ecture 25: Interrupt Handling and Multi-Data
Processing

Fall 2023
Jason Tang

Topics

* Interrupt handling

* Vector processing

- Multi-data processing

/O Communication

- Software needs to know when: ;
<« instruction execution —»
thread of execution § e Lo loRE

. d

» /O device has completed an ® |— data movement —» cata
operation CPU (*N)
» 1/0 device had an error =]% 3 DMA
% T § memory

« Software can either:

- Repeatedly poll device
(using programmed 1/O)

- Wait for I/O interrupt notification

Operating System Concepts,
Silberschatz, Galvin, and Gagne

Data Transfers

Programmed 1/O Interrupt Driven

Simple to implement, Main software keeps running

A - '
SREMELE processor in complete control while data actual transfers

Device must raise interrupt,
processor must detect and
handle interrupt

No software processing while

Dl EIiEe s waiting for 1/0 response

« Programmed 1/O is best for frequent, small data transfers

* Interrupt driven is best when transfers are infrequent, and when a dedicated
DMA engine handles transfers of large blocks of data

« Use PIO when the amount of data to transfer is less than overhead of
creating and initiating a TxD

Interrupt Handling

- Hardware sends an electrical signal on a physical interrupt line

- Processor detects that signal and translates it into an interrupt request (IRQ)
number

* Processor then jumps to interrupt handling code

- Software searches through its interrupt request table (stored in RAM) for entry
or entries that match the IRQ

- If found, software jumps to the registered interrupt service routine (ISR)

- If not found, software ignores interrupt

Linux Kernel IRQ Handling

On x86, |IRQ table stored in
vector_irql] array

handle_IRQ_event()

Hardware
generates an interrupt
yes
' ! processor interrupts s there an interrupt run all interrupt
C Hardware PIC) the kernel handler on this line? handlers on this line
1 1
interrupt controller
no
do_IRQ() return to the
On x86, see /arch/ ret_from_intr() ernel code
’ , that was
x86/kernel/irg.c interrupted

Processor

Linux Kernel Development, Love 6

Programmable Interrupt Controller

- Hardware component that Enable Set Set | —o Enable
collects signals from o
I ear
perlpherals Enable Clear
External Interrupt \ . Status
- Contains multiple enable |
: : Test Interrupt
registers, one per interrupt Raw Status
source Source Select Active LOW
: interrupt
Other Interrupt: output

Bit Slices:
- PIC forwards enabled interrupts 1o the processor

 PIC ignores masked interrupts

- Can also prioritize output, when multiple devices raise interrupts
simultaneously

ASB Example AMBA SYstem Technical Reference Manual, §4.1.2 7

8259 PIC

- Original programmable
iInterrupt controller for
Intel-based computers

- Has 8 inputs, organized by
priority

« When an unmasked input
IS raised and an no other
interrupt is pending, then

8259 internal block diagram

D0-D7 ===

Data bus
buffer

Read /
write
logic

Cascade
buffer /
comparator

SP/EN——

PIC raises interrupt line to CPU

INTA, INT
| 4 T
N Control logic
T =
E
R |- I
N
A In-service Priarity Interrupt
L register |<=> |resolver |<== [request |:
(ISR} register |:
B (IRR)
U
S

Interrupt mask register (IMR)

« Superseded by Advanced Programmable Interrupt Controller (APIC)

<—|R0O
<—|R1

<— |R7

http://www.thesatya.com/8259.html

8

Message Signaled Interrupts

- Newer alternative to line-based interrupts

* Instead of having dedicated wires to trigger interrupts, a device triggers
iInterrupt by writing to a special memory address

* Number of interrupts no longer constrained by size of PIC

» Operating system does not need to poll devices to determine source of
iInterrupt, when multiple devices are on a shared interrupt line

- Used by modern buses, like PCle

https://docs.microsoft.com/en-us/windows-hardware/

9
drivers/kernel/using-message-signaled-interrupts

Parallel Processing

{ Processor] [Processor } Processor

| | o

I I I

Snoop Cache Tag Snoop Cache Tag Snoop Cache Tag
Tag and Data Tag and Data Tag and Data

I I I I I I

Memory-I/O Bus

Disk Network .
DRAM (Controller) < Interface > <I/O Brldge>

- Modern computers are multiprocessors, to simultaneously execute multiple
programs

10

Multiprocessors

A8 A10X Fusion | A12 Bionic | A15 Bionic
. . iPhone 6 / iPad Pro iPhone XS/ .
Device iIPhone 4 B4 2nd Gen) XR iIPhone 13
Hurricane / Vortex / Avalanche /
CPU Core(s) Cortex-A8 Typhoon Zephyr Tempest Bionic
CPU Freq 0.8 GHz 1.1 GHz 2.36 GHz 2.49 GHz 3.2 GHz
Cores 1 2 3/3 2/4 2/4

* Multicore systems common in modern computers

- Improvement in throughput by adding more cores is limited by Amdahl’s Law

- Modern software can be written to take advantage of multiple processors

Parallel Processing

- Many scientific and engineering problems involve looping over an array, to
perform some computation over each element

// x0 = s, x1 = 1,
// X3 = a, x4 = Db
top:

for (1L = 0; 1 < 64; 1++) ldr w2, [x1, x3]
a[i] = bIil 4 o: » add w2, w2, w0
str w2, [x1, x4]
add x1, x1, 4
cmp x1, #64
b.ne top

* Repeatedly fetching the same instruction wastes a lot of cycles

« More efficient to have processor automatically perform operation across a
vector of data

12

Flynn’s Taxonomy

Instruction Streams

One Many
Data One SISD MISD

Streams Many SIMD MIMD

- Classification of computer architectures, based upon how the processor/
processors handle datum/data

- Instruction Stream: number of processing unit(s), executing instruction(s)

- Data Stream: number of data value(s) that the processing unit(s) are acting
upon

- Traditional single core system is SISD

https://www.geeksforgeeks.org/

13
computer-architecture-flynns-taxonomy/

SIMD

- Single instruction that operates on multiple data, either stored in registers or
INn memory

- Common on modern systems, to perform vector arithmetic:

» x86-64: MMX, SSE, SSE2, SSE3, SSSE3

 PowerPC: AltiVec

- ARM: NEON

- Fewer instructions to fetch, but requires more hardware

14

SIMD Subtypes

« “True” Vector Architecture: instruction specifies starting source and destination
memory addresses, and how many times to execute the instruction

* Pipelined processor still executes only one calculation per cycle

- Only one instruction fetch, but multiple cycles of execution, memory
accesses, and write backs

- Short-Vector Architecture: execute a single instruction across a few registers,
treating each register as containing multiple independent data

- Example: ARM’s NEON has 32 SIMD 128-bit registers, which can be
treated as 2x 64-bit, 4x 32-bit, 8x 16-bit, or 16x 8-bit integers (signed or
unsigned), or as 2x 64-bit or 4x 32-bit floating point values

ARM Cortex-A Series Programmer’s Guide, §7.2 15

ARM NEON registers

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15
128-bit NEON reqister
127 64 63
2 X 64-bit lanes 0
127 96 95 64 63 32 31
4 x 32-bit lanes 3 2 1 0
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15
8 x 16-bit lanes
127 112 111 96 95 80 79 64 63 48 47 32 31 16 15
16 x 8-bitlanes | 15 | 14 | 13 |12 | 11 |10 | 9 7 4 2

- Extension to ARMv7 and ARMvVS8, intended to accelerate common audio and
video processing

« Performs the same operation in all lanes of a vector

https://developer.arm.com/technologies/neon 16

ARMv8-A NEON Example

add float neon2:

. 1d1 {v0.4s}, [x1], #16
/* add an array of floating 1d1 {vl.4s}, [x2], #16
point pairs x/ fadd vO0.4s, v0.4s, vl.4s

void add_ float neon2 subs x3, x3, #4
(float *xdst, float *srcl, st1l {v6.4si [x0], #16

float *src2, int count); bgt add flo;t neo£2
ret

- 1d1 loads 1 element to one lane of a SIMD register, st1 stores data from a
SIMD register

« .4s suffix means treat the register as having 4 single-precision floats

- fadd performs a vector floating-point add

https://community.arm.com/android-community/b/
android/posts/arm-neon-programming-quick-reference

17

MISD

« Multiprocessor machine, executing different instructions upon the same
dataset

- Built for fault tolerance systems

- Example: Space Shuttle flight computer

« Otherwise, very rare

18

MIMD

« Multiprocessor machine, executing different instructions on different data
iIndependently

* Most modern systems are some type of MIMD

« Subtypes based upon memory model:

- Centralized shared memory

» Distributed shared memory

19

Centralized Shared Memory MIM

-

~

-

~

-

~

-

~

Processor Processor Processor Processor
\ ¢ J \ ¢ J \\ ¢ J \ ¢ J
Cache(s) Cache(s) Cache(s) Cache(s)

! ! ! !

Memory-I/O Bus
! !
(0)

DRAM
« Uniform Memory Access (UMA): Processors share a single centralized
memory through a single bus interconnect, with a snoopers

 Feasible for systems with few processors, when memory contention is
iInfrequent

Distributed Memory MIMD

Processor + Processor + Processor +
Cache Cache Cache
Memory (e > Memory (I/O > Memory (I/O >
Interconnection Network
Memory (I/O > Memory (I/O > Memory (1/O >
Processor + Processor + Processor +
Cache Cache Cache

* Physically distributed memory, to avoid memory contention given a system
with many processors, but [typically] no snooping between nodes

* Processor nodes can have some local I/O (clustering)

- Difficult to synchronize separate nodes

21

