
Lecture 25: Interrupt Handling and Multi-Data
Processing

Fall 2023

Jason Tang

1

Topics

• Interrupt handling

• Vector processing

• Multi-data processing

2

I/O Communication

• Software needs to know when:

• I/O device has completed an 
operation

• I/O device had an error

• Software can either:

• Repeatedly poll device 
(using programmed I/O)

• Wait for I/O interrupt notification

3Operating System Concepts, 
Silberschatz, Galvin, and Gagne

Data Transfers

• Programmed I/O is best for frequent, small data transfers

• Interrupt driven is best when transfers are infrequent, and when a dedicated
DMA engine handles transfers of large blocks of data

• Use PIO when the amount of data to transfer is less than overhead of
creating and initiating a TxD

4

Programmed I/O Interrupt Driven

Advantage Simple to implement,
processor in complete control

Main software keeps running
while data actual transfers

Disadvantage No software processing while
waiting for I/O response

Device must raise interrupt,
processor must detect and

handle interrupt

Interrupt Handling

• Hardware sends an electrical signal on a physical interrupt line

• Processor detects that signal and translates it into an interrupt request (IRQ)
number

• Processor then jumps to interrupt handling code

• Software searches through its interrupt request table (stored in RAM) for entry
or entries that match the IRQ

• If found, software jumps to the registered interrupt service routine (ISR)

• If not found, software ignores interrupt

5

Linux Kernel IRQ Handling

6

Hardware PIC

On x86, see /arch/
x86/kernel/irq.c

On x86, IRQ table stored in
vector_irq[] array

Linux Kernel Development, Love

Programmable Interrupt Controller

• Hardware component that 
collects signals from 
peripherals

• Contains multiple enable 
registers, one per interrupt 
source

• PIC forwards enabled interrupts to the processor

• PIC ignores masked interrupts

• Can also prioritize output, when multiple devices raise interrupts
simultaneously

7ASB Example AMBA SYstem Technical Reference Manual, §4.1.2

8259 PIC

• Original programmable 
interrupt controller for 
Intel-based computers

• Has 8 inputs, organized by 
priority

• When an unmasked input 
is raised and an no other 
interrupt is pending, then 
PIC raises interrupt line to CPU

• Superseded by Advanced Programmable Interrupt Controller (APIC)

8http://www.thesatya.com/8259.html

Message Signaled Interrupts

• Newer alternative to line-based interrupts

• Instead of having dedicated wires to trigger interrupts, a device triggers
interrupt by writing to a special memory address

• Number of interrupts no longer constrained by size of PIC

• Operating system does not need to poll devices to determine source of
interrupt, when multiple devices are on a shared interrupt line

• Used by modern buses, like PCIe

9https://docs.microsoft.com/en-us/windows-hardware/
drivers/kernel/using-message-signaled-interrupts

Parallel Processing

• Modern computers are multiprocessors, to simultaneously execute multiple
programs

10

Processor

Cache Tag
and Data

Memory-I/O Bus

Snoop
Tag

DRAM

Processor

Cache Tag
and Data

Snoop
Tag

Processor

Cache Tag
and Data

Snoop
Tag

Disk
Controller

Network
Interface I/O Bridge

MMU MMU MMU

Multiprocessors

• Multicore systems common in modern computers

• Improvement in throughput by adding more cores is limited by Amdahl’s Law

• Modern software can be written to take advantage of multiple processors

11

A4 A8 A10X Fusion A12 Bionic A15 Bionic

Device iPhone 4 iPhone 6 /
6+

iPad Pro
(2nd Gen)

iPhone XS /
XR iPhone 13

CPU Core(s) Cortex-A8 Typhoon Hurricane /
Zephyr

Vortex /
Tempest

Avalanche /
Bionic

CPU Freq 0.8 GHz 1.1 GHz 2.36 GHz 2.49 GHz 3.2 GHz

Cores 1 2 3 / 3 2 / 4 2 / 4

Parallel Processing

• Many scientific and engineering problems involve looping over an array, to
perform some computation over each element

• Repeatedly fetching the same instruction wastes a lot of cycles

• More efficient to have processor automatically perform operation across a
vector of data

12

for (i = 0; i < 64; i++)
 a[i] = b[i] + s;

// x0 = s, x1 = i,
// x3 = a, x4 = b
top:
 ldr w2, [x1, x3]
 add w2, w2, w0
 str w2, [x1, x4]
 add x1, x1, 4
 cmp x1, #64
 b.ne top

Flynn’s Taxonomy

• Classification of computer architectures, based upon how the processor/
processors handle datum/data

• Instruction Stream: number of processing unit(s), executing instruction(s)

• Data Stream: number of data value(s) that the processing unit(s) are acting
upon

• Traditional single core system is SISD

13https://www.geeksforgeeks.org/
computer-architecture-flynns-taxonomy/

Instruction Streams
One Many

Data
Streams

One SISD MISD
Many SIMD MIMD

SIMD

• Single instruction that operates on multiple data, either stored in registers or
in memory

• Common on modern systems, to perform vector arithmetic:

• x86-64: MMX, SSE, SSE2, SSE3, SSSE3

• PowerPC: AltiVec

• ARM: NEON

• Fewer instructions to fetch, but requires more hardware

14

SIMD Subtypes

• “True” Vector Architecture: instruction specifies starting source and destination
memory addresses, and how many times to execute the instruction

• Pipelined processor still executes only one calculation per cycle

• Only one instruction fetch, but multiple cycles of execution, memory
accesses, and write backs

• Short-Vector Architecture: execute a single instruction across a few registers,
treating each register as containing multiple independent data

• Example: ARM’s NEON has 32 SIMD 128-bit registers, which can be
treated as 2x 64-bit, 4x 32-bit, 8x 16-bit, or 16x 8-bit integers (signed or
unsigned), or as 2x 64-bit or 4x 32-bit floating point values

15ARM Cortex-A Series Programmer’s Guide, §7.2

ARM NEON registers

• Extension to ARMv7 and ARMv8, intended to accelerate common audio and
video processing

• Performs the same operation in all lanes of a vector

16https://developer.arm.com/technologies/neon

ARMv8-A NEON Example

• ld1 loads 1 element to one lane of a SIMD register, st1 stores data from a
SIMD register

• .4s suffix means treat the register as having 4 single-precision floats

• fadd performs a vector floating-point add

17https://community.arm.com/android-community/b/
android/posts/arm-neon-programming-quick-reference

/* add an array of floating
 point pairs */
void add_float_neon2
 (float *dst, float *src1,
 float *src2, int count);

add_float_neon2:
 ld1 {v0.4s}, [x1], #16
 ld1 {v1.4s}, [x2], #16
 fadd v0.4s, v0.4s, v1.4s
 subs x3, x3, #4
 st1 {v0.4s}, [x0], #16
 bgt add_float_neon2
 ret

MISD

• Multiprocessor machine, executing different instructions upon the same
dataset

• Built for fault tolerance systems

• Example: Space Shuttle flight computer

• Otherwise, very rare

18

MIMD

• Multiprocessor machine, executing different instructions on different data
independently

• Most modern systems are some type of MIMD

• Subtypes based upon memory model:

• Centralized shared memory

• Distributed shared memory

19

Centralized Shared Memory MIMD

• Uniform Memory Access (UMA): Processors share a single centralized
memory through a single bus interconnect, with a snoopers

• Feasible for systems with few processors, when memory contention is
infrequent

20

Processor

Cache(s)

Memory-I/O Bus

DRAM

Processor

Cache(s)

Processor

Cache(s)

I/O

Processor

Cache(s)

Distributed Memory MIMD

• Physically distributed memory, to avoid memory contention given a system
with many processors, but [typically] no snooping between nodes

• Processor nodes can have some local I/O (clustering)

• Difficult to synchronize separate nodes

21

Interconnection Network

Processor +
Cache

Memory I/O

Processor +
Cache

Memory I/O

Processor +
Cache

Memory I/O

Processor +
Cache

Memory I/O

Processor +
Cache

Memory I/O

Processor +
Cache

Memory I/O

