
CMSC 461, Database Management Systems
Fall 2014

MySQL Views
& Comparing SQL to NoSQL

Jennifer Sleeman http://www.csee.umbc.edu/~jsleem1/courses/461

These slides are based on “Database System Concepts” book
and slides, 6th edition, and the 2009/2012 CMSC 461 slides by Dr.
Kalpakis

Logistics

● Homework 1 is graded
● Phase 1 grading will begin this week
● Homework 2 is posted
● Phase 2 and data scripts will post soon

Lecture Outline

• Quick Introduction to Views
• NoSQL

Lecture Outline

• Quick Introduction to Views
• NoSQL

Views
● Relations stored in the database, logical model

level
● May not be desirable for all users to see the

entire logical model
● A 'view' of the relation with a subset of

information may be more appropriate

Views: A Scenario
● Consider a person who needs to know an instructor’s

name and department.

+-------+------------+------------+----------+
| ID | name | dept_name | salary |
+-------+------------+------------+----------+
10101	Srinivasan	Comp. Sci.	68250.00
12121	Wu	Finance	94500.00
15151	Mozart	Music	42000.00
22222	Einstein	Physics	99750.00
32343	El Said	History	63000.00
33456	Gold	Physics	91350.00
45565	Katz	Comp. Sci.	78750.00
58583	Califieri	History	65100.00
76543	Singh	Finance	84000.00
76766	Crick	Biology	75600.00
83821	Brandt	Comp. Sci.	96600.00
98345	Kim	Elec. Eng.	84000.00
+-------+------------+------------+----------+

Views: A Scenario
● We don't necessarily want to share salary
● And possibly ID is not very useful

+-------+------------+------------+----------+
| ID | name | dept_name | salary |
+-------+------------+------------+----------+
10101	Srinivasan	Comp. Sci.	68250.00
12121	Wu	Finance	94500.00
15151	Mozart	Music	42000.00
22222	Einstein	Physics	99750.00
32343	El Said	History	63000.00
33456	Gold	Physics	91350.00
45565	Katz	Comp. Sci.	78750.00
58583	Califieri	History	65100.00
76543	Singh	Finance	84000.00
76766	Crick	Biology	75600.00
83821	Brandt	Comp. Sci.	96600.00
98345	Kim	Elec. Eng.	84000.00
+-------+------------+------------+----------+

Views: A Scenario
● Instead we may wish to provide this information only

+------------+------------+
| name | dept_name |
+------------+------------+
Srinivasan	Comp. Sci.
Wu	Finance
Mozart	Music
Einstein	Physics
El Said	History
Gold	Physics
Katz	Comp. Sci.
Califieri	History
Singh	Finance
Crick	Biology
Brandt	Comp. Sci.
Kim	Elec. Eng.
+------------+------------+

Views
● A view provides a mechanism to hide certain data from the

view of certain users
● It also provides a way to create a personalized collection

of relations
● Any relation that is not of the conceptual model but is

made visible to a user as a “virtual relation” is called a
view.

● You can think of a view as a relation, select from it, join
upon it, some views allow deletes, inserts and updates

● There is no data contained in the view, the view data is
derived from other relations

View Definition
● A view is defined using the create view statement which

has the form

create view v as < query expression >
 where v is the view name and
 <query expression> is any legal SQL expression

● Once a view is defined, the view name can be used to
refer to the virtual relation that the view generates

● View definition is not the same as creating a new relation
by evaluating the query expression
− a view definition results in a saved expression which is

executed when the view is used

Examples of Views
● A view of instructors without their salary

 create view faculty as
 select ID, name, dept_name;
 from instructor

● Find all instructors in the Biology department
 select name
 from faculty
where dept_name = ‘Biology’;

● Create a view of department salary totals
create view departments_total_salary(dept_name,
total_salary)
 as
select dept_name, sum (salary)
from instructor
group by dept_name;

●

Examples of Views
mysql> create view faculty as
select name, dept_name from instructor;
Query OK, 0 rows affected (0.16 sec)

mysql> select * from faculty;
+------------+------------+
| name | dept_name |
+------------+------------+
Srinivasan	Comp. Sci.
Wu	Finance
Mozart	Music
Einstein	Physics
El Said	History
Gold	Physics
Katz	Comp. Sci.
Califieri	History
Singh	Finance
Crick	Biology
Brandt	Comp. Sci.
Kim	Elec. Eng.
+------------+------------+
12 rows in set (0.00 sec)

More Examples of Views

mysql> select * from faculty natural join course;
+------------+------------+-----------+-------------+---------+
| dept_name | name | course_id | title | credits |
+------------+------------+-----------+-------------+---------+
Comp. Sci.	Srinivasan	CS-190	Game Design	4
Comp. Sci.	Srinivasan	CS-315	Robotics	3
Comp. Sci.	Katz	CS-190	Game Design	4
Comp. Sci.	Katz	CS-315	Robotics	3
Biology	Crick	BIO-301	Genetics	4
Comp. Sci.	Brandt	CS-190	Game Design	4
Comp. Sci.	Brandt	CS-315	Robotics	3
+------------+------------+-----------+-------------+---------+
7 rows in set (0.01 sec)

Views Defined Using Other Views
● One view may be used in the expression defining another

view
● A view relation v1 is said to depend directly on a view

relation v2 if v2 is used in the expression defining v1
● A view relation v1 is said to depend on view relation v2 if

either v1 depends directly to v2 or there is a path of
dependencies from v1 to v2

● A view relation v is said to be recursive if it depends on
itself

Views Defined Using Other Views
● create view physics_fall_2009 as
● select course.course_id, sec_id, building, room_number
● from course, section
● where course.course_id = section.course_id
● and course.dept_name = ’Physics’
● and section.semester = ’Fall’
● and section.year = ’2009’;
●
● create view physics_fall_2009_watson as
● select course_id, room_number
● from physics_fall_2009
● where building= ’Watson’;

●

View Expansion
● A way to define the meaning of views defined in terms of

other views
● Let view v1 be defined by an expression e1 that may itself

contain uses of view relations
● View expansion of an expression repeats the following

replacement step:
● repeat
● Find any view relation vi in e1
● Replace the view vi by the expression defining vi
● until no more view relations are present in e1
● As long as the view definitions are not recursive, this loop

will terminate

View Expansion
● If we take the previously defined view and expand it

 create view physics_fall_2009_watson as

(select course_id, room_number
from (select course.course_id, building, room_number
 from course, section
 where course.course_id = section.course_id
 and course.dept_name = ’Physics’
 and section.semester = ’Fall’
 and section.year = ’2009’)
where building= ’Watson’;

Materialized Views
● Materializing a view: create a physical table containing all

the tuples in the result of the query defining the view
● If relations used in the query are updated, the materialized

view result becomes out of date
● Need to maintain the view, by updating the view whenever

the underlying relations are updated.

Update of Views
● Can express updates, inserts and deletions using views
● Modifications through views can be problematic

− Must be translated to the actual relations in the logical
model

Update of Views
● If we define the following views:

create view faculty as
select ID, name, dept_name;
from instructor

● then insert the following:
insert into faculty values (’30765’, ’Green’, ’Music’);

● We must insert the tuple:
(’30765’, ’Green’, ’Music’, null)

● into the instructor relation since we need to provide a
salary

● Or we have to reject the insert

Update of Views
● Another problem that occurs:

create view instructor_info as
select ID, name, building
from instructor, department
where instructor.dept_name= department.dept_name;

● Then we insert the following:
insert into instructor_info values (’69987’, ’White’, ’Taylor’);

●

 Instructor:
+-----------+--------------+------+-----+
| Field | Type | Null | Key |
+-----------+--------------+------+-----+
ID	varchar(5)	NO	PRI
name	varchar(20)	NO	
dept_name	varchar(20)	YES	MUL
salary	decimal(8,2)	YES	
+-----------+--------------+------+-----+

Department:
+-----------+---------------+------+-----+
| Field | Type | Null | Key |
+-----------+---------------+------+-----+
dept_name	varchar(20)	NO	PRI
building	varchar(15)	YES	
budget	decimal(12,2)	YES	
+-----------+---------------+------+-----+

Update of Views
● How do we know which department?
● If multiple departments in Taylor which to choose?
● What if no department related to building Taylor?
● Most SQL implementations allow updates only on simple

views
● The from clause has only one database relation.
● The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates,
or distinct specification.

● Any attribute not listed in the select clause can be set to
null

● The query does not have a group by or having clause.

Errors from MySQL
mysql> select * from faculty;
+------------+------------+
| name | dept_name |
+------------+------------+
Srinivasan	Comp. Sci.
Wu	Finance
Mozart	Music
Einstein	Physics
El Said	History
Gold	Physics
Katz	Comp. Sci.
Califieri	History
Singh	Finance
Crick	Biology
Brandt	Comp. Sci.
Kim	Elec. Eng.
+------------+------------+
12 rows in set (0.00 sec)

mysql> insert into faculty values ('White', 'Math');
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails
(`university`.`instructor`, CONSTRAINT `instructor_ibfk_1` FOREIGN KEY
(`dept_name`) REFERENCES `department` (`dept_name`) ON DELETE SET NULL)

create view faculty as
select name, dept_name from instructor

Errors from MySQL
mysql> create view instructor_info as
 -> select ID, name, building
 -> from instructor, department
 -> where instructor.dept_name=
department.dept_name;
Query OK, 0 rows affected (0.06 sec)

mysql> insert into instructor_info values ('69987', 'White',
'Taylor');ERROR 1394 (HY000): Can not insert into join
view 'university.instructor_info' without fields list
mysql> insert into instructor_info (ID,name,building) values
('69987', 'White', 'Taylor');
ERROR 1393 (HY000): Can not modify more than one
base table through a join view 'university.instructor_info'

Update Views
● Create view history_instructors as

 select *
 from instructor
 where dept_name= ’History’;

● What happens if we insert (’25566’, ’Brown’, ’Biology’,
100000) into history_instructors?

Update Views
create view history_instructors as
select *
from instructor where dept_name= ’History’;

What happens if we insert (’25566’, ’Brown’, ’Biology’, 100000) into history_instructors?

Instructor:
+-------+------------+------------+-----------+
| ID | name | dept_name | salary |
+-------+------------+------------+-----------+
10101	Srinivasan	Comp. Sci.	68250.00
12121	Wu	Finance	94500.00
15151	Mozart	Music	42000.00
22222	Einstein	Physics	99750.00
25566	Brown	Biology	100000.00
32343	El Said	History	63000.00
33456	Gold	Physics	91350.00
45565	Katz	Comp. Sci.	78750.00
58583	Califieri	History	65100.00
76543	Singh	Finance	84000.00
76766	Crick	Biology	75600.00
83821	Brandt	Comp. Sci.	96600.00
98345	Kim	Elec. Eng.	84000.00
+-------+------------+------------+-----------+

mysql> select * from history_instructors;
+-------+-----------+-----------+----------+
| ID | name | dept_name | salary |
+-------+-----------+-----------+----------+
| 32343 | El Said | History | 63000.00 |
| 58583 | Califieri | History | 65100.00 |
+-------+-----------+-----------+----------+

Lecture Outline

• Quick Introduction to Views
• NoSQL

Why NoSQL?
● Scalability
− Vertical

■ low performance
■ lots of work
■ expensive

− Horizontal
■ Auto-sharding

Image credit: http://www.differencebetween.info/difference-between-nosql-and-sql-database

Why NoSQL?
● Flexibility
− System changes during developmental lifecycle
− Difficult with relational model
− Schema-free = rapid application development

Image credit: https://www.tatvasoft.com/blog/why-nosql-is-required-when-rdbms-is-proven/

Why NoSQL?
● Performance
− Cross table queries, joining
− Doesn’t map into software objects well
− No cross queries/data implemented through objects

Why NoSQL? Performance?

Image credit: http://maurizioturatti.com/blog/2015/01/06/using-nosql-wrong-reason/
Image credit: http://erthalion.info/2015/12/29/json-benchmarks/

http://maurizioturatti.com/blog/2015/01/06/using-nosql-wrong-reason/

Comparing SQL and NoSQL

Image Credit: https://www.udemy.com/nosql-databases-for-beginners/

SQL NoSQL

NoSQL - The Landscape

● Document DBs
● Key-Value
● Graph
● Big Table/Tabular
● Object

http://www.differencebetween.info/difference-between-nosql-and-sql-database

NoSQL - The Landscape

Image credit: https://www.udemy.com/nosql-databases-for-beginners/

NoSQL - MongoDB

● Document DBs
● MongoDB
− high performance
− easily scalable

Image credit: http://sql-vs-nosql.blogspot.com/2013/10/the-base-difference-between-sql-and.html

MongoDB - the basics
● Documents stored as documents (JSON-like)
− BSON (Binary representation) of JSON

● Follow similar structures as in programming languages

Image credit: http://sqllearnergroups.blogspot.com/2014/03/how-to-get-json-format-through-sql.html

Example JSON Document

MongoDB - A Collection
● A collection is a group of MongoDB documents
● Similar to a table in MySQL grouping of MongoDB

documents.

Image credit: https://docs.mongodb.com

MongoDB - A Document
● A document is a ‘record’ in a MongoDB collection
● There can be multiple documents in a collection
● And each document can contain different fields

Image credit: https://docs.mongodb.com

MongoDB - A Field
● A field is a name-value pair in a document
● Fields are similar to MySQL columns

Image credit: https://docs.mongodb.com

MongoDB - Types
● Many of the types are similar to MySQL
● However, there is support for more

advanced types (i.e. Javascript)
● Every type has a number that can be

referenced:

{ field: { $type: <BSON type> } }

https://docs.mongodb.com

Type Number Notes
Double 1

String 2

Object 3

Array 4

Binary data 5

Undefined 6 Deprecated.
Object id 7

Boolean 8

Date 9

Null 10

Regular
Expression

11

JavaScript 13

Symbol 14 Deprecated.
JavaScript
(with scope)

15

32-bit integer 16

Timestamp 17

64-bit integer 18

Min key 255 Query with -1.
Max key 127

MongoDB - A Document
● And each document can contain different fields
● Including embedded sub-documents

Image credit: https://docs.mongodb.com

MongoDB - the basics
● Selecting a database to use:

use helloMongoDB

● Inserting a document into the database:

db.helloMyCollection.insert({ name: “Jenn” })

● Inserting multiple documents into the database:

db.helloMyCollection.insert([{ name: “Emmie” }

,{name: “Alex”}])

https://docs.mongodb.com

MongoDB - the basics
● Removing a document from the collection:

db.helloMyCollection.remove(name: “Jenn”)

● Remove all documents from collection:

db.helloMyCollection.remove({})

● Drop collection:

db.helloMyCollection.drop()

https://docs.mongodb.com

MongoDB - the basics
● Querying:

db.helloMyCollection.find()

● Querying with criteria:

db.helloMyCollection.find(“name”:”jenn”)

https://docs.mongodb.com

MongoDB - the basics
● Querying with

‘where’
clauses

 Table credit: https://www.tutorialspoint.com/mongodb/mongodb_query_document.htm

Operation SyntaxRDBMS Equivalent

Equality {<key>:<value>} where field = value

Less Than {<key>:{$lt:<valu
e>}}

where field < value

Less Than Equals {<key>:{$lte:<val
ue>}}

where field <=
value

Greater Than {<key>:{$gt:<valu
e>}}

where field > value

Greater Than Equals {<key>:{$gte:<val
ue>}}

where field >=
value

Not Equals {<key>:{$ne:<val
ue>}}

where field != value

Comparing MySQL and MongoDB

Image Credit: https://www.slideshare.net/EnochJoshua1/mongodb-for-beginners

Comparing MySQL and MongoDB
+-------+------------+------------+----------+
| ID | name | dept_name | salary |
+-------+------------+------------+----------+
10101	Srinivasan	Comp. Sci.	65000.00
12121	Wu	Finance	90000.00
15151	Mozart	Music	40000.00
32343	El Said	History	60000.00
45565	Katz	Comp. Sci.	75000.00
58583	Califieri	History	62000.00
76543	Singh	Finance	80000.00
83821	Brandt	Comp. Sci.	92000.00
98345	Kim	Elec. Eng.	80000.00
+-------+------------+------------+----------+			
+-------+-----------+--------+----------+------+			
ID	course_id	sec_id	semester
+-------+-----------+--------+----------+------+			
10101	CS-101	1	Fall
45565	CS-101	1	Spring
83821	CS-190	1	Spring
83821	CS-190	2	Spring
10101	CS-315	1	Spring
45565	CS-319	1	Spring
83821	CS-319	2	Spring
10101	CS-347	1	Fall
98345	EE-181	1	Spring
12121	FIN-201	1	Spring
32343	HIS-351	1	Spring
15151	MU-199	1	Spring
+-------+-----------+--------+----------+------+

+-----------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+--------------+------+-----+---------+-------+
ID	varchar(5)	NO	PRI	NULL	
name	varchar(20)	NO		NULL	
dept_name	varchar(20)	YES	MUL	NULL	
salary	decimal(8,2)	YES		NULL	
+-----------+--------------+------+-----+---------+-------+

+-----------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+--------------+------+-----+---------+-------+
ID	varchar(5)	NO	PRI	NULL	
course_id	varchar(8)	NO	PRI	NULL	
sec_id	varchar(8)	NO	PRI	NULL	
semester	varchar(6)	NO	PRI	NULL	
year	decimal(4,0)	NO	PRI	NULL	
+-----------+--------------+------+-----+---------+-------+

Comparing MySQL and MongoDB
Collection

[{
"ID": 10101,
"name": "Srinivasan",
"salary": "65000.00",
"dept_name": "Comp. Sci.",
"teaches":
 [
 {"course_id": "CS-101",
 "sec_id": "1",
 "semester": "Fall",
 "year": "2009"
 },
 {"course_id": "CS-347",
 "sec_id": "1",
 "semester": "Fall",
 "year": "2009"
 },
]
},

{
"ID": 12121,
"name": "Wu",
"salary": "90000.00",
"dept_name": "Finance",
"teaches":
 [
 {"course_id": "FIN-201",
 "sec_id": "1",
 "semester": "Spring",
 "year": "2010"
 }
]
}
]

Document
Array

Lecture Outline

• Quick Introduction to Views
• NoSQL

