
Lecture 24 – Big Data and
Distributed Databases

These slides are based on “Database System Concepts” 6th
edition book (whereas some quotes and figures are used from the
book) and are a modified version of the slides which accompany
the book (http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html),
in addition to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

CMSC 461, Database Management Systems
Spring 2018

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

● Homework 6 due 5/2/2018
● Final Project Plan 5/14/2018

Reminder: Presentation Slots
Reminder: Presentation share for slides -
LASTNAME.ext

Distributed Databases

Distributed Database System

● A distributed database system consists of
loosely coupled sites that share no physical
component

● Database systems that run on each site are
independent of each other

● Transactions may access data at one or more
sites

Based on and image from “Database System Concepts” book and slides, 6th edition

Homogeneous/Heterogeneous
Distributed Databases

● In a homogeneous distributed database
− All sites have identical software
− Are aware of each other and agree to cooperate

in processing user requests.
− Each site surrenders part of its autonomy in

terms of right to change schemas or software
− Appears to user as a single system

Based on and image from “Database System Concepts” book and slides, 6th edition

Homogeneous/Heterogeneous
Distributed Databases

● In a heterogeneous distributed database
− Different sites may use different schemas and

software
● Difference in schema is a major problem for query

processing
● Difference in software is a major problem for

transaction processing
− Sites may not be aware of each other and may

provide only
limited facilities for cooperation in transaction
processing

Based on and image from “Database System Concepts” book and slides, 6th edition

Distributed Data Storage

Distributed Data Storage

● Assume relational data model
● Replication

− System maintains multiple copies of data,
stored in different sites, for faster retrieval and
fault tolerance.

● Fragmentation
− Relation is partitioned into several fragments

stored in distinct sites
● Replication and fragmentation can be

combined
− Relation is partitioned into several fragments:

system maintains several identical replicas of
each such fragment.

Based on and image from “Database System Concepts” book and slides, 6th edition

Data Replication
● A relation or fragment of a relation is

replicated if it is stored redundantly in two
or more sites.

● Full replication of a relation is the case
where the relation is stored at all sites.

● Fully redundant databases are those in
which every site contains a copy of the
entire database.

Based on and image from “Database System Concepts” book and slides, 6th edition

● Advantages of Replication
− Availability: failure of site containing relation r

does not result in unavailability of r is replicas exist.
− Parallelism: queries on r may be processed by

several nodes in parallel.
− Reduced data transfer: relation r is available

locally at each site containing a replica of r.

Data Replication

Based on and image from “Database System Concepts” book and slides, 6th edition

● Disadvantages of Replication
− Increased cost of updates: each replica of

relation r must be updated.
− Increased complexity of concurrency control:

concurrent updates to distinct replicas may lead to
inconsistent data unless special concurrency
control mechanisms are implemented.

● One solution: choose one copy as primary copy and
apply concurrency control operations on primary copy

Data Replication

Based on and image from “Database System Concepts” book and slides, 6th edition

Data Fragmentation

● Division of relation r into fragments r1,
r2, …, rn which contain sufficient
information to reconstruct relation r.

● Horizontal fragmentation: each tuple
of r is assigned to one or more
fragments

Based on and image from “Database System Concepts” book and slides, 6th edition

Horizontal Fragmentation of account Relation

branch_name account_number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = σbranch_name=“Hillside” (account)

branch_name account_number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000
1123
750

account2 = σbranch_name=“Valleyview” (account)

Based on and image from “Database System Concepts” book and slides, 6th edition

Data Fragmentation

● Vertical fragmentation: the schema
for relation r is split into several
smaller schemas
− All schemas must contain a common

candidate key (or superkey) to ensure
lossless join property.

− A special attribute, the tuple-id attribute
may be added to each schema to serve
as a candidate key.

Based on and image from “Database System Concepts” book and slides, 6th edition

Vertical Fragmentation of employee_info Relation
branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = Πbranch_name, customer_name, tuple_id (employee_info)

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = Πaccount_number, balance, tuple_id (employee_info)
Based on and image from “Database System Concepts” book and slides, 6th edition

Fragmentation

Picture from “Session-9 Data Management for Decision Support” and based on “Database System Concepts” book and slides, 6th edition

Advantages of Fragmentation
● Horizontal:

− allows parallel processing on fragments of
a relation

− allows a relation to be split so that tuples
are located where they are most frequently
accessed

Based on and image from “Database System Concepts” book and slides, 6th edition

Advantages of Fragmentation
● Vertical:

− allows tuples to be split so that each part
of the tuple is stored where it is most
frequently accessed

− tuple-id attribute allows efficient joining of
vertical fragments

− allows parallel processing on a relation
● Vertical and horizontal fragmentation

can be mixed.
− Fragments may be successively

fragmented to an arbitrary depth.

Based on and image from “Database System Concepts” book and slides, 6th edition

Data Transparency

● Data transparency: Degree to which system
user may remain unaware of the details of
how and where the data items are stored in a
distributed system

● Consider transparency issues in relation to:
− Fragmentation transparency
− Replication transparency
− Location transparency

Based on and image from “Database System Concepts” book and slides, 6th edition

Naming of Data Items - Criteria

1. Every data item must have a system-wide
unique name.

2. It should be possible to find the location of
data items efficiently.

3. It should be possible to change the
location of data items transparently.

4. Each site should be able to create new
data items autonomously.

Based on and image from “Database System Concepts” book and slides, 6th edition

Centralized Scheme - Name Server

● Structure:
− name server assigns all names
− each site maintains a record of local data

items
− sites ask name server to locate non-local data

items
● Advantages:

− satisfies naming criteria 1-3
● Disadvantages:

− does not satisfy naming criterion 4
− name server is a potential performance

bottleneck
− name server is a single point of failure

Based on and image from “Database System Concepts” book and slides, 6th edition

Use of Aliases

● Alternative to centralized scheme: each site
prefixes its own site identifier to any name
that it generates i.e., site 17.account.
− Fulfills having a unique identifier, and avoids

problems associated with central control.
− However, fails to achieve network

transparency.
● Solution: Create a set of aliases for data

items; Store the mapping of aliases to the
real names at each site.

Based on and image from “Database System Concepts” book and slides, 6th edition

Use of Aliases

● The user can be unaware of the physical
location of a data item, and is unaffected if
the data item is moved from one site to
another.

Based on and image from “Database System Concepts” book and slides, 6th edition

Distributed Transactions

Based on and image from “Database System Concepts” book and slides, 6th edition

Distributed Transactions

● Transaction may access data at several
sites.

● Each site has a local transaction manager
responsible for:
− Maintaining a log for recovery purposes
− Participating in coordinating the concurrent

execution of the transactions executing at that
site.

Based on and image from “Database System Concepts” book and slides, 6th edition

Distributed Transactions

● Each site has a transaction coordinator,
which is responsible for:
− Starting the execution of transactions that

originate at the site.
− Distributing subtransactions at appropriate

sites for execution.
− Coordinating the termination of each

transaction that originates at the site, which
may result in the transaction being committed
at all sites or aborted at all sites.

Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction System Architecture

Based on and image from “Database System Concepts” book and slides, 6th edition

System Failure Modes

● Failures unique to distributed systems:
− Failure of a site.
− Loss of massages

● Handled by network transmission control protocols
such as TCP-IP

− Failure of a communication link
● Handled by network protocols, by routing

messages via alternative links
− Network partition

● A network is said to be partitioned when it has
been split into two or more subsystems that lack
any connection between them
− Note: a subsystem may consist of a single node

● Network partitioning and site failures are
generally indistinguishable.

Based on and image from “Database System Concepts” book and slides, 6th edition

Commit Protocols

Commit Protocols
● Commit protocols are used to ensure atomicity across

sites
− a transaction which executes at multiple sites must

either be committed at all the sites, or aborted at all
the sites.

− not acceptable to have a transaction committed at one
site and aborted at another

● The two-phase commit (2PC) protocol is widely used
● The three-phase commit (3PC) protocol is more

complicated and more expensive, but avoids some
drawbacks of two-phase commit protocol. This protocol is
not used in practice. We will not cover

Based on and image from “Database System Concepts” book and slides, 6th edition

Two Phase Commit Protocol (2PC)

Picture from “http://www.ra.ethz.ch/CDStore/www6/Technical/Paper012/Paper12.html” Based on “Database System Concepts” book and
slides, 6th edition

http://www.ra.ethz.ch/CDStore/www6/Technical/Paper012/Paper12.html

Two Phase Commit Protocol (2PC)

● Assumes fail-stop model – failed sites
simply stop working, and do not cause any
other harm, such as sending incorrect
messages to other sites.

● Execution of the protocol is initiated by the
coordinator after the last step of the
transaction has been reached.

● The protocol involves all the local sites at
which the transaction executed

● Let T be a transaction initiated at site Si,
and let the transaction coordinator at Si be
Ci

Based on and image from “Database System Concepts” book and slides, 6th edition

Phase 1: Obtaining a Decision

● Coordinator asks all participants to prepare
to commit transaction Ti.
− Ci adds the records <prepare T> to the log

and forces log to stable storage
− sends prepare T messages to all sites at

which T executed

Based on and image from “Database System Concepts” book and slides, 6th edition

Phase 1: Obtaining a Decision

● Upon receiving message, transaction
manager at site determines if it can commit
the transaction
- if not, add a record <no T> to the log and send
abort T message to Ci
- if the transaction can be committed, then:
- add the record <ready T> to the log
- force all records for T to stable storage
- send ready T message to Ci

Based on and image from “Database System Concepts” book and slides, 6th edition

Phase 2: Recording the Decision
● T can be committed of Ci received a ready

T message from all the participating sites:
otherwise T must be aborted.

● Coordinator adds a decision record,
<commit T> or <abort T>, to the log and
forces record onto stable storage. Once the
record stable storage it is irrevocable (even
if failures occur)

● Coordinator sends a message to each
participant informing it of the decision
(commit or abort)

● Participants take appropriate action locally.
Based on and image from “Database System Concepts” book and slides, 6th edition

Handling of Failures- Site Failure

● When site Si recovers, it examines its log to determine the fate of
transactions active at the time of the failure.
○ Log contain <commit T> record: txn had completed, nothing to be done
○ Log contains <abort T> record: txn had completed, nothing to be done
○ Log contains <ready T> record: site must consult Ci to determine the fate

of T.
● If T committed, redo (T); write <commit T> record
● If T aborted, undo (T)

○ The log contains no log records concerning T:
● Implies that Sk failed before responding to the prepare T message

from Ci
● since the failure of Sk precludes the sending of such a response,

coordinator C1 must abort T
● Sk must execute undo (T)

Based on and image from “Database System Concepts” book and slides, 6th edition

Handling of Failures- Coordinator Failure

● If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T’s fate:
○ If an active site contains a <commit T> record in its log, then T must be

committed.
○ If an active site contains an <abort T> record in its log, then T must be

aborted.
○ If some active participating site does not contain a <ready T> record in its

log, then the failed coordinator Ci cannot have decided to commit T.
● Can therefore abort T; however, such a site must reject any

subsequent <prepare T> message from Ci
○ If none of the above cases holds, then all active sites must have a <ready

T> record in their logs, but no additional control records (such as <abort
T> of <commit T>).
● In this case active sites must wait for Ci to recover, to find decision.

● Blocking problem: active sites may have to wait for failed coordinator to
recover.

Based on and image from “Database System Concepts” book and slides, 6th edition

Recovery and Concurrency Control

● In-doubt transactions have a <ready T>,
but neither a
<commit T>, nor an <abort T> log record.

● The recovering site must determine the
commit-abort status of such transactions by
contacting other sites; this can slow and
potentially block recovery.

Based on and image from “Database System Concepts” book and slides, 6th edition

Concurrency Control
● Concurrency Control schemes can be

modified to work with distributed databases
● Assuming a commit protocol and

participation of sites in execution
● Goal is to ensure global transaction

atomicity

Based on and image from “Database System Concepts” book and slides, 6th edition

Single Lock Manager Approach
● System maintains a single lock manager

that resides in a single chosen site, say Si
● When a transaction needs to lock a data

item, it sends a lock request to Si and lock
manager determines whether the lock can
be granted immediately

○ If yes, lock manager sends a message to
the site which initiated the request

○ If no, request is delayed until it can be
granted, at which time a message is sent
to the initiating site

 Based on and image from “Database System Concepts” book and slides, 6th edition

Single Lock Manager Approach
● The transaction can read the data item from any

one of the sites at which a replica of the data item
resides.

● Writes must be performed on all replicas of a
data item

● Advantages of scheme:
○ Simple implementation
○ Simple deadlock handling

● Disadvantages of scheme are:
○ Bottleneck: lock manager site becomes a

bottleneck
○ Vulnerability: system is vulnerable to lock

manager site failure.

Based on and image from “Database System Concepts” book and slides, 6th edition

Distributed Lock Manager Approach
● In this approach, functionality of locking is

implemented by lock managers at each site
○ Lock managers control access to local data

items
■ But special protocols may be used for

replicas
● Advantage: work is distributed and can be made

robust to failures

Based on and image from “Database System Concepts” book and slides, 6th edition

Distributed Lock Manager Approach
● Disadvantage: deadlock detection is more

complicated
○ Lock managers cooperate for deadlock

detection
● Several variants of this approach

○ Primary copy
○ Majority protocol
○ Biased protocol
○ Quorum consensus

Based on and image from “Database System Concepts” book and slides, 6th edition

Replication with Weak Consistency

● Many commercial databases support
replication of data with weak degrees of
consistency (I.e., without a guarantee of
serializabiliy)

Based on and image from “Database System Concepts” book and slides, 6th edition

Replication with Weak Consistency

● E.g.: master-slave replication: updates
are performed at a single “master” site, and
propagated to “slave” sites.
− Propagation is not part of the update

transaction: its is decoupled
● May be immediately after transaction commits
● May be periodic

− Data may only be read at slave sites, not
updated

● No need to obtain locks at any remote site
− Particularly useful for distributing information

● E.g. from central office to branch-office
− Also useful for running read-only queries

offline from the main database
Based on and image from “Database System Concepts” book and slides, 6th edition

● Replicas should see a
transaction-consistent snapshot of the
database
− That is, a state of the database reflecting all

effects of all transactions up to some point in
the serialization order, and no effects of any
later transactions.

Replication with Weak Consistency

Based on and image from “Database System Concepts” book and slides, 6th edition

Multimaster and Lazy Replication

● Many systems support lazy propagation
where updates are transmitted after
transaction commits
− Allows updates to occur even if some sites are

disconnected from the network, but at the cost
of consistency

Based on and image from “Database System Concepts” book and slides, 6th edition

Heterogeneous Distributed
Databases

Heterogeneous Distributed Databases

● Many database applications require data
from a variety of preexisting databases
located in a heterogeneous collection of
hardware and software platforms

● Data models may differ (hierarchical,
relational , etc.)

● Transaction commit protocols may be
incompatible

Based on and image from “Database System Concepts” book and slides, 6th edition

Heterogeneous Distributed Databases

● Concurrency control may be based on
different techniques (locking, timestamping,
etc.)

● System-level details almost certainly are
totally incompatible.

● A multidatabase system is a software
layer on top of existing database systems,
which is designed to manipulate
information in heterogeneous databases
− Creates an illusion of logical database

integration without any physical database
integration

Based on and image from “Database System Concepts” book and slides, 6th edition

Advantages

● Preservation of investment in existing
− hardware
− system software
− Applications

● Local autonomy and administrative control
● Allows use of special-purpose DBMSs
● Step towards a unified homogeneous

DBMS
− Full integration into a homogeneous DBMS

faces
● Technical difficulties and cost of conversion
● Organizational/political difficulties

− Organizations do not want to give up control on their data
− Local databases wish to retain a great deal of autonomy

Based on and image from “Database System Concepts” book and slides, 6th edition

Unified View of Data

● Agreement on a common data model
− Typically the relational model

● Agreement on a common conceptual
schema
− Different names for same relation/attribute
− Same relation/attribute name means different

things

Based on and image from “Database System Concepts” book and slides, 6th edition

Query Processing

● Several issues in query processing in a
heterogeneous database

● Schema translation
− Write a wrapper for each data source to translate

data to a global schema
− Wrappers must also translate updates on global

schema to updates on local schema

Based on and image from “Database System Concepts” book and slides, 6th edition

Query Processing

● Limited query capabilities
− Some data sources allow only restricted forms of

selections
● E.g. web forms, flat file data sources

− Queries have to be broken up and processed
partly at the source and partly at a different site

● Removal of duplicate information when sites
have overlapping information
− Decide which sites to execute query

● Global query optimization

Based on and image from “Database System Concepts” book and slides, 6th edition

Mediator Systems

● Mediator systems are systems that
integrate multiple heterogeneous data
sources by providing an integrated global
view, and providing query facilities on
global view
− Unlike full fledged multidatabase systems,

mediators generally do not bother about
transaction processing

− But the terms mediator and multidatabase are
sometimes used interchangeably

− The term virtual database is also used to
refer to mediator/multidatabase systems

Based on and image from “Database System Concepts” book and slides, 6th edition

Cloud-Based Databases

Data Storage on the Cloud

● Need to store and retrieve massive
amounts of data

● Traditional parallel databases not designed
to scale to 1000’s of nodes (and expensive)

● Initial needs did not include full database
functionality
− Store and retrieve data items by key value is

minimum functionality
● Key-value stores

Based on and image from “Database System Concepts” book and slides, 6th edition

Data Storage on the Cloud

● Several implementations
− Bigtable from Google,
− HBase, an open source clone of Bigtable
− Dynamo, which is a key-value storage system

from Amazon
− Cassandra, from FaceBook
− Sherpa/PNUTS from Yahoo!

Based on and image from “Database System Concepts” book and slides, 6th edition

Key Value Stores

● Key-value stores support
− put(key, value): used to store values with an

associated key,
− get(key): which retrieves the stored value

associated with the specified key.
● Some systems such as Bigtable

additionally provide range queries on key
values

● Multiple versions of data may be stored, by
adding a timestamp to the key

Based on and image from “Database System Concepts” book and slides, 6th edition

Data Representation
● Records in many big data applications need to have a flexible schema

− Not all records have same structure
− Some attributes may have complex substructure

● XML and JSON data representation formats widely used
● An example of a JSON object is:

{
 "ID": "22222",
 "name": {
 "firstname: "Albert",
 "lastname: "Einstein"
 },
 "deptname": "Physics",
 "children": [
 { "firstname": "Hans", "lastname": "Einstein" },
 { "firstname": "Eduard", "lastname": "Einstein" }
]
}

●

Based on and image from “Database System Concepts” book and slides, 6th edition

Partitioning and Retrieving Data
● Key-value stores partition data into relatively small units (hundreds of

megabytes).
● These partitions are often called tablets (a tablet is a fragment of a

table)
● Partitioning of data into tablets is dynamic:

− as data are inserted, if a tablet grows too big, it is broken into
smaller parts

− if the load (get/put operations) on a tablet is excessive, the tablet
may be broken into smaller tablets, which can be distributed
across two or more sites to share the load.

− the number of tablets is much larger than the number of sites
● similar to virtual partitioning in parallel databases

● Each get/put request must be routed to the correct site

Based on and image from “Database System Concepts” book and slides, 6th edition

Partitioning and Retrieving Data
● Partitioning dynamic

− If tablet grows too big broken up into smaller parts
− If tablet load too large broken up into smaller parts

● Tablet controller tracks the partitioning function and tablet-to-site mapping
− map a get() request to one or more tablets,
− Tablet mapping function to track which site responsible for which tablet

● Requests must be routed to correct site
− Mapping information can be replicated on a set of router sites

Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction and Replication
● Transactions

− Data storage systems do not typically support full ACID
transactions

− Cannot support transactionally consistent secondary index
− Support transactions on data within a single tablet

● Replication
− Tablets are replicated to multiple machines in a cluster
− Data likely to be available even if machine in cluster goes down

● Cluster – a collection of machines in a data center
− Replication also used across geographically distributed clusters
− When a site fails tablet is reassigned to a different site that has

copy of tablet
● Becomes the new master site for the tablet

− Entire data center can become unavailable
● Replication at a remote site essential for high availability

Based on and image from “Database System Concepts” book and slides, 6th edition

Traditional Databases on the Cloud
● Extensive use of virtual machines
● Virtual machines very good for applications that

are easily parallelized
● Each VM can run database locally

− Behaves similar to homogeneous distributed
database system

Based on and image from “Database System Concepts” book and slides, 6th edition

Challenges
● Require frequent communication and coordination among

sites
− To access data on another physical machine
− To obtain locks on remote data
− To ensure atomic transaction commit using 2 phase

commit
● Physical location of data under control of vendor
● Query optimization based on physical location
− Without knowledge optimizater relies on estimates

● Replication further complicates cloud based data
management

Based on and image from “Database System Concepts” book and slides, 6th edition

