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Abstract— Consider a scenario in which the data owner has
some private/sensitive data and wants a data miner to acceds
for studying important patterns without revealing the sensitive
information. Privacy preserving data mining aims to solve his
problem by randomly transforming the data prior to its release
to data miners. Previous work only considered the case of lear
data perturbations — additive, multiplicative or a combination
of both for studying the usefulness of the perturbed output.In
this paper, we discuss nonlinear dataistortion using potentially
nonlinear random data transformation and show how it can be
useful for privacy preserving anomaly detection from sengive

Another approach that can be taken is to allow sensitive data
to be analyzed where the data is obfuscated through additive
or multiplicative noise. These approaches rely on the faat t
a given datasef> can be passed through an operation (or
set of operations) defined by a functigh The mapping is
often chosen to be linear an affine transformation. The dutpu
of the system,7 (D), is then transmitted with the hope that
the original data cannot be reconstructed using the image of
T (D) alone. Many researchers have shown that under certain

datasets. We develop bounds on the expected accuracy of theSituations these operations can be reverse engineereebyhe

nonlinear distortion and also quantify privacy by using standard

definitions. The highlight of this approach is to allow a user
to control the amount of privacy by varying the degree of
nonlinearity. We show how our general transformation can be
used for anomaly detection in practice for two specific probém

instances: a linear model and a popular nonlinear model usig

the sigmoid function. We also analyze the proposed nonlinea
transformation in full generality and then show that for specific

cases it is distance preserving. A main contribution of thipaper

is the discussion between the invertibility of a transformaion

and privacy preservation and the application of these techigues
to outlier detection. Experiments conducted on real-life @tasets
demonstrate the effectiveness of the approach.

I. INTRODUCTION

revealing the original data without any information about
the nature of the operations or any additional information
[2][3]. Essentially, each attack strategy attempts to fimd a
inverse mapping’ —! such that, when applied t@ (D), the
original data (within a trivial translation or rotation) rcabe
re-identified,viz, D ~ 7~ (T(D)).

In this paper we show a third technique for preserving
privacy using functions which cannot be inverted. Spedlfica
we discuss the situation wherg is a nonlinear mapping
parameterized by a set of weiglttsWe discuss the situation
where the distribution of the weights is known and also study
situations where the propertiesBfcan be observed. We show
a method to quantify the probability that a mappihgcan be
inverted and show a situation where it cannot be inverted.
We refer to this method of data obfuscation @snlinear

Privacy preservation is a critical need for a variety of dat(ff’istortion

mir_1ing applications where there_ exists a repository of ,d‘,"‘taWe demonstrate our techniques of nonlinear distortion on
which needs to be analyzed without the analyst obtaining, problem of anomaly detection, which is prevalent in

the data directly. To solve this problem, researchers ha.(x;(e

variety of application domains where privacy must be

developed many techniques to mask or anonymize the databf@served. We discuss the application of these techniques

order to allow for the analysis to occur. In the simplest CaSR the realm of aviation safety

de-identification (or anonymization) of the data is perfedn
whereby sensitive information is either obfuscated, resthc

where data from multiple
air carriers must be kept private to the airline to protect
proprietary information. In this situation, it is not pds&

or eliminated from the data records, while only transmtj;tinfor the data to be disclosed to the public for analysis or

those attributes of the data that are nonsensitive. Howevgﬁomaly detection. Moreover, anomalies often tend to piovi
anonymization techniques can be defeated using the fact tUﬁique characteristics, thereby identifying a specifidiredr

idiosyncratic data can lead to unexpected re-identificatib
data [1][2][3]. Approaches based on anonymization teahesq

[4] have been employed in the field by Netflix and variou

government agencies such as HIPAA
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be preserved through the nonlinear distortion. This paper
guantifies the degree of distortion injected by the nonlinea
transformation and shows how it affects the ability of the
algorithms to detect anomalies using Euclidean distance as
the measure of an anomaly. In this paper we:

o Present a new technique which we call the dhstortion



scheme for preserving data privacy. The framework uses
non-invertible non-linear functions for mapping the data
to a different space. Mathematically, we show that this
transformation cannot be reverse engineered and thereby
the original data cannot be recovered due to the conditid
of non-invertibility.

« Analyze the transformation in its full generality and show
that, for specific cases, the transformation is distande
preserving, thereby proving useful to the data mining

algorithm. Our results generalize all of the previous worl e gt T s pﬁ
on perturbation-based data privacy such as in [5][2][3][6]

5

. . . . ¢
« Finally, we show how our technique is particularly usefu $
for a specific data mining techniquéz. anomaly detec- @“.n“
tion.

The rest of this paper is organized as follows. Section ||
discusses the motivation for this research. Section lis@nés
the related work. Section IV introduces the notations ark. 1. Distributed National FOQA Archive architecture wiiog how the
discusses the formal proble definiion followed by the noffzass <2 bos ery a0 gt e [ Biter et soues,
linear distortion technique in Section V. Bounds on the iyal
of the distortion are discussed in Section VI while some
special cases of the distortion are presented in SectionA/Il 4 way of accessing the raw data for a more in-depth analysis
discussion of privacy of the technique follows in SectionlVI §e to its proprietary nature. Also, anonymization may not
Section IX demonstrates the performance of the technique 98 an effective method of privacy preservation since it can
real-world data for a commercial air carrier. Finally th@@pR pe proken with sufficient background information [12][13].

is concluded in Section X with future research plans. We aim to develop a privacy preserving technique which will
enable us to detect distance-based outliers from such Igloba
Il. MOTIVATION AND BACKGROUND datasets while preserving their privacy in a strict senseesi

8utliers often contain uniquely identifiable informationking

Outlier or anomaly detection [7] refers to the techniqua data point to a data repository. We assume that the privac
of finding patterns from a dataset that are inconsistent or P P Y- P y

considerably dissimilar from the rest of the dataset. @utlireqUIrementS of the normal operating points are less, isecau

. Co - : fmost of the airlines have similar operational charactiesst
detection has been studied in the statistics community for : . . . .
The privacy technique proposed in this paper essentially

a long time [8][9]. Data mining researchers have developed ; )
g [8](] 9 puses a random non-linear map to transform the input data.

a number of solutions for outlier detection in various do‘i’he mapping or the function satisfies two properties: (1)
mains: fraud detection, network intrusion detection, elien ppIng. unct ISt YO Properties. .
for all points in the normal operating region, the mapping

and ocean current change modeling using wireless sensor ~ . ) s
: : : . approximatelypreserves the distance between those points in
networks, engineering systems, and more. Since in most

. . o . : the transformed space, and (2) it maps all outliers to a finite
these domains the data is not sensitive, privacy is not an . . .
: I . g set of discrete values. We show that if this transformation
issue for these applications. For a more detailed liteeatur is non-invertible, then it is virtually impossible to breékis
anomaly detection and its different application areasygdted transformation a{nd uncover the oyri inF;I data. As a result of
readers are referred to a recent survey by Chanetadé [10]. i . 9 . Co

. . . this transformation, most of the outliers will remain suclere
The problem that we aim to solve in this paper can b . .
. ) . . after transformation. Also note that the privacy of the non-
informally stated as follows: consider a number of diffaren . . . o

outlier points are also protected since we apply a comhinati

airline companies each having their own aircrafts’ system . o . .
P 9 YS'eni} additive and multiplicative perturbation to these psials

health and flight operation data commonly referred to a e in [5][3][14]. However, as stated before, our main am i

a Flight Operational Qu_allty Assurancg (.FOQA) archlve_. Ipo protect the privacy of the outliers. There are severatioth
order to analyze operational characteristics and safstyes . . .
places where our technique can be applied such as detecting

from a large set of data encompassing multiple air carbes, fraud across multiple financial institutions and finding sual
Distributed National FOQA Archive (DNFA) [11] has been P 9

developed jointly by NASA and FAA with collaboration bypatterns in medical records.

different air carriers. Figure 1 shows the architectureteNo

that the connections between different FOQA archives and a Il. RELATED WORK

central node use dedicated and secure T1 lines. As shown ifThe research in privacy preserving data mining spans many
Figure 1, when an analyst executes a query about the data, @rieas: data perturbation techniques [15][5], cryptogdia(se-
disseminated across the FOQA archive of each air carrier. Téure multi-party) techniques [16][17][18] and output peba-
computations are done locally at each site and an anonymiziet techniques [19]. In this paper we only discuss the data
and de-identified result set of the query is sent back throughrturbation techniques since they are most closely ctlate
the secure lines to the central node. In this architectbegetis this area of research.



Data perturbation-based privacy preserving techniques pe 14
turb data elements or attributes directly by additive noise
multiplicative noise or a combination of both. They all rely Ll
on the fundamental property that the randomized dataset mz
not reveal private data while still allowing data analysise
performed on them. We discuss each of the techniques in mo

T
® Mean absolute error with respect to actual euclidean distance
Dimension of the input vectors

Absolute error

detail in this section. osf

Given a data seD, Agrawal and Srikant [15] proposed ol [ { I ]
a technique of generating a perturbed dataBétby using 02 I { I } 1 { I 1 1 1 1 I 1 1
additive noise.e. D* = D+R, where the entries dR are i.i.d. %195 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Dimension of vectors

samples from a zero mean unit variance Gaussian distributio
Karguptaet al. [20] questioned the use of random additivgig. 2.  This graph shows the variation of error in estimatthg inner
noise and pointed out that additive noise can be easi|y€fﬂterpr0duct between two arbitrary vectors vs. the dimensiorhefdutput vector.

. . . . . - The output is generated by first randomly projecting the tripthe subspace
out using spectral filtering techniques causing a privaepon shown by points on the-axis and then transforming it by a hyperbolic tangent

of the data. (tanh) function. The dimension of the input vectors are 50 as shioyvdotted

Due to the potential drawback of additive perturbationpe. They-axis refers to the error. The squares to the left of this tiefers
PR : : to dimensionality reduction and to the right refers to disienality inflation.

several types of multlpllcatlvg perturbation techniqueseh Each point in the graph is an average of 100 independens.trial

been proposed. Kim and Winkler [14] proposed one such

perturbation technique which multiplies a random number

and small variance to each data pdiet D* = D x R, where p+ andD. We discuss this in more detail later.

the matrix multiplication is the Hadamard product, which pata perturbation techniques for categorical attributmseh

means that it is carried ou_t element-wise. An _appropna&ebt also been proposed by Warner [22] and [23]. Evfimeeskil.

strategy would be to estimate the matf given the data. proposed the-amplification model [24] to bound the amount

[2] which uses a sample of the input and output to derive | this section and the next we introduce the notations and

approximations on the estimate of the matRx discuss in detail about the non-linear data distortion sEhe
A closely related but different technique uses random dat§ privacy preserving outlier detection.

projection to preserve privacy. In this technique, the data
is projected into a random subspace using either orthogonal
matrices €.g.DCT/DFT as done by Mukherjeet al. [6]) or
pseudo-random matrices (as done by ktual. [5], Teoh and A. Notations

Yuang [21]). It can be shown that using such transformations | et x — [z125...2,]T be ann-dimensional input data
the Euclidean distance among any pairs of tuples is preservector where each; € R. Let x* = [xias. .. x;]T be the
and thus, many distance-based data mining techniques cartégesponding output generated according to some transfor
applied. Moreover, the privacy of the projection scheme cafation7 : R* — RP, where again:* € R. In this paper we

be quantified using the number of columns of the projectigiiudy a very general form of:

matrix. Figure 2 shows the distribution of the error as a

function of the output dimension for simulated data with X'=Tx) =B+Qx f(A+Wx) 1)

the hyperbolic tangenttanh) nonlinearity. In the graph, the where f : R™ — R™ is a function whicf

input datasetD consists of two column vectors; and x,
each of dimension 50. The output is generated according t
vi = f(Rx1) andys = f(Rxz2), whereR is a random
projection matrix(rm x 50) with m varying from 5 to 100, and

f refers to thetanh function. In the graphlx; Tx; — y1Ty1]| and )
is plotted in they-axis for different values ofn. As expected, @< ) _
increasingm reduces the error due to projection in a largeBlpx1s [Qlpxm, [Almx1, and [W],.x, are matrices (with

subspace. More about this nonlinearity and its role in pgiva dimensions shown) whose entrigs, g;;, a;;, andw;; are each
preservation will be discussed in subsequent sections. independently drawn from normal distributions with mean

In a more recent study, Chest al. [3] proposed a combi- zero and standard deviations, g, Oas anq Ow respect.ively
nation of these technique®* = A + R x D + A/, where A €9 Wij ~ N(0,04). The_ norr_nal distribution assumption for
is a random translation matrig is a random rotation matrix 9€nerating random matrices is not new and has been proposed
and \ is a noise matrix. The paper further shows how tBY Several authors [3][5]. The transformati®rwas chosen for
break this transformation in practice using a linear resjczs three principal reasons: (i) the transformathn is er._><|bImat
technique when the attacker knows a set of input-outpuspaiP"€ can choosg¢ from a large class of functions, (ii) one can
However, the success of this attack depends on the variai€t the variances of the Gaussian-distributed matrix esto

of the mamc_es- The paper further def'nels a privacy measurrpese are sufficient but by no means necessary conditiorishalne in
known asvariance of differenc€VoD) which measures the place to ensure the existence of the improper integralsviaater derive.

IV. NOTATIONS AND PROBLEM DEFINITION

1) acts element-wise on its argument,

02) is continuous over the real lifg,

3) bounded on all bounded intervals &n and

4) f(z) = O (el*I") as|z| — oo wherea € Ris a constant



any value, and eliminate the bias matri¢gsend A by setting 1F ‘ ‘ e =
o, = 0 and o, = 0, respectively; (i) and, intuitively, this : 3
randomized and potentially non-linear transformationustio 0.5-
perturb data better than the simple projection- or rotation
based transformations considered so far in the literatace a
should thus be less susceptible to attack for wise choicgs of

tanh function -

Step function

f(x)
o

and parameter values. Special case§ ofan be instantiated —05
by choosing specific instances #f two of which we discuss \ o
in Section VII. E(-) denotes the mean of a random variable ) S heproxmaton o0

ando?(-) denotes its variance. The inner product between tw -3 -2 -1 0 1 2 3
vectorsx andy is denoted by - y.

Fig. 3. This figure shows an example nonlinearity, the hypl@kangent
o (tanh) function shown in bold. As the slope of the nonlinearityreases, the
B. Problem Definition function becomes less invertible. In the limit, as the fiows slope becomes

In thi | h lati hio b he i infinite, it becomes a non-invertible step function (dottew). ¥ (z) is an
n this paper we analyze the relationship between the in roximation totanh(z) that we use to bound the expected distortion due

data vectors and their corresponding outputs under the-tram this nonlinearity.

formation7. While such a relationship can be studied in many

different ways, we focus on thmner productbetween the

input and the output. Inner product is an important prineitiv

which can be used for many advanced data mining tasks such

as distance computation, clustering, classification andemo

Specifically, we try to gain insight into the following praoh.
Given two vectorsx = [ri29...7,]7 and y =

[1y2 .. ya)", letx* = T(x) = [zfa3...23]" andy* = :

T(y) = [yiys...y;]" be the corresponding output vectors. -

Sincex* andy* are random transformations of their parent

vectors, we analyze the relationship betweey andx™* - y*. , ) ) ) )
Fig. 4. This synthetic data set is used to show the effect efnibnlinear

Our StUdy in this paper focuses on: transformation. The helical coil (left) represents norhidata and the two

1) understanding thaccuracyof 7 in preserving distances Outly:]nghpomtsh repfesemﬂoﬁ-ﬂomilnal or anO][naIOU_S datmr?;o;he right
; ; ; P graph shows the output after non-linear transformationesgribed in Equa-
I.€. studymg the_ properties CE [X y ]’ a,nd . tion (2) usingf = tanh. Notice that the outlying points are far away from
2) analyzing theprivacy-preserving properties of7 i.e. the majority of the data, thus validating the distance presien property of

under what conditions iST_l('T(D)) # D in the this nonlinear distortion scheme.
absence of auxiliary information?

C. Overview of Approach

In order to illustrate the idea behind our approach, Comsidtéansformatlon, the outliers in the input space are stitliets

a situation where a single scalar variablés passed through In the output space of the system.
a nonlinear functior . Figure 3 shows the hyperbolic func- The following sections derive the quantiByx* - y*] which
tion as an example nonlinearity. In this figure, the slope is the expected value of the distance between output vectors
parameterized by a single numb#which sets the slope of of the system using Gaussian assumptions about the input
the function near the origin. Notice that for moderate valualistribution. We compute rigorous bounds on this quantity
of 6 the function is invertible. Thus, a value efoutside of as well as the second moment of the output distribution.
the neighborhood of the origin will be mapped to a numbé&ihese bounds demonstrate that under certain conditioas, th
close to -1 or 1 depending on its sign. As the slope becomasnlinear mapping is distance preserving for all the data
steeper, corresponding to a larger valug/pthe invertibility points which are close to the origin and highly private fdr al
of the function diminishes because the range of the functioutliers (since they all get mapped to the same output value)
becomes binary, thus producing a many-to-one mapping. Aswever, as the system becomes more nonlinear, the bounds
the function converges to a step function (with infinite glopincrease to unity. This reduces the probability of invegtin
at the origin), the values of get mapped directly to O or 1 the mapping, and increases the privacy of the overall system
depending on the sign of the variable. In this situation, tresen for points which are non-outliers. The degree to which
function is no longer invertible because given an image ef thlistances are preserved decreases as a consequence. It is
input, it is impossible to determine the input itself evethié important to note that the example of a singl@h function is
non-invertible function is known. given only as an example. For real-world applications, & ful
Figure 4 (left) shows a synthetic data set in which theeural network based architecture can be used with multiple
input space is a helical coil with two outliers. This data seteights and nonlinearities, thus providing a more complex
is transformed via theanh nonlinear mapping. The outputnonlinear mapping. Even in this significantly more complex
is shown in the right subplot and indicates that under thésse, however, our derivation &f[x* - y*] is valid.



V. NONLINEAR DATA DISTORTION Definition 5.1: [Linear Combination of random variables]

In this section we present our data distortion method usind-§t* andy be (n+1)-dimensional vectors defined as follows:
potentially nonlinear transformation. Later we will arnzdytwo % =[owx 0dT =[owr1 ... Owin 0dT (5)
special cases of this method: (1) tlie= tanh function that N T T
corresponds to the nonlinear function used in neural nétsyor ¥ lowy  oa]” =lowyn - ougn d] ©)
and (2)f as the identity function. We study the second case Wherec,, and o, are the variances diV and A respectively
order to demonstrate that our results lead to those obtdéipedand,x andy are then-dimensional inputs.
other authors that have studied random projections foapyiv Now let

preservation. P 7
In the next subsection we introduce the mechanism of this =it Wi X )
transformation and then show its distance-preservinggsrop Y =a;,+wi-y (8)
ties. be two random variables. The following lemma shows the
distribution of X andY".
A. Mechanism Lemma 5.1: X andY’, as defined above, are distributed as
Let [D],,«xm be a data set owned by Alice in which there X ~ N(0 ||§(||2)
are m instances (columns) each of dimensionality (rows) 5
Alice wants to grant Mark (a data miner) access to this datase Y ~ N, [Iyl")

However, she does not want Mark to look at the raw data. So Proof: X andY” are linear combinations of normally dis-
for every vectorx € R”, Alice generates a new tuple' € R? tributed independent random variables; hence they thersel

according to the following transformation: are Gaussian random vectors. u
Combining Equations (3), (4), (7), and (8), we can write:
x"=B+Qx f(A+ Wx) )

E * ¥ — 2 2
whereB, Q, A andW are all mean zero and constant variance eyl =p {Ub mogl [f(X)f(Y)]} ®)
Gaussian i.i.d. random matrices as defined in Section IV/he last equation shows that the expected inner product can
A. Figure 4 shows sample input data and the perturbati@f €valuated using the joint probability distribution beem
achieved by the transformatioh= tanh. X andY. Further, sinceX andY are Gaussian random vari-
In the next subsection we discuss how the inner prod@tgles, the joint probability distribution is a bivariate ©aian
between two input vectors is related to their transforméhstributiongx y (z,y):

counterpart. 1
QX,Y(I, l/) = A 3 (10)
2[RIl /1 — pxy

B. Derivation of E[x* - y*]

2 2
In this section we show how[x* - y*] can be evaluated. exp | — ! . SR — 2’1X=chy
Note that, 2(1=pxy) %] Nl %I 13l
E[X* -y*] Elziy; +23y3 + ... + 25y where for this form to be valiX|| and ||y || must be nonzero

- - - and px .y, the correlation coefficient ok and Y, must not
[Ilgl]f (2393 + -+ B [z] be +1. Unless otherwise stated, from now on we will assume

= pElzjy]] 3 that

wheres is arbitrary. The last equality follows from the fact that « ||%]| > 0, ||| > 0, and

the entries of each of the matrices are i.i.d. Gaussianblasa ~, , 4]
Further, lettingw; € R™ denote thei-th row of W, we have ’

Note that these conditions are equivalenttoy| < ||X|| [|¥]]-
b+ gief(ac+we-y) W_e_make these assur_nptmns S0 t_gl)a;y has a conS|ster_1t, ex-
et plicit, bivariate Gaussian expression. When these assongpt

In taking the expected value of the above expression, ofiEe ot satisfiedx v is degenerate, so these assumptions leave

need only consider those terms that are not linear in bdis with the most general form of the problepy y can be
qic andb;. All other terms evaluate to zero under the expectefifined in terms ok andy as:
value operator due to the independence of the random vasiabl

* ok _
rpYp =

bi+ Y qief(ar+wy- X)} :

=1

concerned and their property of having a mean of zero. Thus, Xy
S I 7 -
5] = 2 2 : .
Bletvl] = Bloi+ ;q”f('” Twe e x)f(ae+we y)} Finally, we can write,
= E[B]+mE [¢}] E[f(ar +we-x)f(ag +we-y)] R e
— oRrmalElfatwi o 0f @ bwiey) @ DHEIXI= /, . /, @I Wexy (@, y)dvdy
where ¢ and ¢ are interchangeable. So it suffices to find Note thatE[f(X)f(Y)] can be difficult if not impossible

E[f(a;+w;i-x)f(a; +w;-y)] wherei is arbitrary. Below we to solve explicitly and in full generality, depending on the
define two vectors andy which aid in finding the expected choice of f because the anti-derivative might be impossible
value. or extremely difficult to evaluate. However, givefy the



above integrals can be approximated numerically [25] f@revious sections. It can be shown that,
instances ofx and y in such a way that scales very well
) . ; . . . . e—x?/2I%]?)
computationally with the input dimension, which enters into E[f(X)f(Y) (/ F2(z) - da:>
the (trivial) computations of%X||, ||¥||, andx - y alone. Using V2 [|X]|
such an approximatiorf[f (X) f(Y")]approx ONE can obtain a >
. . . ) e—v2/ 29I
numerical approximation of[x* -y*] (refer to Equation (9)). / 2(y) - dy)
However, the approximation becomes less accurate therlarge & Thi \ I q V2 |y h|| definit ¢
p, m, ando, are. The conditions we imposed ¢gnin Section 2Proo T '25 can edeli’;13| y pmb}’i using the definitions o
IV-A ensure the existence of the improper integrals. Pgtiin E[f*(X)], E[f*(Y)] and Lemma 6.1. u
all together, we can write:

A. Variance Analysis
Ex"-y'] = poy +pmogE[f(X)f(Y)]  (12)  |n practice, given two input vectors, it is difficult to runeth
transformation for many independent trials and then take th
average inner products of the output vectors. In this seati®
derive bounds on the variance of the estimated inner product
_ in order to quantify the error injected for a single run of the
C. Properties ofE'[f(X) f(Y)] transformation.

. Case 1if -9 =0 Lemma 6.3:Let X and Y be two random variables as

defined earlier. The variance of the inner product between th
— This implies that X and Y are independent output vectorsc* andy* can be written as:
(since X and Y are Gaussian vectors). Hence

Next, we state some interesting propertiesFdf (X) f(Y)].

E[f(X)f(Y)] = E[f(X)IE[f(Y)]. Oleryy = 2p0y +pmojog(BIf(Y)?] + B[f(X)?)

. Case 2if fis an odd function ané-y > 0 orx-y < 0: +pmo {3pE[f(X)*f(Y)?] — pE[f(X)f(Y)]?

— It can be shown using the expression fary (z, y) +(m = DE[f(X)|E[f(Y)?]}

that: Proof: The proof is algebra intensive, so we omit it here.
Lemma 5.2:% -y > 0= E[f(X)f(Y)] >0 We plan to put it as a supplementary material. u
Lemma 5.3:% -y < 0= E[f(X)f(Y)] <0 The expression for the variance of the inner product between
The proofs follow from the symmetry of the Gausihe two output vectorsc® and y* has several interesting
sian distribution. properties. It is an increasing function of the dimensidpalf

the input space and the number of hidden unit$ for a neural
network implementation. These quantities are user-defineld
thus can be changed depending on the application. In many
situations it may be advantageous to chogse- m thus
increasing the expected variance in the distribution.gfibns
wherem = 1 or p = m may be suited for applications where
V1. BOUNDS ONE[f(X)f(Y)] the expected variance needs to be reduced. These parameters
provide a mechanism to tune the degree of distortion in the
In order to develop a bound ofi[f(X)f(Y)], we use the output signal while maintaining control over the bound on
following lemma. |E(f(X)f(Y)|. We discuss these tradeoffs more in the next
Lemma 6.1:|E[f(X)f(Y)]| < VE[f2(X)]E[f2(Y)] section.
Proof: For any\ € R,

Since computatiol[f(X) f(Y)] is difficult in full general-
ity, in the next section we develop a bound Bfif (X)f(Y)]
and analyze its properties.

VIlI. SPECIAL CASES

0 < E[A(X)-f(Y) In this section we study two special cases of the general
= MNE[f(X)?] = 2XE[f(X)f()] + E[f(Y)?] transformatioriy”, when: (1) is a sigmoid ortanh function (a
popular choice for nonlinear mapping), and {23 an identity

The above is quadratic in and because it is always non- function making the resulting” linear,

negative, it has one root or imaginary roots. Thus, the dis-

criminant A. f = tanh function

(—2E[f(X)f(V)])* = 4E[f(X)YE[f(Y)?] <0 In this section we analyze the propertiesfik* - y*] when

af is a sigmoid or hyperbolic tangentafih) function. Our
choice of f = tanh is not arbitrary; it makes transformatign
resemble that of a two-layer neural network, a tool widelydis
|E[f(X)f)]| < VE[f(X)2]E[f(Y)?] in data mining and machine learning for learning nonlinear
relationships from the data. With such a substitutidntakes

" the following form:
The following lemma (Lemma 6.2) shows the bound on

E[f(X)f(Y)]. H(x) tanh(A + Wx)
Lemma 6.2:Let X, Y, X and § be as defined in the x* T(x) = B+ QH(x)

which upon rearranging terms and taking the (positive) sgu
root of both sides becomes




However, for the results here to describe such a trainedaheudsing a similar argument, it can be shown that,
network, one must assume that the weights are indeed indepen ( 1 ) ) 1
o)+l o (o) - (— o]
71 (31

dent and normally distributed with a mean of zero. Weights a?(tanh*(Y)] < 2@

) : ; 1711
assumed to be normal in much research in this area as shomrése results can now be combined to get the fi

in [26] and [27]. Other researchers have shown empiricall sl

that learning neural networks in high noise situations ezl | r}/al b02und of |E[}§ vl N | Eftanh(X) tanh(Y)]] <

to nearly linear networks [28] E[tanh®(X)]E[tanh”(Y")] using Lemma 6.2 and the expres-
' sions for E[tanh?(X)] and E[tanh*(Y)].

Even with the substitutionf(z) = tanh(x) in Equa-
tion (12), evaluation ofF[tanh(X) tanh(Y)] in closed form
is still intractable due to the absence of anti-derivativsnce
we use the bound presented in Lemma 6.2 to gain insight into
E[tanh(X) tanh(Y')]. Let us first evaluaté®[tanh?(X)]. By
definition,

anh(Y)]|

SR
S

i

| Eftanh(X)

; 1\
i

Bltant® (X)) = [ " ()
tan = tanh™(z) - ————dx

e V2 ||X]]
Unfortunately, an anti-derivative does not exist even fus t
function. We approximate theanh function with a linear

function that takes on the valuesl and1 far to the left and , ,
right of the origin, respectively, and has a slope of cortstan F19uré 5 shows the bound di[tanh(.X) tanh(Y)]| with

positive value in between. For simplicity we make this slop\éariation of||%|| and||y]. By _taking appropriate limits, it can
tangent to the slope of th¢ function at the origin, which be shown that the bound lies between 0 and 1. When both

|%|| and |||l are smalli.e. close to the origin, we know that
the expected inner product of their output should be close
to 0 as well. The bound is a good approximation when we
are close to the origin but becomes crude as we move further
tanh(X) ~ W(X) = —1- X(—oo,—1) T Z - X[=1,1] T 1 - X(1,c) away from the origin. This bound gives a quantitative measur
wherey is the indicator function. Figure 3 shows the origina(l)f privacy and is relatgd 10 the_ probgblllty of.a successful
. L : ._“attack given the data with no additional information. Whem w
tanh function, the approximation to it and the step function. . . .
. Operate in a region far from the origin, the bound tells us tha
It is easy to see that, . T
the maximum expected value of the output distribution iselo
U(X)? =1 X(coo,—1) + 2% X1, + 1+ X(1,00) to 1. This situation is the generalized version of the imuit
described in Section IV-C and Figure 3. In that simplified
example, the higher the slope, the less invertible the fangct

Fig. 5. Plot of the bound ohF[tanh(X) tanh(Y")]| vs. ||X|| and ||¥]|.

means the slope of our approximation to be 1 ojet, 1]
and zero otherwise. Letting (X ) denote the approximating
function,

Denotinggx (z) as the marginal distribution ok we get,

Eftanh2(X)] = /°° tanh2(z) - gx (z)dz < /°° W(X)2 - gx(z)de and therefore the higher degree of privacy. Note that with a
—oo —oo finite (but large slope) with enough samples of inputs and
— 2/:1!])( (x)dz + /711 22 - gx (a)da corresponding outputs and under low-noise conditionsjlit w

be possible to invert the map. However, the complexity of

Rl this inversion increa;es dramatigally with the use of a full

€ de — (_L) neural network architecture as discussed here. We therefor
oo V27X (1%l take the probability of a successful attack given the datzeto

where®(-) is the CDF of a standard normal distribution. FOPropomonaI ol
evaluating Term 2, we evaluate the following integral.

Term 1=2
tanh(X) tanh(Y)]|.

B. Linear Transformation

—z2/2|%|)? S112 —x2/2|%])?
/Ie (e de = — % = /D 4 o The second transformation that we study is a linear trans-
formation. Linear transformations have been widely stddie
1 ! o w2/l in the form of random projection, multiplicative perturimet
Term2 = —— 2% e/ CIEID) gy ol ;
V2T |%| [/_1 } [5][20][3] where the output is linearly dependent on thetihp
_ Il (6—1/<2\\ﬁ||2> +e—1/(2H>‘cH2)) x" =T+ Rx
var 1 1 whereT andR are random translation and rotation matrices.
+ %7 [cb (7> - <—T>} In order for our transformatiory” to be linear, we assume
Il I that f is an identity functioni.e. f(z) = x, Yz € R. Unlike
Combining the results, the previous section, in this section we show how a closed
, 1 L 1 1 form expression folE[x* - y*] can be developed for such a
Eltanh™(X)] < 2 (‘m) +IIx {‘1’ (m) - ( m)} transformation.



Using the definition ofX andY, it is easy to show that, invertible either functionally, due to randomization oétbut-
B P put, or because of prohibitively high computation cost.Ha t
Ef(XOfY)] = EXY] =%y past, researchers have analyzed the effects of randoarizi
a means of privacy protection and developed several séphist
cated schemes to undo the randomization thereby recovering

Sincex = [oux 04" andy = [ouy od]"

o0 — 42 2 . o o
Xy =o,(xy)+o, either the original data or a distribution. We present a ggne
Combining these results, we have: methodology explaining _vvhy rar_1domization is breakable and
) ) propose a stronger functional privacy guarantee based on no
Ex"-y"] = poy +pmo EIXY] invertibility of functions. Note that the privacy guaraageof
= pot +pmg§ (X-¥) any linear orthogonal transformation (such as in [5] and [6]

holds true for our transformation as well.
Since our privacy model is related to the concept of function
This equation shows that for a linear transformation, tlmein invertibility, we first define an invertible function.
product of the output vectors is proportional to the inner Definition 8.1 (Invertible function)A function f : D — R
product of the input vectors. In other words, the distanc@Sinvertible iff (i) it is one-to-ong(injective) i.e. ¥(dy, ds) €
are preserved on average (up to scaling and translatiom. T, f(d,) = f(dy) = di = ds, and (ii) it is onto (surjective)
result is in-line with what some other authors have reported. /- ¢ R, 3d € D, such that- = f(d).
elsewhere [3][5]. In order to diminish the probability of inverting a function
Let us investigate the quality of the bound for this transfoand thus attack a privacy preservation scheme, the function
mation. Substitutingf(X) = X and f(Y) = Y, in Lemma must be such that there exists a many-to-one mapping from
6.2, we see that the integrals af§X | and E[Y?] respec- the domain of the function to the range of the function. Irs thi
tively. Now, sinceX ~ N(0,|%||) andY ~ N(0,|[7]°), situation, given the output, it would be difficult or impdsi&
E[X?] = |%|* and E[Y?] = ||y||°. Thus, to map back to the original data space. In the event that
ST only the outputs are provided without the inputs this resers
Beat[XY] < 1% 151 mapping would be made more difficult. Below we formally
where E.,; denotes the estimated value of the expectatiodefine this notion of privacy.
Therefore we can write the following expression for the iun  Definition 8.2 (Privacy preserving transformationk
transformation (or a functiorJ is privacy preserving if, for
any datasetD, the composition transformatiod (7 (D))

= poj+ pmcrgcrg + pmagoi (x-y)

Elx*-y*] < poj+pmo |IX] 3]

where, does not giveD backi.e. T-Y(T(D)) # D.
Therefore given the outpdt(D) and T it is impossible to
%] = /o2 (IIx]*) + o2 get D back.
Al 5 2 5 The idea of using non-invertible functions for privacy
191 =veudlyl™) + o preservation is not new; it has been used successfully drus f

Note that the true value off[x* - y*] and the estimated in the field of security and cryptography [17][29]. The Hash
value differ 0n|y ing, the ang|e betweei and 5} Figure 6 functions such as SHA and MD-5 were developed with the
shows a plot of E[x* - y*| as ¢ varies. For all the figures, Pasic idea that no polynomial time algorithm exists for firgi
the circles show the true variation df[x* - y*| vs. 6. The the reverse mapping which will break the encryption. To the
squares represent the bound. Note that for all the figures, ffst of our knowledge, this concept has not yet been explored
bound correctly represent the inner-product only widen- in the context of privacy preserving data mining. In the past
0,+2m, 47, . ... The three figures demonstrate the effect oi¢searchers have only analyzed the situations in which the
the output for three values dfft|| and ||y|. As can be seen, transformation" is either random multiplicative or additive
the bound is a good approximation of the true value whih noise or both. Mathematically, both of these transfornmatio
and ||y are small. are invertible and thus are not privacy preserving. Thigtla

has been bolstered in recent years by the development of
sophisticated techniques for thwarting these transfaomat
VIIl. PRIVACY ANALYSIS AND DISTANCE PRESERVATION  such as in [2] and [3]. It is fairly straightforward to showath
FORANOMALY DETECTION our non-linear non-invertible distortion technique isilieat
i _ . to such attacks. Of course, privacy comes at a price — higher
The essence of perturbation-based privacy preservatlonpmacy decreases the accuracy.

the context of data mining is that if a transformed datasetData privacy usually comes at a price. Utility or usefulness

or quer.3t/)lrefult IS prciwd(ta(:hto a_u;erl it sr:ouldfbe dg'ggtt %%t the data is often lost during privacy preservation using
IMpossIble 1o reconstruct the onginal, untransiormeas perturbation or distortion schemes. For example, congfder
While several methods have been used to address this 'beuetrtansformation'

notion of function invertibility has not been used in thiswbext
in the past. Essentially, if one produces a sef\obperations
04,04, ...,On, and passes a data set through those operatioBg, Definition 8.2, this transformation is privacy presexyin

privacy will be preserved if the chaify (On_1...(01)) isnot However, since all the data is mapped to a single bit, it is

iR = {0,1}.
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Fig. 6. Variation of the outpuE[x* - y*| with respect tod (in radians), the angle betweénandy. Circles represent the true output and squares represent
the bound. For all figures, the bound is independent.dfor a fixed||%|| and ||y ||, actual output oscillates and equals the bound onl§ at0, £2x,...,.
As ||%X|| — 0 and ||§|| — 0, the actual value approaches the estimated value. The bsuredy tight whenk andy are close to the origin.

not directly clear how important the data will be for data the privacy guarantee is high for all outliers. This
mining purposes. This tradeoff can be controlled easilyun o is important since outliers may be specific to an
framework by changing the slopé)(of the non-linear function airline company, and mapping all outliers to a single
used. In the remainder of this section we discuss how our entity may preserve privacy while still allowing their
data distortion scheme offers data utility in the case ofi@ut detection as long as they are away from the non-
detection. outlier data points.

In this paper we have used the definition of outliers as in 3) x andy are outliers
[30] and [31]. By definition, distance based outliers arestho
for which:

. there are fewer thap other points at a distance df dist™ (7 (x), T (y)) =~ dist(c,c) = 0

« the distance (or the average distance) to khaearest

neighbors are the greatest.
Note that the crux of all these computations use a distance
metric defined on the input space. Specifically, let

« In this case,

which implies that all outliers approximately get
mapped to the same points. Since we are not in-
terested in distinguishing the outliers, this mapping
is acceptable. Moreover, this ensures that giveih
dist : R" x R” - R, dist*: R? x R? R is impossible for an attacker to figure out if it came
. _ from x or y (one-to-many mapping).
be a distance measure on the input and output Space reeferring back to Figure 6 we see that for a linear trans-
spectively, which computes the Euclidean distance betw mation, the quantityZ[x* - y*] easily bounds the relative
two vectors_x and_y. Now three cases can occur after th'f)ositions of the original input vectors, particularly whitrey
transformation (usinganh .as the non-linearity): are close to the origin. This implies, regardless of the neatu
1) x andy are not outliers of the linear transformation, it will always be possible & r
« In this case, identify some important properties of the data set if those v
_r T tors lie close to the origin. However, as they move away from
dist™(7(x), T{y)) ~ dist(x, ) the origin, the actual variation in the expectation sindaby
assumingx andy lie close to the origin and the oscillate under the bound. Because the integral needed to
tanh function is linear in this region. In this casecomputeE[x*-y*| is intractable for nonlinear transformations,
the distances are approximately preserved. The pwe can only analyze the bound given in Figure 5 and see
vacy protection is typically based on linear randomthat the transformation becomes highly nonlinear and fheze
ization (rotation and translation) and therefore leskighly private in the situation whet®[x*-y*| is close to unity.
In our scenario this is acceptable since the normal
operating conditions are similar for many airline

companies and hence the lesser privacy guarantee hi i q h lity of i
for these data points may be acceptable. In this section we demonstrate the quality of our non-linear

2) x is an outlier whiley is not transformation in preserving the inner-product among the
hi Y feature vectors. We provide experimental results on a plybli
« In this case, available high-fidelity aircraft engine simulation data¢€-
dist* (T (x), T (y)) =~ dist(c,y). MAPSS) and a proprietary aviation dataset (CarrierX).

IX. EXPERIMENTAL RESULTS

wherec is a constant. Note that the distances are ) )

not preserved. However, with a proper choice df Simulation Environment and Dataset

threshold, we can distinguish betweerandy. In Our experimental setup uses a distance-based outlier-detec
this case, given, it is impossible to findx. This tion algorithm Orca developed by Bay and Schwabacher [32]
is because the transformation is non-invertible sincey test the quality of distance-preservation of our tramsto

x, being an outlier, is far away from the origin. Thudion. Orca assigns an anomaly score (between 0 and 1) to
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each point in the dataset based on its distance to its nearest

neighbors. The higher the distance, the higher the score. Ou o n :(L)i::ggralljistortion
data distortion technique preserves distances if the data i 508

close to the origin, and distorts them otherwise. Therefore go.&:

distance-based outlier detection technique should be table 2047»

detect outliers under our potential non-linear transfdioma 2

Orca is written in C++ with a wrapper written in Matlab. The <02

default value for the distance computation was chosen as the 0% 100 200 300 400 500

average distance to five nearest neighbors. All our sinariati Indices
were run on a 64-bit 2.33 GHz quad core dell precision 690

; ; ; ; «Flg. 7. Plot of anomaly scores of original CMAPSS datasear)(sand
deSktOD running Red Hat Enterprise Linux version 5.4 hav"i': nsformed datasets using linear (diamond) transfoomadis produced by

2GB of physical memory. a distance-based outlier detection technique Orca[32%.4Fhxis shows the
In our experiments we report thdetection rate By detec- indices of the top 500 anomalies as found by Orca. The dianmarkers

tion rate we mean the percentage of outliers which are pfgpw the anomaly scores of the same 500 indices after thsfdramation.
served even after the transformation. We repeat this exeet
several times and report the mean and the standard deviation
of the detection rate.

The first dataset is simulated commercial aircraft engine
data. This data has been generated using the Commercial Mod-
ular Aero-Propulsion System Simulation (C-MAPSS) [33].
The dataset contains 6,875 full flight recordings sampled at
1 Hz with 29 engine and flight condition parameters recorded
over a 90 minute flight that includes ascent to cruise at
35000 feet and descent back to sea level. This dataset has
32,640,967 tuples. Interested readers can refer to thaselat
at DASHIink3. Fig. 8. Plot of anomaly scores of original CMAPSS datasear)sand

: : : ot sformed datasets usingnh (diamond) transformation as produced by
The second dataset is a real life commercial aviation datagé?istance-based outlier detection technique Orca[329.zFhxis shows the

of a US regional carrier (CarrierX) consisting of 3,573 fliglh  indices of the top 500 anomalies as found by Orca. The diamoackers
Each flight contains 47 variables. Out of these 39 are reahow the anomaly scores of the same 500 indices after thsforamation.

valued (continuous) attributes while the remaining 7 ae di
crete (binary). In our previous study (not reported in ttaper)

we have seen that there are several anomalies in this dataset
detectable by Orca. We hope to detect a high percentage
of those outliers even after our non-linear distortion. ikinl
C-MAPSS dataset which is public, the CarrierX dataset is
proprietary and hence there is strong motivation to protect
data privacy. Note that our technique only distorts the-real
valued attributes. However the code works even if we include

discrete attributes. 0 100 200 300 400 500
Indices

S s Original
» Non-linear (tanh) distortion

Anomaly score
o O O o

o N Bh o> ek

0 100 200 = 300 400 500
Indices

[+ * Original
+ Non-linear (squared) Distortion

Anomaly score
o O O o

od s o> ok

Fig. 9. Plot of anomaly scores of original CMAPSS datasear)sand
B. Performance Results transformed datasets using squared (diamond) transfiormas produced by

. . . . . _a distance-based outlier detection technique Orca[32%.zFhxis shows the
In this section we show the quality of outlier detectiofhgices of the top 500 anomalies as found by Orca. The diamarkers
before and after the transformation. For all the experisiem¢ show the anomaly scores of the same 500 indices after thefdramation.

have preprocessed the datasets by transforming each leariab
independently to lie between 0 and 1.
1) CMAPSS DatasetFigure 7 shows the effect of "neardataset, we used the following transformation:
distortion on the outcome of the anomaly scores. For this
experiment, we ran Orca with the default parameters on the T(x) =B+Q x (A +Wx)

CMAPSS dataset. The output of the algorithm is a set

| : h point. We th t th it gs'!ng this transformation, we again run Orca on this distbrt
anomaly scores for each point. We then sort these points aset. The diamond markers in Figure 7 show the normalized
select the top 500 among them. The stars in Figure 7 shg1

L Womaly scores of the same 500 outliers in the distorted
the scores output by Orca on the original dataset after th dtaset. As can be seen in the figure, there is a high degree of
have been normalized between 0 and 1. In order to distort '

relation among the two scores. Since linear transfaomat
Shttps: // dashl i nk. ar c. nasa. gov/ dat a/ preserves (_1|stances, for any outlier point, fjlsFance takAts

c- mapss- ai rcraft - engi ne- si nul at or - dat a/ nearest neighbors are also preserved. This is why we see
“4We cannot release the name of the carrier due to the datagtagieement very similar anomaly scores for the two experiments. Notice
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Fig. 10. Plot of detection rate of CMAPSS vs. different pagtens. The reference set is the top 500 outliers assignedrtr. @/e refer to detection rate
as the percentage of outliers in that list which are coryddntified after the transformation. The results are amames of 50 independent trials.

that the variation in the anomaly scores is higher than thidn, we get a mean detection rate of 78.72% and with 5.82%
of the original data due to the random linear projectiovariation. Figure 10(b) gives a plot of the mean and one
These variations become more emphasized under nonlingtmndard deviation estimate of the variation in detectaie.r

transformations. Finally, in Figure 10(c) we give an idea of the amount of
Figure 8 shows the effect of nonlinear distortion on thgrivacy that is preserved as the range of the data is varied.
CMAPSS dataset using thtanh function. As before, the star Using our bound in Lemma 6.2, we see that if the data lies
markers represent the outlier scores of the top 500 anasnalifose to the origin (range of 0 to 0.1), the privacy is very.low
on the original dataset. For the distortion, we have used thg the range of the data is increased, the privacy is inccease
following transformation: This explains our hypothesis that the nearer the data iseto th
T(x) = B+ Q x tanh(A + Wx) origin, the lower the dgta privacy and vice-versa. Theesfor
order to have more privacy, one might map the data to a large
The diamond markers show the anomaly scores of the samage in which case, as argued, non-invertibility presedata
500 outliers after distortion. In this case, there is morei-de privacy.

ation in the anomaly scores compared to the linear distortio 2) CarrierX Dataset: We applied two types of transfor-
case. Notice that although the transformation providesya himation on this dataset. Figure 11 shows the outlier detectio
degree of privacy compared to the linear transformatioe, thesylits using a linear transformation. As before, the btaess
highest scoring anomalies are still discovered by the allomaefer to the actual top 500 anomalies while the red diamonds
detection algorithm. This result supports the intuitiomldhe  refer to the scores of the same 500 points after transfoomati
derivations shown earlienonlinear transformation can allow \we noticed, that on average the detection rate is 88% with
anomalies to pass through a privacy preserving transformg- standard deviation of 1.3% for this linear transformation
tion. Similarly, Figure 12 shows the anomalies detected wiagih

We have also tested a quadratic nonlineatigy:f(z) = a?: _ non-linearity is used. In this case, we have observed a mean
T(x) = B+Qx (A+Wx)?. Figure 9 shows the effect of this getection rate of 68% with a standard deviation of 1.7%.
transformation. In this case as well, there is a good cdiogla Therefore for all these experiments we see that our dis-

amonlgl; th? f[rue. almd trar:lsforhmedf Ohlj;“irs‘ Noft|ce that tIf'('?rtion technique provides a good detection rate for déffier
overall variation is lower than that of thanh transformation. types of non-linearity used.

In this case the privacy preservation is high compared &alin
distortion due to the fact that the nonlinear function is non
invertible.

Our next experiments analyze the variation of the detection
rate and privacy preservation using this dataset and:thk

* Original
¢ Linear Distortion

=
* ]

. . . . . ! $0.8
function. First, we have experimented with an increasiogesl g
of the transformation (similar to Figure 3). As shown in Figu 2.0.67
10(a), the detection rate is very sensitive to the slope — it g
. . c 0.41
drops to approximately 4% for a slope of 1.43. This is as =

expected since with increasing slope, more of the data gets

mapped to the constant regions, making it extremely difficul ‘ ‘ ; ‘ : ‘

for the outlier detection algorithm to extract the anomalou 0 100 ZOI% dice?éoo 400 500

patterns. The privacy using such high slope transformasion

expected to be very high. Fig. 11.  Plot of anomaly scores of original CarrierX datagsar) and
For this dataset we also show the detection rate whtansformed datasets using linear (diamond) transfoomatis produced by

diferent types of distorlion are used. AS shown in FigubdSice basec culer seecion echnue Oralodh T o e

10(b), for linear distortion, the mean detection rate i28% show the anomaly scores of the same 500 indices after thefdramation.

with a standard deviation of 2.36%. Similar results for sgua

distortion, are 87.48% and 2.11%. Finally, usitegnh func-
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Fig. 12.  Plot of anomaly scores of original CarrierX datagstr) and [14]

transformed datasets usingnh (diamond) transformation as produced by
a distance-based outlier detection technique Orca[32%.Fhxis shows the

indices of the top 500 anomalies as found by Orca. The dianmarkers [15]
show the anomaly scores of the same 500 indices after thefdramation.
[16]
[17]
X. CONCLUSION
[18]

We have shown a general method for computing the bounds
on a nonlinear privacy preserving data mining techniqué wi
applications to anomaly detection. We have also shown t
connection between the invertibility of a function and pgy [20]
preservation, and have computed rigorous bounds on the
relationship between the distances of input vectors anésxhe [y
pected distances of the output vectors. These nontriviahtie®
show that privacy preservation increases as the input rect ]
move further from the origin. We have also demonstrated that
for real-world applications, such as engine health moimitpr
the nonlinear transformation approach allows anomalies &
pass through the transformation while maintaining a high de
gree of privacy. We have given a novel method for quantifying4]
privacy due to a general nonlinear transformation and have
shown that this quantity can be treated as being propoitiops
to probability of a successful attack. We have made all the
source codes of this work and the supplemental informatii%]
available at dashlink [34].

19
J

27
ACKNOWLEDGMENTS [27]

This work was supported by the NASA Aviation Safet
Program, Integrated Vehicle Health Management Project. \We
would also like to thank the anonymous reviewers for their

excellent comments and suggestions. (29]
REFERENCES (30]
[1] A. Narayanan and V. Shmatikov, “Robust De-Anonymizatiof Large [31]
Sparse DatasetsProc. of IEEE SSP’08pp. 111-125, 2008.
[2] K. Liu, C. Giannella, and H. Kargupta, “An Attacker’s Vieof Distance
Preserving Maps for Privacy Preserving Data Mining,”"Hroceedings [32]
of PKDD'06, Berlin, Germany, 2006, pp. 297-308.
[3] K.Chen, G. Sun, and L. Liu, “Towards Attack-Resilient @deetric Data
Perturbation,” inProceedings of SDM’082008, pp. 78-89. [33]
[4] L. Sweeney, %k-anonymity: A Model for Protecting Privacyfnterna-
tional Journal on Uncertainty, Fuzziness and KnowledgsduaSystems
vol. 10, no. 5, pp. 557-570, 2002. [34]

[5] K. Liu, H. Kargupta, and J. Ryan, “Random Projection-8a&sMul-
tiplicative Data Perturbation for Privacy Preserving Disited Data
Mining,” IEEE TKDE vol. 18, no. 1, pp. 92-106, January 2006.

S. Mukherjee, Z. Chen, and A. Gangopadhyay, “A Privagyserving
Technique for Euclidean Distance-based Mining Algorithmsing

Fourier-related TransformsyLDB J, vol. 15, no. 4, pp. 293-315, 2006.

(6]

12

S. T. Sarasamma, Q. A. Zhu, and J. Huff, “Hierarchical Koénen net
for anomaly detection in network securitfEEE SMC Part Bvol. 35,
no. 2, pp. 302-312, 2005.

V. Barnett and T. LewisQutliers in Statistical Data John Wiley, 1994.
D. Hawkins, Identification of Outliers Chapman and Hall, 1980.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detect: A
Survey,”ACM Computing Surveys (to appea009.

“Voluntary Aviation Safety Information-Sharing Pregs.” [Online].
Available: www.faa.gov/library/reports/medical/oarmtteeports/2000s/
media/200707.pdf

A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkithramaniam,
“¢-diversity: Privacy beyond-anonymity,” TKDD, vol. 1, no. 1, 2007.
N. Li, T. Li, and S. Venkatasubramaniani-¢loseness: Privacy beyond
k-anonymity and¢-diversity,” in Proceedings of ICDE’072007, pp.
106-115.

J. J. Kim and W. E. Winkler, “Multiplicative Noise for Mskking
Continuous Data,” Statistical Research Division, U.S. éur of the
Census, Washington D.C., Tech. Rep. Statistics #2003-pfi] 2003.
R. Agrawal and R. Srikant, “Privacy-preserving DatanMg,” in Pro-
ceedings of SIGMOD’Q0May 2000, pp. 439-450.

J. Vaidya, C. Clifton, and M. ZhWRrivacy Preserving Data Miningser.
Series: Advances in Information Security. Springer, 20@8, 19.

A. C. Yao, “How to Generate and Exchange SecretsPiioceedings of
FOCS’'86 Canada, October 1986, pp. 162-167.

J. C. Silva and M. Klusch, “Privacy-Preserving Discovef Frequent
Patterns in Time Series,” ifProceedings of Industrial Conf. on Data
Min. '07, 2007, pp. 318-328.

C. Dwork, “Differential Privacy,” in Proceedings of ICALP’06vol.
4052. Springer, 2006, pp. 1-12.

H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar, “On Bvézacy
Preserving Properties of Random Data Perturbation TeabgjY in
Proceedings of ICDM'03Melbourne, Florida, November 2003, p. 99.
A. Teoh and C. T. Yuang, “Cancelable Biometrics Redigra With
Multispace Random Projections|EEE SMC, Part B vol. 37, no. 5,
pp. 1096-1106, 2007.

S. Warner, “Randomized Response: A Survey Techniqu&liminating
Evasive Answer Bias,"Journal of American Statistical Association
vol. 65, no. 63—-69, 1965.

A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrkeritacy Pre-
serving Mining of Association Rules,” iRroc. of KDD'02 2002, pp.
217-228.

A. Evfimievski, J. Gehrke, and R. Srikant, “Limiting Raicy Breaches
in Privacy Preserving Data Mining,” ifProc. of PODS’03 2003, pp.
211-222.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. Rarfhery,
Numerical Recipes in C (2nd ed.): The Art of Scientific Compgut
New York, NY, USA: Cambridge University Press, 1992.

I. Bellido and E. Fiesler, “Do Backpropagation Traingdural Networks
Have Normal Weight Distributions?” irProceedings of ICANN’'93
Amsterdam, Netherlands, September 1993, pp. 772-775.

T. Szabo, L. Antoni, G. Horvath, and B. Fehér, “A Filarallel Digital
Implementation for Pre-Trained NNs,” iRroceedings of IJCNN’00-
Volume 2 Como, Italy, July 2000, p. 2049.

] B. Lebaron and A. S. Weigend, “Evaluating Neural Netk@redictors

by Bootstrapping,” Computer Science Department, Unitersf Col-
orado at Boulder, Tech. Rep., 1994.

R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Qiiting
Digital Signatures and Public-key Cryptosystem§ommun. ACM
vol. 21, no. 2, pp. 120-126, 1978.

E. M. Knorr, R. T. Ng, and V. Tucakov, “Distance-based ti@us:
Algorithms and Applications ¥LDB, vol. 8, no. 3-4, pp. 237-253, 2000.
S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient Aljoms for
Mining Outliers from Large Data SetsSIGMOD Reg.vol. 29, no. 2,
pp. 427-438, 2000.

S. D. Bay and M. Schwabacher, “Mining Distance-basedli€s in
Near Linear Time with Randomization and a Simple PruningeRuh
Proceedings of KDD'03 New York, NY, USA: ACM, 2003, pp. 29-38.
D. K. Frederick, J. A. DeCastro, and J. S. Litt, “User'sii@e for the
Commercial Modular Aero-Propulsion System SimulationM@PSS),”
NASA Technical Manuscriptol. 2007-215026, 2007.

“Dashlink resources.” [Online]. Avail-
able: https://dashlink.arc.nasa.gov/topic/
privacy-preserving-outlier-detection-through-randaonlinear-da/



