
CMSC 461, Database Management Systems
Spring 2018

Lecture 6 - More SQL

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

These slides are based on “Database System Concepts” book
and slides, 6th edition, and the 2009/2012 CMSC 461 slides by Dr.
Kalpakis

1

Logistics

● Project Phase 1 due Thursday 2/15/2018
● Homework 2 due on 2/26/2018

2

Today we will wrap up the SQL
discussion today

3

4

Lecture Outline

• Additional Operations
• Set Operations
• Aggregate Functions
• Nested Queries
• Modification of the database
• Joins
• Data Types

5

Rename Operation
The SQL allows renaming relations and attributes
using the as clause:

− old-name as new-name

Example:

select ID, name, salary/12 as monthly_salary
from instructor

Based on “Database System Concepts” book and slides, 6th edition

6

Rename Operation
Find the names of all instructors who have a
higher salary than
some instructor in ‘Comp. Sci’.

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name =
‘Comp. Sci.’

Keyword as is optional and may be omitted
 instructor as T ≡ instructor T

7
Based on “Database System Concepts” book and slides, 6th edition

Rename Operation
 select distinct T.name

from instructor as T, instructor as S
where T.salary > S.salary and
S.dept_name = ‘Comp. Sci.’;

Also known as table alias, correlation
variable or tuple variable

8
Based on “Database System Concepts” book and slides, 6th edition

Why Rename?
● Relations in from clause may have

attributes with same attribute name
● If an arithmetic expression used, resulting

attribute no name
● May want to change attribute name

9
Based on “Database System Concepts” book and slides, 6th edition

String Operation
● SQL includes a string-matching operator

for comparisons on character strings.
● The operator “like” uses patterns that are

described using two special characters:
− percent (%). The % character matches

any substring.
− underscore (_). The _ character

matches any character.
● Patterns are case sensitive

10
Based on “Database System Concepts” book and slides, 6th edition

String Operation
● Enclosed by single quotes

− Case sensitive
'comp. Sci.' ='Comp. Sci.' is false

● Concatenation ||
● Extraction of substring
● Length of string
● Convert to upper or lower case
● Removal of white space (trim(s))

11
Based on “Database System Concepts” book and slides, 6th edition

String Operation
● Pattern matching examples:
● ‘Intro%’ matches any string beginning with

“Intro”.
● ‘%Comp%’ matches any string containing

“Comp” as a substring.
● ‘_ _ _’ matches any string of exactly three

characters.
● ‘_ _ _ %’ matches any string of at least

three characters.

12
Based on “Database System Concepts” book and slides, 6th edition

String Operation
Find the names of all instructors whose
name includes the substring “dar”.

select name
from instructor
where name like '%dar%';

Match the string “100 %”

like ‘100 \%' escape '\'
 13

Based on “Database System Concepts” book and slides, 6th edition

Ordering Display of Tuples
● List in alphabetical order the names of all

instructors

select distinct name
from instructor
order by name;

14
Based on “Database System Concepts” book and slides, 6th edition

Ordering Display of Tuples
● We may specify desc for descending

order or asc for ascending order, for each
attribute

● Ascending order is the default.
− Example: order by name desc

15
Based on “Database System Concepts” book and slides, 6th edition

Ordering Display of Tuples
● Can sort on multiple attributes

− Example: order by dept_name, name
● Can order by multiple attributes specifying

desc/asc order for each

select * from instructor
order by salary desc, name asc;

16
Based on “Database System Concepts” book and slides, 6th edition

Where Clause Predicates
● SQL includes a between comparison

operator

Example: Find the names of all instructors
with salary between $90,000 and $100,000
(that is, ≥ $90,000 and ≤ $100,000)

select name
from instructor
where salary between 90000 and 100000

17

Based on “Database System Concepts” book and slides, 6th edition

Where Clause Predicates
select name
from instructor
where salary between 90000 and 100000

INSTEAD OF…

select name
from instructor
where salary >= 90000 and salary <=
100000

18
Based on “Database System Concepts” book and slides, 6th edition

Where Clause Predicates
● Tuple comparison (v1,v2,...vn) denotes a

tuple of arity n
● Comparison operators

○ (a1,a2) <= (b1, b2) is true if a1<=b1 and a2 <=
b2

select name, course_id
from instructor, teaches
where (instructor.ID, dept_name) =
(teaches.ID, ’Biology’);

19
Based on “Database System Concepts” book and slides, 6th edition

Lecture Outline

• Additional Operations
• Set Operations
• Aggregate Functions
• Nested Queries
• Modification of the database
• Joins
• Data Types

20

Set Operations
● Set operations union, intersect, and

except
− Each of the above operations

automatically eliminates duplicates
● To retain all duplicates use the

corresponding multiset versions union all,
intersect all and except all.

21
Based on “Database System Concepts” book and slides, 6th edition

Set Operations
select dept_name from instructor_L5 where dept_name='Finance'
union all select dept_name from instructor_L5 where
dept_name='Computer Science';
+------------------+
| dept_name |
+------------------+
| Finance |
| Computer Science |
| Computer Science |
+------------------+

select dept_name from instructor_L5 where dept_name='Finance'
union select dept_name from instructor_L5 where
dept_name='Computer Science';
+------------------+
| dept_name |
+------------------+
| Finance |
| Computer Science |
+------------------+

22

Set Operations
Find courses that ran in Fall 2009 or in
Spring 2010

23
Based on “Database System Concepts” book and slides, 6th edition

Set Operations

(select course_id from section where
sem = ‘Fall’ and year = 2009)
 union
(select course_id from section where
sem = ‘Spring’ and year = 2010);

24
Based on “Database System Concepts” book and slides, 6th edition

Set Operations
Find courses that ran in Fall 2009 and in
Spring 2010

25
Based on “Database System Concepts” book and slides, 6th edition

Set Operations

 (select course_id from section where

sem = ‘Fall’ and year = 2009)
 intersect
(select course_id from section where
sem = ‘Spring’ and year = 2010);

26
Based on “Database System Concepts” book and slides, 6th edition

Set Operations
Find courses that ran in Fall 2009 but not in
Spring 2010

27
Based on “Database System Concepts” book and slides, 6th edition

Set Operations

(select course_id from section where
sem = ‘Fall’ and year = 2009)
 except
(select course_id from section where
sem = ‘Spring’ and year = 2010);

28
Based on “Database System Concepts” book and slides, 6th edition

Recall Null Values
● It is possible for tuples to have a null

value, denoted by null, for some of their
attributes

● null signifies an unknown value or that a
value does not exist.

● The result of any arithmetic expression
involving null is null
− Example: 5 + null returns null

29
Based on “Database System Concepts” book and slides, 6th edition

Recall Null Values
● The predicate is null can be used to

check for null values.

Example: Find all instructors whose salary is
null.
select name
from instructor
where salary is null;

30
Based on “Database System Concepts” book and slides, 6th edition

Lecture Outline

• Review
• Finish In-Class Exercise
• Additional Operations
• Set Operations
• Aggregate Functions
• Nested Queries
• Modification of the database
• Joins
• Data Types

31

Aggregate Functions
These functions operate on the multiset of
values of a column of a relation, and return
a value

− avg: average value
− min: minimum value
− max: maximum value
− sum: sum of values
− count: number of values

32
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions - Average
Find the average salary of instructors in the
Computer Science department

33
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions - Average

select avg (salary)
from instructor
where dept_name= ’Comp. Sci.’;

34
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions - Average

select avg (salary)
from instructor
where dept_name= ’Comp. Sci.’;

What is going to be
the name of the
attribute
returned?

35
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions - Average

select avg (salary) as avg_salary
from instructor
where dept_name= ’Comp. Sci.’;

36
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions - Count

Find the total number of instructors who
teach a course in the Spring 2010 semester

37
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions - Count

select count (distinct ID)
from teaches
where semester = ’Spring’ and
year = 2010

Why use distinct?

38
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions - Count

Find the number of tuples in the course
relation

39
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions - Count

select count (*) from course;

40
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions – Group By

Find the average salary of instructors in
each department

41
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions – Group By

select dept_name, avg (salary) as
avg_salary
from instructor
group by dept_name;

42
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions – Group By

Find the number of instructors in each
department who teach a course in the
Spring 2010 semester

43
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions – Group By
+-------+------------+------------+----------+
| ID | name | dept_name | salary |
+-------+------------+------------+----------+
10101	Srinivasan	Comp. Sci.	65000.00
12121	Wu	Finance	90000.00
15151	Mozart	Music	40000.00
22222	Einstein	Physics	95000.00
32343	El Said	History	60000.00
33456	Gold	Physics	87000.00
45565	Katz	Comp. Sci.	75000.00
58583	Califieri	History	62000.00
76543	Singh	Finance	80000.00
76766	Crick	Biology	72000.00
83821	Brandt	Comp. Sci.	92000.00
98345	Kim	Elec. Eng.	80000.00
+-------+------------+------------+----------+

+-------+-----------+--------+----------+------+
| ID | course_id | sec_id | semester | year |
+-------+-----------+--------+----------+------+
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
10101	CS-101	1	Fall	2009
45565	CS-101	1	Spring	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
10101	CS-315	1	Spring	2010
45565	CS-319	1	Spring	2010
83821	CS-319	2	Spring	2010
10101	CS-347	1	Fall	2009
98345	EE-181	1	Spring	2009
12121	FIN-201	1	Spring	2010
32343	HIS-351	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
+-------+-----------+--------+----------+------+Instructor

Teaches
44

Aggregate Functions – Group By
+-------+------------+------------+----------+
| ID | name | dept_name | salary |
+-------+------------+------------+----------+
10101	Srinivasan	Comp. Sci.	65000.00
12121	Wu	Finance	90000.00
15151	Mozart	Music	40000.00
22222	Einstein	Physics	95000.00
32343	El Said	History	60000.00
33456	Gold	Physics	87000.00
45565	Katz	Comp. Sci.	75000.00
58583	Califieri	History	62000.00
76543	Singh	Finance	80000.00
76766	Crick	Biology	72000.00
83821	Brandt	Comp. Sci.	92000.00
98345	Kim	Elec. Eng.	80000.00
+-------+------------+------------+----------+

+-------+-----------+--------+----------+------+
| ID | course_id | sec_id | semester | year |
+-------+-----------+--------+----------+------+
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
10101	CS-101	1	Fall	2009
45565	CS-101	1	Spring	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
10101	CS-315	1	Spring	2010
45565	CS-319	1	Spring	2010
83821	CS-319	2	Spring	2010
10101	CS-347	1	Fall	2009
98345	EE-181	1	Spring	2009
12121	FIN-201	1	Spring	2010
32343	HIS-351	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
+-------+-----------+--------+----------+------+Instructor

Teaches
Find the number of instructors in each department who teach a
course in the Spring 2010 semester

45

Aggregate Functions – Group By

What are we grouping by?

46

Aggregate Functions – Group By

from instructor natural join teaches where
semester='Spring' and year=2010
group by dept_name;

47

Aggregate Functions – Group By

What are we counting?

48

Aggregate Functions – Group By

select dept_name, count(distinct ID) as
instr_count from instructor natural join
teaches where semester='Spring' and
year=2010 group by dept_name;

49
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions – Group By
mysql> select dept_name, count(distinct ID) as instr_count from instructor natural join teaches
where semester='Spring' and year=2010 group by dept_name;
+------------+-------------+
| dept_name | instr_count |
+------------+-------------+
Comp. Sci.	3
Finance	1
History	1
Music	1
+------------+-------------+
4 rows in set (0.00 sec)

mysql> select dept_name, count(ID) as instr_count from instructor natural join teaches where
semester='Spring' and year=2010 group by dept_name;
+------------+-------------+
| dept_name | instr_count |
+------------+-------------+
Comp. Sci.	4
Finance	1
History	1
Music	1
+------------+-------------+
4 rows in set (0.00 sec) 50

Can I do this? (MySQL)
mysql> select dept_name, ID, avg (salary)
 -> from instructor
 -> group by dept_name;
+------------+-------+--------------+
| dept_name | ID | avg (salary) |
+------------+-------+--------------+
Biology	76766	72000.000000
Comp. Sci.	10101	77333.333333
Elec. Eng.	98345	80000.000000
Finance	12121	85000.000000
History	32343	61000.000000
Music	15151	40000.000000
Physics	22222	91000.000000
+------------+-------+--------------+
7 rows in set (0.00 sec)

51

Aggregate Functions – Erroneous
Query

Attributes in select clause outside of
aggregate functions must appear in group
by list

select dept_name, ID, avg (salary)
from instructor
group by dept_name;

52
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions – Having
Clause

Find the names and average salaries of
all departments whose average salary is
greater than 42000

53
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions – Having
Clause

● Use the having clause to state a
condition that applies to groups
constructed by the group by clause
rather than single tuples

● Predicates in having clause are applied
after the formation of groups whereas
predicates in the where clause are
applied before forming groups

54

Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions – Having
Clause

select dept_name, avg (salary)
from instructor
group by dept_name
having avg (salary) > 42000;

55
Based on “Database System Concepts” book and slides, 6th edition

Aggregate Functions – Having
Clause

select dept_name, avg (salary) from instructor
group by dept_name having avg (salary) > 42000;

select dept_name, avg (salary) from instructor
where salary > 42000 group by dept_name;

select dept_name, avg (salary) from instructor
where avg (salary) > 42000 group by dept_name;

VALI
D
VALI
D

INVALID

WARNING: THESE ARE NOT THE
SAME!

56

Null Values and Aggregate
Functions

Total all salaries

select sum (salary)
from instructor

− Above statement ignores null amounts
− Result is null if there is no non-null amount

● All aggregate operations except count(*) ignore tuples with
null values on the aggregated attributes

● What if collection has only null values?
− count returns 0
− all other aggregates return null

57
Based on “Database System Concepts” book and slides, 6th edition

Lecture Outline

• Review
• Finish In-Class Exercise
• Additional Operations
• Set Operations
• Aggregate Functions
• Nested Queries
• Modification of the database
• Joins
• Data Types

58

Nested Subqueries

● SQL provides a mechanism
for the nesting of subqueries.

● A subquery is a
select-from-where expression
that is nested within another
query.

● A common use of subqueries
is to perform tests for set
membership, set
comparisons, and set
cardinality.

59

Based on “Database System Concepts” book and slides, 6th edition

Set Membership

Find courses offered in Fall 2009
and in Spring 2010

60
Based on “Database System Concepts” book and slides, 6th edition

Set Membership

select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and
 course_id in (select course_id
 from section
 where semester = ’Spring’ and year= 2010);

61
Based on “Database System Concepts” book and slides, 6th edition

Set Membership

Find courses offered in Fall 2009
but not in Spring 2010

62
Based on “Database System Concepts” book and slides, 6th edition

Set Membership
select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and
 course_id not in (select course_id
 from section
 where semester = ’Spring’ and year= 2010);

63
Based on “Database System Concepts” book and slides, 6th edition

Set Membership

Find the total number of (distinct)
students who have taken course
sections taught by the instructor
with ID 10101

64
Based on “Database System Concepts” book and slides, 6th edition

Set Membership
select count (distinct ID)
from takes
where (course_id, sec_id, semester, year) in
 (select course_id, sec_id, semester, year
 from teaches
 where teaches.ID= 10101);

65
Based on “Database System Concepts” book and slides, 6th edition

Set Comparison

Nested subqueries can be used to
compare sets.

66
Based on “Database System Concepts” book and slides, 6th edition

Correlation Variables
● Correlated subquery – uses a correlation name from an outer

query
● Correlation name or correlation variable – variables from outer

query that are used in nested subquery

67
Based on “Database System Concepts” book and slides, 6th edition

Subqueries in From Clause
● SQL allows a subquery expression to be used in the from

clause

Find the average instructors’ salaries of those departments
where the average salary is greater than $42,000.

select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary
 from instructor
 group by dept_name)
where avg_salary > 42000;

68
Based on “Database System Concepts” book and slides, 6th edition

Scalar subqueries
● Scalar subquery is one which is used where a single value

is expected
● Runtime error if subquery returns more than one result

tuple

 select dept_name,
 (select count(*)
 from instructor
 where department.dept_name =
instructor.dept_name) as num_instructors
 from department;

69
Based on “Database System Concepts” book and slides, 6th edition

Scalar subqueries
select name
 from instructor
 where salary * 10 >
 (select budget from department
 where department.dept_name =
instructor.dept_name)

70
Based on “Database System Concepts” book and slides, 6th edition

Lecture Outline

• Review
• Finish In-Class Exercise
• Additional Operations
• Set Operations
• Aggregate Functions
• Nested Queries
• Modification of the database
• Joins
• Data Types

71

Modifications of the Database
● Deletion of tuples from a given relation
● Insertion of new tuples into a given relation
● Updating values in some tuples in a given relation

72
Based on “Database System Concepts” book and slides, 6th edition

Deletions
● Expressed similarly to queries
● Delete whole tuples

delete from r where P;

● P is the predicate
● r is the relation
● First finds all tuples t in r where P(t) is true
● Then deletes them from r

73
Based on “Database System Concepts” book and slides, 6th edition

Deletions
Delete all instructors

delete from instructor

Delete all instructors from the Finance department

delete from instructor
where dept_name= ’Finance’;

74
Based on “Database System Concepts” book and slides, 6th edition

Deletions
Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.

delete from instructor
where dept_name in (select dept_name
from department where building = ’Watson’);

75
Based on “Database System Concepts” book and slides, 6th edition

Can I do this?

delete * from instructor;

ERROR 1064 (42000): You have an error in your SQL
syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near
'* from instructor' at line 1

76

Can I do this?

delete ID from instructor;

ERROR 1109 (42S02): Unknown table
'ID' in MULTI DELETE

77

Can I do this?

delete from instructor, courses
where dept_name= ’Finance’;

 ERROR 1064 (42000): You have an error in your SQL
syntax; check the manual that corresponds to your MySQL
server version for the right syntax to use near 'where
dept_name= ’Finance’' at line 2

78

Deletions – What is wrong with
this statement?

delete from instructor
where salary< (select avg (salary) from instructor);

Problem:

− As we delete tuples from instructor, the average salary
changes

Solution used in SQL:
 1. First, compute avg salary and find all tuples to delete
 2. Next, delete all tuples found above (without recomputing
avg or retesting the tuples)

79
Based on “Database System Concepts” book and slides, 6th edition

Deletions – What is wrong with
this statement?

Delete all instructors whose salary is less than the
average salary of instructors

delete from instructor
where salary< (select avg (salary) from instructor);

80
Based on “Database System Concepts” book and slides, 6th edition

Insertions
● To insert:

− Specify a tuple to be inserted
− Use a set of tuples that results from a query

● Attribute values must be members of attribute's
domain

● Tuples inserted must have correct number of
attributes

81
Based on “Database System Concepts” book and slides, 6th edition

Insertions
Add a new tuple to course

insert into course
values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

or equivalently

insert into course (course_id, title, dept_name, credits)
values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

Add a new tuple to student with tot_creds set to null

insert into student
values (’3003’, ’Green’, ’Finance’, null);

82
Based on “Database System Concepts” book and slides, 6th edition

Insertions
Add all instructors to the student relation with tot_creds set to
0

insert into student
select ID, name, dept_name, 0
from instructor;

● The select from where statement is evaluated fully before any
of its results are inserted into the relation (otherwise queries
like

insert into table1 select * from table1

● would cause problems, if table1 did not have any primary key
defined.

83
Based on “Database System Concepts” book and slides, 6th edition

Updates
● To change a value in a tuple without

changing all values in the tuple
● Use update statement

− Alternative is to delete tuple and insert
with new value

84
Based on “Database System Concepts” book and slides, 6th edition

Updates
Increase salaries of instructors whose salary is over
$100,000 by 3%, and all others receive a 5% raise

Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

The order is important
85

Based on “Database System Concepts” book and slides, 6th edition

Updates with Scalar Subqueries
● Recompute and update tot_creds value for all students

 update student S
set tot_cred = (select sum(credits)
 from takes natural join course
 where S.ID= takes.ID and
 takes.grade <> ’F’ and
 takes.grade is not null);

86
Based on “Database System Concepts” book and slides, 6th edition

Lecture Outline

• Review
• Finish In-Class Exercise
• Additional Operations
• Set Operations
• Aggregate Functions
• Nested Queries
• Modification of the database
• Joins
• Data Types

87

Joined Relations
● Join operations take two relations and return as a result

another relation.
● A join operation is a Cartesian product which requires that

tuples in the two relations match (under some condition).
It also specifies the attributes that are present in the result
of the join

● The join operations are typically used as subquery
expressions in the from clause

88
Based on “Database System Concepts” book and slides, 6th edition

Joined Relations

What types of joins have we seen so far?

89

Joined Relations
Cartesian with where clause

Select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

90
Based on “Database System Concepts” book and slides, 6th edition

Joined Relations
Natural Join

Select name, course_id
from instructor natural join teaches;

91
Based on “Database System Concepts” book and slides, 6th edition

Joined Relations
● There is also join with using clause

Select name, course_id
from instructor join teaches using (ID);

● You must specify list of attributes to join
upon

● Both relations must have the same name
● Similar to natural join except:

− Not all attributes that are the same are
joined upon

92
Based on “Database System Concepts” book and slides, 6th edition

Joined Relations
● There is also join with on condition

− Select name, course_id
− from instructor join teaches on

(instructor.ID = teaches.ID);
● Arbitrary join condition
● Similar to using where clause to specify

join condition
− The on condition behaves differently for

outer joins

93
Based on “Database System Concepts” book and slides, 6th edition

Join Example
●

−
●

course prereq

What happens when we join on these two
tables?

+-----------+-------------+------------+---------+
| course_id | title | dept_name | credits |
+-----------+-------------+------------+---------+
BIO-301	Genetics	Biology	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
+-----------+-------------+------------+---------+

+-----------+-----------+
| course_id | prereq_id |
+-----------+-----------+
BIO-301	BIO-101
CS-190	CS-101
CS-347	CS-101
+-----------+-----------+

94

Join Example

select * from course, prereq where
course.course_id = prereq.course_id;

+-----------+-------------+------------+---------+-----------+-----------+
| course_id | title | dept_name | credits | course_id | prereq_id |
+-----------+-------------+------------+---------+-----------+-----------+
| BIO-301 | Genetics | Biology | 4 | BIO-301 | BIO-101 |
| CS-190 | Game Design | Comp. Sci. | 4 | CS-190 | CS-101 |
+-----------+-------------+------------+---------+-----------+-----------+
2 rows in set (0.00 sec)

95

Join Example

select * from course natural
join prereq;

+-----------+-------------+------------+---------+-----------+
| course_id | title | dept_name | credits | prereq_id |
+-----------+-------------+------------+---------+-----------+
| BIO-301 | Genetics | Biology | 4 | BIO-101 |
| CS-190 | Game Design | Comp. Sci. | 4 | CS-101 |
+-----------+-------------+------------+---------+-----------+
2 rows in set (0.00 sec)

96

Join Example

select * from course join prereq
using(course_id);
+-----------+-------------+------------+---------+-----------+
| course_id | title | dept_name | credits | prereq_id |
+-----------+-------------+------------+---------+-----------+
| BIO-301 | Genetics | Biology | 4 | BIO-101 |
| CS-190 | Game Design | Comp. Sci. | 4 | CS-101 |
+-----------+-------------+------------+---------+-----------+
2 rows in set (0.00 sec)

97

Join Example

select * from course join prereq on
course.course_id = prereq.course_id;
+-----------+-------------+------------+---------+-----------+-----------+
| course_id | title | dept_name | credits | course_id | prereq_id |
+-----------+-------------+------------+---------+-----------+-----------+
| BIO-301 | Genetics | Biology | 4 | BIO-301 | BIO-101 |
| CS-190 | Game Design | Comp. Sci. | 4 | CS-190 | CS-101 |
+-----------+-------------+------------+---------+-----------+-----------+
2 rows in set (0.01 sec)

98

Outer Joins
● An extension of the join operation that

avoids loss of information.
● Computes the join and then adds tuples

from one relation that does not match
tuples in the other relation to the result of
the join.

● Uses null values.
● inner join – join operations that do not

preserve non-matched tuples

99
Based on “Database System Concepts” book and slides, 6th edition

Left Outer Join

select * from course natural
left outer join prereq;
+-----------+-------------+------------+---------+-----------+
| course_id | title | dept_name | credits | prereq_id |
+-----------+-------------+------------+---------+-----------+
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	NULL
+-----------+-------------+------------+---------+-----------+
3 rows in set (0.00 sec)

100

Right Outer Join

select * from course natural
right outer join prereq;
+-----------+-----------+-------------+------------+---------+
| course_id | prereq_id | title | dept_name | credits |
+-----------+-----------+-------------+------------+---------+
BIO-301	BIO-101	Genetics	Biology	4
CS-190	CS-101	Game Design	Comp. Sci.	4
CS-347	CS-101	NULL	NULL	NULL
+-----------+-----------+-------------+------------+---------+
3 rows in set (0.00 sec)

101

Full Outer Join

+-----------+-------------+-------------+------------+-----------+
| course_id | title | dept_name | credits | prereq_id |
+-----------+-------------+-------------+------------+-----------+
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	NULL
BIO-301	BIO-101	Genetics	Biology	4
CS-190	CS-101	Game Design	Comp. Sci.	4
CS-347	CS-101	NULL	NULL	NULL
+-----------+-------------+-------------+------------+-----------+
6 rows in set (0.00 sec)

select * from course natural
full outer join prereq;

102

Full Outer Join in MySQL
Alternative

select * from course natural
left outer join prereq
union
select * from course natural
right outer join prereq;

103
Based on “Database System Concepts” book and slides, 6th edition

Join Types and Conditions
● Join condition – defines which tuples in the

two relations match, and what attributes are
present in the result of the join.

● Join type – defines how tuples in each relation
that do not match any tuple in the other relation
(based on the join condition) are treated.

Join Type
Inner join
Left outer join
Right outer join
Full outer join

Join Conditions
natural
on <predicate>
Using (A1, A2,....An)

104
Based on “Database System Concepts” book and slides, 6th edition

Join Types and Conditions
select * from course right outer join prereq on
course.course_id=prereq.course_id;

+-----------+-------------+------------+---------+-----------+-----------+
| course_id | title | dept_name | credits | course_id | prereq_id |
+-----------+-------------+------------+---------+-----------+-----------+
BIO-301	Genetics	Biology	4	BIO-301	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-190	CS-101
NULL	NULL	NULL	NULL	CS-347	CS-101
+-----------+-------------+------------+---------+-----------+-----------+

select * from course right outer join prereq using (course_id);

+-----------+-----------+-------------+------------+---------+
| course_id | prereq_id | title | dept_name | credits |
+-----------+-----------+-------------+------------+---------+
BIO-301	BIO-101	Genetics	Biology	4
CS-190	CS-101	Game Design	Comp. Sci.	4
CS-347	CS-101	NULL	NULL	NULL
+-----------+-----------+-------------+------------+---------+ 105

Join Types and Conditions
Select * from course inner join prereq on course.course_id =
prereq.course_id;
+-----------+-------------+------------+---------+-----------+-----------+
| course_id | title | dept_name | credits | course_id | prereq_id |
+-----------+-------------+------------+---------+-----------+-----------+
| BIO-301 | Genetics | Biology | 4 | BIO-301 | BIO-101 |
| CS-190 | Game Design | Comp. Sci. | 4 | CS-190 | CS-101 |
+-----------+-------------+------------+---------+-----------+-----------+

Select * from course natural join prereq;

+-----------+-------------+------------+---------+-----------+
| course_id | title | dept_name | credits | prereq_id |
+-----------+-------------+------------+---------+-----------+
| BIO-301 | Genetics | Biology | 4 | BIO-101 |
| CS-190 | Game Design | Comp. Sci. | 4 | CS-101 |
+-----------+-------------+------------+---------+-----------+

106

Lecture Outline

• Review
• Finish In-Class Exercise
• Additional Operations
• Set Operations
• Aggregate Functions
• Nested Queries
• Modification of the database
• Joins
• Data Types

107

Date and Time Data Types
● date: Dates, containing a (4 digit) year, month

and date
− Example: date ‘2005-7-27’

● time: Time of day, in hours, minutes and
seconds.
− Example: time ‘09:00:30’ , time ‘09:00:30.75’

108
Based on “Database System Concepts” book and slides, 6th edition

Date and Time Data Types
● timestamp: date plus time of day

− Example: timestamp ‘2005-7-27 09:00:30.75’
● interval: period of time

− Example: interval ‘1’ day
− Subtracting a date/time/timestamp value from

another gives an interval value
− Interval values can be added to

date/time/timestamp values

109
Based on “Database System Concepts” book and slides, 6th edition

Default Types
● You may specify a default type for an

attribute

Example:

create table student
(ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0) default 0,
primary key(ID));

 110

Based on “Database System Concepts” book and slides, 6th edition

Large Object Types
● Large objects (photos, videos, CAD files,

etc.) are stored as a large object:

− blob: binary large object -- object is a
large collection of uninterpreted binary
data (whose interpretation is left to an
application outside of the database
system)

111

Based on “Database System Concepts” book and slides, 6th edition

Large Object Types

− clob: character large object -- object is a
large collection of character data

When a query returns a large object, a
pointer is returned rather than the large
object itself.

112
Based on “Database System Concepts” book and slides, 6th edition

User Defined Types
create type construct in SQL creates
user-defined type

create type Dollars as numeric (12,2) final

create table department
(dept_name varchar (20),
building varchar (15),
budget Dollars);

113
Based on “Database System Concepts” book and slides, 6th edition

Coming Next Week NoSQL

114

