier detection technique Orca[32]. The x-axis shows the
indices of the top 500 anomalies as found by Orca. The diamondmarkers
show the anomaly scores of the same 500 indices after the transformation.

X. CONCLUSION

We have shown a general method for computing the bounds
on a nonlinear privacy preserving data mining technique with
applications to anomaly detection. We have also shown the
connection between the invertibility of a function and privacy
preservation, and have computed rigorous bounds on the
relationship between the distances of input vectors and theex-
pected distances of the output vectors. These nontrivial bounds
show that privacy preservation increases as the input vectors
move further from the origin. We have also demonstrated that
for real-world applications, such as engine health monitoring,
the nonlinear transformation approach allows anomalies to
pass through the transformation while maintaining a high de-
gree of privacy. We have given a novel method for quantifying
privacy due to a general nonlinear transformation and have
shown that this quantity can be treated as being proportional
to probability of a successful attack. We have made all the
source codes of this work and the supplemental information
available at dashlink [34].
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