
Homework 6
Due Wednesday 5/2/2018

1

2

Experimenting with Transactions - Objective

In this homework assignment you will experiment with
transaction handling in Python using the MySQL connector
library. This homework is worth 50 points.

Submit the following in Blackboard:
1. Your Python script
2. An image that is a screenshot of your print statements

after your Python script runs to completion

Requirements for all methods:
1. Each method should use a try/except/finally block.
2. In each method, the connection should be closed in the

finally block

3

Experimenting with Transactions - Part 1
Create a Python script that does the following:

1. Create a method that creates two account tables as follows:
a. Table 1

i. Name: “local_account”
ii. Attribute 1: “id int”
iii. Attribute 2: “amount decimal”

b. Table 2
i. Name: “remote_account”
ii. Attribute 1: “id int”
iii. Attribute 2: “amount decimal”

2. In that method, insert data into the tables as follows:
a. Table 1

i. Insert id = 1 and amount = 800.00
b. Table 2

i. Insert id = 2 and amount = 600.00

4

Experimenting with Transactions - Part 2
In the same Python script, write methods that attempt to transfer 100.00 dollars
from local account with id =1 to remote account with id=2 using two separate
update statements (the result of the updates should give us amounts that are
equal)

1. Create a method that performs these updates with Autocommit set to
“True”, print the records in both tables

2. Create a method that performs these updates with Autocommit set to
“True” but raise an error after the first update statement, print the records
in both tables

3. Create a method that performs these updates with Autocommit set to
“False” , issue a commit after the update statements, print the records in
both tables

4. Create a method that performs these updates with Autocommit set to
“False”, do not issue a commit at all, print the records in both tables

5. Create a method that performs these updates with Autocommit set to
“False” but raise an error after the first update statement, issue a commit
after the update statements and a rollback in the except block, print the
records in both tables

6. Print the default transaction isolation level used.

Methods to help you get started

##
#######GET CONNECTION
#######################################
def getConnection():
 return pymysql.connect(host='localhost',
 user='your_username',
 password='your_password',
 db='your_db')

5

Methods to help you get started

##
#######CREATE TABLES
#######################################
def createTables():
 connection = getConnection()
 connection.autocommit(True)
 try:
 with connection.cursor() as cursor:
 <your code here>
 finally:
 connection.close()

6

Methods to help you get started
##
#######DROP TABLES
#######################################
def dropTables():
 connection = getConnection()
 connection.autocommit(True)
 try:

 with connection.cursor() as cursor:
 sql="Drop table remote_account";
 cursor.execute(sql);

 sql="Drop table local_account";
 cursor.execute(sql);

 finally:
 connection.close()

7

Methods to help you get started
##
#######Show Records
#######################################
def showRecords():
 connection = getConnection()
 try:
 with connection.cursor() as cursor:
 sql = "SELECT * from remote_account;"
 cursor.execute(sql)
 result = cursor.fetchone()
 print("REMOTE ACCOUNT: " + str(result))

 with connection.cursor() as cursor:
 sql = "SELECT * from local_account;"
 cursor.execute(sql)
 result = cursor.fetchone()
 print("LOCAL ACCOUNT: " + str(result))

 finally:
 connection.close()

8

How to raise an exception in python

def doSomethingAndRaiseAnError():
 Do something….
 try:
 Do something...
 raise Exception(“My Exception”)
 Do something...
 except Exception as error:
 Do something….
 finally:
 Do something...

9

